organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Bis(4-meth­­oxy­phen­yl)-1,3,4-oxa­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 October 2010; accepted 30 October 2010; online 6 November 2010)

In the title compound, C16H14N2O3, the essentially planar 1,3,4-oxadiazole ring [maximum deviation = 0.0021 (11) Å] is inclined at dihedral angles of 8.06 (6) and 11.21 (6)° with respect to the two benzene rings; the dihedral angle between the latter rings is 11.66 (5)°. In the crystal, short inter­molecular C⋯O inter­actions [2.9968 (15) Å] connect adjacent mol­ecules into chains propagating in [203]. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and applications of the title compound, see: Andersen et al. (1994[Andersen, K. E., Jørgensen, A. S. & Braestrup, C. (1994). Eur. J. Med. Chem. 29, 393-399.]); Clitherow et al. (1996[Clitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett. 6, 833-838.]); Hegde et al. (2008[Hegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Showell et al. (1991[Showell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Suanders, J., Freedman, S. B., Patel, S. B. & Baker, R. (1991). J. Med. Chem. 34, 1086-1094.]). For closely related 2,5-diphenyl-1,3,4-oxadiazole structures, see: Reck et al. (2003a[Reck, G., Orgzall, I. & Schulz, B. (2003a). Acta Cryst. E59, o1135-o1136.],b[Reck, G., Orgzall, I., Schulz, B. & Dietzel, B. (2003b). Acta Cryst. C59, o634-o635.]); Franco et al. (2003[Franco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct. 649, 219-230.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O3

  • Mr = 282.29

  • Monoclinic, P 21 /c

  • a = 10.7525 (2) Å

  • b = 11.8973 (2) Å

  • c = 11.6340 (2) Å

  • β = 115.434 (1)°

  • V = 1344.04 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.53 × 0.49 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.992

  • 17061 measured reflections

  • 4744 independent reflections

  • 3744 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.03

  • 4744 reflections

  • 246 parameters

  • All H-atom parameters refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of C9–C14 and C1–C6 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15ACg1i 1.031 (14) 2.563 (16) 3.4903 (14) 149.4 (10)
C15—H15BCg2ii 0.992 (14) 2.994 (16) 3.8804 (14) 149.4 (11)
Symmetry codes: (i) x-1, y, z-1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic compounds are becoming increasingly important in recent years due to their pharmacological activities (Rai et al., 2008). Nitrogen- and oxygen-containing five/six-membered heterocyclic compounds are of enormous significance in the field of medicinal chemistry (Hegde et al., 2008). Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen et al., 1994) and anti-cancer (Showell et al., 1991) activities. The results of biological studies showed that oxadiazole derivatives also possess significant anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow et al., 1996) properties.

In the title oxadiazole compound (Fig. 1), the 1,3,4-oxadiazole ring (C7/C8/N1/N2/O1) is essentially planar, with a maximum deviation of -0.0021 (11) at atom N1. The C1-C6 and C9-C14 phenyl rings are inclined at dihedral angles of 11.21 (6) and 8.06 (6)°, respectively, with the 1,3,4-oxadiazole ring. The geometric parameters agree well with those observed in closely related 2,5-diphenyl-1,3,4-oxadiazole structures (Reck et al., 2003a,b; Franco et al., 2003).

In the crystal, no significant intermolecular hydrogen bond is observed. The interesting feature of the crystal structure is the intermolecular short C15···O3 interactions [2.9968 (15) Å, symmetry code: x+1, -y+1/2, z+3/2], which is significantly shorter than the sum of the Van der Waals radii of the relevant atoms (3.22 Å), interconnecting adjacent molecules into one-dimensional chains propagating along the [203] direction (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular C15—H15A···Cg1 and C15—H15B···Cg2 interactions (Table 1) where Cg1 and Cg2 are the centroids of C9-C14 and C1-C6 phenyl rings, respectively.

Related literature top

For general background to and applications of the title compound, see: Andersen et al. (1994); Clitherow et al. (1996); Hegde et al. (2008); Rai et al. (2008); Showell et al. (1991). For closely related 2,5-diphenyl-1,3,4-oxadiazole structures, see: Reck et al. (2003a,b); Franco et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

An equimolar mixture of 4-methoxybenzoic acid (0.01 mol) and 4-methoxybenzhydrazide was dissolved in POCl3 (25–30 ml) by gentle warming. The solution is refluxed for about 12 h. Excess of POCl3 is distilled off, and then the reaction mixture is poured into crushed ice. The separated solid was filtered, washed with water and dried. It was then recrystallized from ethanol. Yellow blocks of (I) were obtained from ethanol by slow evaporation.

Refinement top

All H atoms were located from difference Fourier map and allowed to refine freely with range of C—H = 0.916 (14) – 1.031 (14) Å.

Structure description top

Heterocyclic compounds are becoming increasingly important in recent years due to their pharmacological activities (Rai et al., 2008). Nitrogen- and oxygen-containing five/six-membered heterocyclic compounds are of enormous significance in the field of medicinal chemistry (Hegde et al., 2008). Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen et al., 1994) and anti-cancer (Showell et al., 1991) activities. The results of biological studies showed that oxadiazole derivatives also possess significant anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow et al., 1996) properties.

In the title oxadiazole compound (Fig. 1), the 1,3,4-oxadiazole ring (C7/C8/N1/N2/O1) is essentially planar, with a maximum deviation of -0.0021 (11) at atom N1. The C1-C6 and C9-C14 phenyl rings are inclined at dihedral angles of 11.21 (6) and 8.06 (6)°, respectively, with the 1,3,4-oxadiazole ring. The geometric parameters agree well with those observed in closely related 2,5-diphenyl-1,3,4-oxadiazole structures (Reck et al., 2003a,b; Franco et al., 2003).

In the crystal, no significant intermolecular hydrogen bond is observed. The interesting feature of the crystal structure is the intermolecular short C15···O3 interactions [2.9968 (15) Å, symmetry code: x+1, -y+1/2, z+3/2], which is significantly shorter than the sum of the Van der Waals radii of the relevant atoms (3.22 Å), interconnecting adjacent molecules into one-dimensional chains propagating along the [203] direction (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular C15—H15A···Cg1 and C15—H15B···Cg2 interactions (Table 1) where Cg1 and Cg2 are the centroids of C9-C14 and C1-C6 phenyl rings, respectively.

For general background to and applications of the title compound, see: Andersen et al. (1994); Clitherow et al. (1996); Hegde et al. (2008); Rai et al. (2008); Showell et al. (1991). For closely related 2,5-diphenyl-1,3,4-oxadiazole structures, see: Reck et al. (2003a,b); Franco et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50 % probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis, showing molecules being interconnected into one-dimensional chains. H atoms have been omitted for clarity and intermolecular short interactions are shown as dashed lines.
2,5-Bis(4-methoxyphenyl)-1,3,4-oxadiazole top
Crystal data top
C16H14N2O3F(000) = 592
Mr = 282.29Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5014 reflections
a = 10.7525 (2) Åθ = 2.6–32.2°
b = 11.8973 (2) ŵ = 0.10 mm1
c = 11.6340 (2) ÅT = 100 K
β = 115.434 (1)°Block, yellow
V = 1344.04 (4) Å30.53 × 0.49 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4744 independent reflections
Radiation source: fine-focus sealed tube3744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 32.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1615
Tmin = 0.950, Tmax = 0.992k = 1717
17061 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.079P)2 + 0.1649P]
where P = (Fo2 + 2Fc2)/3
4744 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H14N2O3V = 1344.04 (4) Å3
Mr = 282.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7525 (2) ŵ = 0.10 mm1
b = 11.8973 (2) ÅT = 100 K
c = 11.6340 (2) Å0.53 × 0.49 × 0.09 mm
β = 115.434 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4744 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3744 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.992Rint = 0.027
17061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137All H-atom parameters refined
S = 1.03Δρmax = 0.38 e Å3
4744 reflectionsΔρmin = 0.30 e Å3
246 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89032 (6)0.25303 (6)0.21170 (6)0.01974 (15)
O20.49848 (8)0.12006 (7)0.35883 (8)0.0333 (2)
O31.26608 (8)0.16634 (6)0.80451 (7)0.02542 (17)
N10.84586 (9)0.42831 (7)0.14199 (9)0.02542 (19)
N20.93713 (9)0.43051 (7)0.27255 (8)0.02513 (19)
C10.64742 (10)0.33907 (9)0.11316 (10)0.0243 (2)
C20.56651 (10)0.29145 (9)0.23102 (10)0.0257 (2)
C30.57391 (10)0.17639 (9)0.24904 (10)0.0247 (2)
C40.66395 (10)0.10958 (9)0.14829 (10)0.0264 (2)
C50.74483 (10)0.15763 (8)0.03171 (10)0.0234 (2)
C60.73715 (9)0.27300 (8)0.01231 (9)0.02039 (18)
C70.82192 (9)0.32333 (8)0.11073 (9)0.02031 (18)
C80.95953 (9)0.32608 (7)0.30883 (9)0.01932 (18)
C91.04150 (9)0.28123 (7)0.43534 (9)0.01863 (17)
C101.06169 (9)0.16598 (8)0.45607 (9)0.01989 (18)
C111.13636 (9)0.12351 (8)0.57833 (9)0.02060 (18)
C121.19097 (9)0.19768 (8)0.68094 (9)0.01974 (18)
C131.17027 (10)0.31372 (8)0.66105 (10)0.0232 (2)
C141.09745 (10)0.35469 (8)0.53959 (10)0.02276 (19)
C150.42071 (11)0.18563 (12)0.47047 (11)0.0320 (2)
C161.29532 (13)0.05018 (10)0.82938 (11)0.0312 (2)
H1A0.6395 (13)0.4157 (12)0.1004 (13)0.031 (3)*
H2A0.5040 (16)0.3408 (13)0.2994 (15)0.044 (4)*
H4A0.6699 (14)0.0323 (13)0.1637 (14)0.034 (4)*
H5A0.8051 (14)0.1104 (12)0.0334 (13)0.033 (4)*
H10A1.0288 (13)0.1131 (11)0.3879 (13)0.028 (3)*
H11A1.1508 (14)0.0475 (12)0.5874 (14)0.033 (3)*
H13A1.2011 (15)0.3619 (13)0.7306 (14)0.039 (4)*
H14A1.0822 (13)0.4342 (12)0.5266 (13)0.031 (3)*
H15A0.3446 (14)0.2322 (11)0.4612 (13)0.031 (3)*
H15B0.4821 (14)0.2357 (12)0.4910 (14)0.030 (3)*
H15C0.3802 (16)0.1299 (14)0.5399 (15)0.043 (4)*
H16A1.2087 (16)0.0060 (13)0.8025 (15)0.044 (4)*
H16B1.3518 (15)0.0229 (13)0.7875 (14)0.040 (4)*
H16C1.3490 (16)0.0457 (14)0.9238 (16)0.046 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (3)0.0161 (3)0.0210 (3)0.0006 (2)0.0069 (2)0.0022 (2)
O20.0298 (4)0.0347 (4)0.0238 (4)0.0009 (3)0.0003 (3)0.0011 (3)
O30.0325 (4)0.0234 (4)0.0183 (3)0.0021 (3)0.0089 (3)0.0011 (3)
N10.0316 (4)0.0193 (4)0.0244 (4)0.0024 (3)0.0112 (3)0.0035 (3)
N20.0324 (4)0.0184 (4)0.0236 (4)0.0022 (3)0.0111 (3)0.0020 (3)
C10.0247 (4)0.0219 (5)0.0262 (5)0.0025 (3)0.0108 (4)0.0062 (4)
C20.0220 (4)0.0283 (5)0.0246 (5)0.0024 (3)0.0080 (4)0.0086 (4)
C30.0197 (4)0.0282 (5)0.0224 (4)0.0015 (3)0.0054 (3)0.0031 (4)
C40.0243 (4)0.0222 (5)0.0265 (5)0.0002 (3)0.0050 (4)0.0023 (4)
C50.0210 (4)0.0217 (4)0.0237 (4)0.0009 (3)0.0058 (3)0.0050 (3)
C60.0183 (4)0.0213 (4)0.0219 (4)0.0005 (3)0.0090 (3)0.0045 (3)
C70.0204 (4)0.0192 (4)0.0223 (4)0.0031 (3)0.0101 (3)0.0054 (3)
C80.0210 (4)0.0165 (4)0.0217 (4)0.0007 (3)0.0103 (3)0.0001 (3)
C90.0192 (4)0.0161 (4)0.0213 (4)0.0001 (3)0.0092 (3)0.0003 (3)
C100.0201 (4)0.0161 (4)0.0220 (4)0.0010 (3)0.0076 (3)0.0020 (3)
C110.0222 (4)0.0156 (4)0.0228 (4)0.0009 (3)0.0086 (3)0.0005 (3)
C120.0212 (4)0.0206 (4)0.0185 (4)0.0006 (3)0.0096 (3)0.0004 (3)
C130.0284 (4)0.0195 (4)0.0223 (4)0.0010 (3)0.0113 (4)0.0039 (3)
C140.0275 (4)0.0163 (4)0.0246 (4)0.0017 (3)0.0112 (4)0.0015 (3)
C150.0237 (4)0.0470 (7)0.0213 (5)0.0004 (4)0.0059 (4)0.0067 (4)
C160.0390 (6)0.0239 (5)0.0242 (5)0.0018 (4)0.0074 (4)0.0053 (4)
Geometric parameters (Å, º) top
O1—C81.3652 (11)C6—C71.4552 (13)
O1—C71.3704 (11)C8—C91.4537 (13)
O2—C31.3597 (13)C9—C101.3930 (12)
O2—C151.4359 (13)C9—C141.4036 (13)
O3—C121.3641 (11)C10—C111.3937 (13)
O3—C161.4193 (13)C10—H10A0.954 (14)
N1—C71.2954 (13)C11—C121.3952 (13)
N1—N21.4110 (12)C11—H11A0.916 (14)
N2—C81.3010 (12)C12—C131.4017 (14)
C1—C21.3905 (15)C13—C141.3774 (14)
C1—C61.3975 (13)C13—H13A0.929 (16)
C1—H1A0.934 (14)C14—H14A0.960 (14)
C2—C31.3923 (15)C15—H15A1.031 (14)
C2—H2A0.985 (16)C15—H15B0.992 (14)
C3—C41.4029 (14)C15—H15C0.990 (16)
C4—C51.3819 (14)C16—H16A0.996 (16)
C4—H4A0.944 (15)C16—H16B0.982 (16)
C5—C61.3992 (14)C16—H16C0.999 (17)
C5—H5A0.943 (14)
C8—O1—C7102.83 (7)C10—C9—C8121.21 (8)
C3—O2—C15117.56 (9)C14—C9—C8119.66 (8)
C12—O3—C16117.39 (8)C9—C10—C11120.82 (8)
C7—N1—N2106.41 (8)C9—C10—H10A122.1 (8)
C8—N2—N1106.13 (8)C11—C10—H10A117.1 (8)
C2—C1—C6120.85 (9)C10—C11—C12119.35 (9)
C2—C1—H1A119.5 (9)C10—C11—H11A118.0 (9)
C6—C1—H1A119.6 (9)C12—C11—H11A122.5 (9)
C1—C2—C3119.80 (9)O3—C12—C11124.75 (9)
C1—C2—H2A118.4 (9)O3—C12—C13115.05 (8)
C3—C2—H2A121.8 (9)C11—C12—C13120.20 (9)
O2—C3—C2125.20 (9)C14—C13—C12119.87 (9)
O2—C3—C4115.14 (9)C14—C13—H13A120.6 (10)
C2—C3—C4119.66 (9)C12—C13—H13A119.5 (10)
C5—C4—C3120.21 (10)C13—C14—C9120.66 (9)
C5—C4—H4A121.6 (9)C13—C14—H14A119.5 (8)
C3—C4—H4A118.2 (9)C9—C14—H14A119.8 (8)
C4—C5—C6120.55 (9)O2—C15—H15A112.1 (8)
C4—C5—H5A117.9 (9)O2—C15—H15B110.8 (8)
C6—C5—H5A121.6 (9)H15A—C15—H15B110.0 (11)
C1—C6—C5118.92 (9)O2—C15—H15C104.8 (10)
C1—C6—C7120.62 (9)H15A—C15—H15C110.8 (12)
C5—C6—C7120.46 (8)H15B—C15—H15C108.1 (12)
N1—C7—O1112.27 (9)O3—C16—H16A110.8 (9)
N1—C7—C6129.63 (9)O3—C16—H16B110.5 (9)
O1—C7—C6118.09 (8)H16A—C16—H16B111.3 (13)
N2—C8—O1112.35 (8)O3—C16—H16C104.4 (10)
N2—C8—C9128.77 (9)H16A—C16—H16C109.8 (13)
O1—C8—C9118.84 (8)H16B—C16—H16C109.8 (13)
C10—C9—C14119.09 (9)
C7—N1—N2—C80.41 (11)N1—N2—C8—O10.33 (11)
C6—C1—C2—C30.44 (16)N1—N2—C8—C9177.28 (9)
C15—O2—C3—C29.99 (16)C7—O1—C8—N20.13 (10)
C15—O2—C3—C4170.60 (10)C7—O1—C8—C9177.74 (8)
C1—C2—C3—O2178.82 (10)N2—C8—C9—C10175.90 (10)
C1—C2—C3—C40.55 (16)O1—C8—C9—C106.62 (13)
O2—C3—C4—C5179.38 (10)N2—C8—C9—C146.42 (16)
C2—C3—C4—C50.05 (16)O1—C8—C9—C14171.05 (8)
C3—C4—C5—C60.57 (16)C14—C9—C10—C110.04 (14)
C2—C1—C6—C50.18 (15)C8—C9—C10—C11177.72 (9)
C2—C1—C6—C7179.80 (9)C9—C10—C11—C120.20 (14)
C4—C5—C6—C10.69 (15)C16—O3—C12—C112.71 (14)
C4—C5—C6—C7179.69 (9)C16—O3—C12—C13177.29 (9)
N2—N1—C7—O10.35 (11)C10—C11—C12—O3179.73 (8)
N2—N1—C7—C6178.82 (9)C10—C11—C12—C130.27 (14)
C8—O1—C7—N10.15 (10)O3—C12—C13—C14179.08 (9)
C8—O1—C7—C6179.12 (8)C11—C12—C13—C140.92 (15)
C1—C6—C7—N111.61 (16)C12—C13—C14—C91.10 (15)
C5—C6—C7—N1168.01 (10)C10—C9—C14—C130.62 (14)
C1—C6—C7—O1169.27 (9)C8—C9—C14—C13177.10 (9)
C5—C6—C7—O111.12 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of C9–C14 and C1–C6 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i1.031 (14)2.563 (16)3.4903 (14)149.4 (10)
C15—H15B···Cg2ii0.992 (14)2.994 (16)3.8804 (14)149.4 (11)
Symmetry codes: (i) x1, y, z1; (ii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC16H14N2O3
Mr282.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.7525 (2), 11.8973 (2), 11.6340 (2)
β (°) 115.434 (1)
V3)1344.04 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.53 × 0.49 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
17061, 4744, 3744
Rint0.027
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.03
No. of reflections4744
No. of parameters246
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of C9–C14 and C1–C6 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cg1i1.031 (14)2.563 (16)3.4903 (14)149.4 (10)
C15—H15B···Cg2ii0.992 (14)2.994 (16)3.8804 (14)149.4 (11)
Symmetry codes: (i) x1, y, z1; (ii) x, y1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAndersen, K. E., Jørgensen, A. S. & Braestrup, C. (1994). Eur. J. Med. Chem. 29, 393–399.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett. 6, 833–838.  CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFranco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct. 649, 219–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationHegde, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationReck, G., Orgzall, I. & Schulz, B. (2003a). Acta Cryst. E59, o1135–o1136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReck, G., Orgzall, I., Schulz, B. & Dietzel, B. (2003b). Acta Cryst. C59, o634–o635.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShowell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Suanders, J., Freedman, S. B., Patel, S. B. & Baker, R. (1991). J. Med. Chem. 34, 1086–1094.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds