organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

p-Tolyl­methanaminium cyclo­hexane-1,2-diyl phosphate

aDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: dchakraborty@iitm.ac.in

(Received 29 October 2010; accepted 29 October 2010; online 6 November 2010)

In the title mol­ecular salt, C8H12N+·C6H10O4P, the cation and anion are connected by N—H⋯O hydrogen bonds. The C atoms of the cyclo­hexane ring are disordered over two sets of sites in a 0.51 (4):0.49 (4) occupancy ratio to generate two superimposed chair conformations. One of the terminal phosphate O atoms is also disordered in a 0.62 (2):0.38 (2) ratio.

Related literature

For a related structure and background to organic phosphates, see: Gowda et al. (2010[Gowda, R. R., Ramkumar, V. & Chakraborty, D. (2010). Acta Cryst. E66, o1625.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·C6H10O4P

  • Mr = 299.30

  • Triclinic, [P \overline 1]

  • a = 5.9642 (6) Å

  • b = 9.6077 (10) Å

  • c = 13.7070 (15) Å

  • α = 78.326 (6)°

  • β = 82.549 (7)°

  • γ = 84.900 (6)°

  • V = 761.11 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.22 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.972

  • 9372 measured reflections

  • 3112 independent reflections

  • 1549 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.177

  • S = 0.99

  • 3112 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3N⋯O3i 0.92 (4) 1.90 (4) 2.788 (5) 161 (3)
N1—H2N⋯O3ii 1.00 (6) 1.86 (6) 2.834 (5) 164 (4)
N1—H1N⋯O4iii 0.92 (5) 1.72 (6) 2.63 (2) 171 (5)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of organic phosphates (Gowda et al., 2010), we now report the structure of the title salt (I) of cyclohexanediol phosphoric acid instead of binol phosphoric acid as compared to earlier report.

The cyclohexane ring is puckered and the ring puckering parameters such as total puckering amplitude QT and phase angle θ are 0.615 (14) Å and 8.3 (15)° respectively, the q2 and q3 are 0.076 (16) and 0.609 (15) Å, respectively (Cremer & Pople, 1975). Thus, all parameters strongly support the near ideal chair conformation for the cyclohexane ring C9–C14.

The C atoms of the cyclohexane ring are disordered, with a site-occupancy factor of 0.51 (4) for the major component and the O atom attached to the phosphate is also disordered, with a site-occupancy factor of 0.62 (2).

The N atom in the p-tolyl methanammonium cation exhibits a trigonal pyramidal coordinate geometry with three phosphate O atom forming three N—H···O interactions.

Related literature top

For a related structure and background to organic phosphates, see: Gowda et al. (2010). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

To an stirred ice cold solution of 0.15 g (1.29 mmol) trans-1,2-cyclohexanediol in 10 ml of dichloromethane under nitrogen atmosphere was added 0.12 ml (1.29 mmol) POCl3 drop wise followed by addition of 3.6 ml (25.8 mmol) triethylamine. White fumes of HCl were observed upon addition, reaction mixture was stirred at 273 K for 30 min. Then 0.8 ml (6.5 mmol) 4-methylbenzylamine was added slowly at 273 K. Reaction mixture was stirred at 273 K for 1 h and warmed up to room temperature and stirred for 48 h. The reaction was monitored using thin layer chromatography. The reaction mixture was then washed with 2 ml of water. The product was extracted using dichloromethane and purified by crystallization in dichloromethane to yield colourless blocks of (I).

Refinement top

All H atoms except the nitrogen H atoms were fixed geometrically and allowed to ride on the parent C atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methine C—H = 0.97 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl, methine and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and methyl H atoms at Uiso(H) = 1.5Ueq(C)

The cyclohexane ring C9–C14 are disordered in two orientations with refined site occupancy of 0.51 (4) and 0.49 (5) respectively. The O atom attached to the phosphate is also disordered, with a site-occupancy factor of 0.62 (2) and 0.38 (3) respectively. Some anisotropic displacement ellipsoids were rather elongated which led us to use the EADP restraints.

Structure description top

As part of our ongoing studies of organic phosphates (Gowda et al., 2010), we now report the structure of the title salt (I) of cyclohexanediol phosphoric acid instead of binol phosphoric acid as compared to earlier report.

The cyclohexane ring is puckered and the ring puckering parameters such as total puckering amplitude QT and phase angle θ are 0.615 (14) Å and 8.3 (15)° respectively, the q2 and q3 are 0.076 (16) and 0.609 (15) Å, respectively (Cremer & Pople, 1975). Thus, all parameters strongly support the near ideal chair conformation for the cyclohexane ring C9–C14.

The C atoms of the cyclohexane ring are disordered, with a site-occupancy factor of 0.51 (4) for the major component and the O atom attached to the phosphate is also disordered, with a site-occupancy factor of 0.62 (2).

The N atom in the p-tolyl methanammonium cation exhibits a trigonal pyramidal coordinate geometry with three phosphate O atom forming three N—H···O interactions.

For a related structure and background to organic phosphates, see: Gowda et al. (2010). For ring-puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. The packing diagram showing the N—H···O interactions.
p-Tolylmethanaminium cyclohexane-1,2-diyl phosphate top
Crystal data top
C8H12N+·C6H10O4PZ = 2
Mr = 299.30F(000) = 320
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9642 (6) ÅCell parameters from 1420 reflections
b = 9.6077 (10) Åθ = 2.4–19.6°
c = 13.7070 (15) ŵ = 0.19 mm1
α = 78.326 (6)°T = 298 K
β = 82.549 (7)°Block, colourless
γ = 84.900 (6)°0.22 × 0.20 × 0.15 mm
V = 761.11 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3112 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 27.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 76
Tmin = 0.959, Tmax = 0.972k = 1212
9372 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0845P)2]
where P = (Fo2 + 2Fc2)/3
3112 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H12N+·C6H10O4Pγ = 84.900 (6)°
Mr = 299.30V = 761.11 (14) Å3
Triclinic, P1Z = 2
a = 5.9642 (6) ÅMo Kα radiation
b = 9.6077 (10) ŵ = 0.19 mm1
c = 13.7070 (15) ÅT = 298 K
α = 78.326 (6)°0.22 × 0.20 × 0.15 mm
β = 82.549 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3112 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1549 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.972Rint = 0.070
9372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.29 e Å3
3112 reflectionsΔρmin = 0.26 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1252 (8)0.4020 (5)0.8217 (3)0.0796 (14)
H1A0.00220.46460.83850.119*
H1B0.20400.36780.87960.119*
H1C0.07310.32280.79990.119*
C20.2837 (6)0.4820 (4)0.7383 (3)0.0494 (10)
C30.2204 (6)0.6086 (4)0.6806 (3)0.0473 (10)
H30.07510.64920.69430.057*
C40.3634 (6)0.6791 (4)0.6024 (3)0.0456 (10)
H40.31410.76550.56470.055*
C50.5811 (6)0.6207 (4)0.5803 (3)0.0388 (9)
C60.6472 (6)0.4933 (4)0.6386 (3)0.0533 (11)
H60.79280.45290.62570.064*
C70.5009 (7)0.4247 (4)0.7160 (3)0.0567 (11)
H70.54920.33820.75390.068*
C80.7453 (6)0.6848 (4)0.4931 (3)0.0519 (10)
H8A0.89790.66400.51180.062*
H8B0.73490.63890.43710.062*
C90.5555 (16)0.0572 (10)0.1899 (7)0.0359 (17)0.511 (5)
H90.62680.09620.23810.043*0.511 (5)
C100.3502 (14)0.1493 (9)0.1592 (7)0.0414 (17)0.511 (5)
H100.27840.11200.11030.050*0.511 (5)
C120.595 (3)0.298 (2)0.0267 (13)0.071 (4)0.511 (5)
H12A0.64950.39200.00120.085*0.511 (5)
H12B0.52330.27050.02550.085*0.511 (5)
C130.802 (3)0.189 (3)0.0537 (14)0.071 (4)0.511 (5)
H13A0.90340.18250.00680.085*0.511 (5)
H13B0.88490.22240.09970.085*0.511 (5)
C9A0.4735 (15)0.0466 (11)0.1512 (7)0.0359 (17)0.489 (5)
H9A0.36550.04700.10300.043*0.489 (5)
C10A0.4392 (14)0.1751 (10)0.1959 (7)0.0414 (17)0.489 (5)
H10A0.55310.17970.24050.050*0.489 (5)
C12A0.683 (3)0.302 (2)0.0589 (14)0.071 (4)0.489 (5)
H12C0.69780.38420.00480.085*0.489 (5)
H12D0.78960.30700.10570.085*0.489 (5)
C13A0.736 (3)0.168 (3)0.0176 (15)0.071 (4)0.489 (5)
H13C0.88700.16930.01830.085*0.489 (5)
H13D0.62910.16360.02920.085*0.489 (5)
C110.4260 (7)0.3024 (4)0.1158 (3)0.0682 (13)
H11A0.29610.36560.09680.082*
H11B0.49240.33820.16600.082*
C140.7203 (6)0.0391 (4)0.1023 (3)0.0541 (11)
H14A0.64920.00020.05490.065*
H14B0.84740.02520.12340.065*
N10.7087 (6)0.8402 (4)0.4595 (3)0.0508 (9)
O10.4388 (4)0.0703 (2)0.23999 (19)0.0548 (8)
O20.2054 (4)0.1419 (3)0.2529 (2)0.0667 (9)
O30.2813 (4)0.0294 (3)0.41168 (19)0.0606 (8)
O40.001 (9)0.072 (10)0.3026 (15)0.089 (12)0.62 (14)
O4A0.051 (6)0.119 (3)0.299 (2)0.054 (6)0.38 (14)
P10.22204 (15)0.01973 (11)0.30949 (8)0.0446 (4)
H3N0.720 (6)0.884 (4)0.512 (3)0.048 (12)*
H2N0.552 (10)0.869 (5)0.440 (4)0.12 (2)*
H1N0.816 (9)0.861 (5)0.405 (4)0.089 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (3)0.085 (3)0.073 (3)0.026 (2)0.009 (3)0.015 (3)
C20.044 (2)0.053 (2)0.050 (2)0.0162 (18)0.0016 (19)0.007 (2)
C30.031 (2)0.054 (2)0.053 (2)0.0035 (16)0.0041 (18)0.005 (2)
C40.037 (2)0.042 (2)0.053 (2)0.0010 (16)0.0000 (18)0.0012 (18)
C50.0311 (19)0.043 (2)0.043 (2)0.0065 (15)0.0013 (17)0.0117 (18)
C60.037 (2)0.055 (3)0.068 (3)0.0015 (18)0.000 (2)0.015 (2)
C70.060 (3)0.041 (2)0.066 (3)0.0009 (19)0.009 (2)0.003 (2)
C80.042 (2)0.062 (3)0.051 (3)0.0062 (18)0.0028 (19)0.013 (2)
C90.032 (5)0.039 (3)0.033 (6)0.005 (4)0.002 (3)0.001 (4)
C100.024 (4)0.045 (4)0.049 (5)0.005 (3)0.002 (3)0.005 (3)
C120.068 (12)0.067 (4)0.060 (11)0.009 (8)0.005 (6)0.022 (7)
C130.037 (9)0.082 (8)0.076 (12)0.013 (6)0.013 (6)0.017 (9)
C9A0.032 (5)0.039 (3)0.033 (6)0.005 (4)0.002 (3)0.001 (4)
C10A0.024 (4)0.045 (4)0.049 (5)0.005 (3)0.002 (3)0.005 (3)
C12A0.068 (12)0.067 (4)0.060 (11)0.009 (8)0.005 (6)0.022 (7)
C13A0.037 (9)0.082 (8)0.076 (12)0.013 (6)0.013 (6)0.017 (9)
C110.072 (3)0.046 (2)0.071 (3)0.004 (2)0.012 (2)0.009 (2)
C140.043 (2)0.063 (3)0.047 (2)0.0031 (18)0.0098 (19)0.002 (2)
N10.036 (2)0.074 (3)0.041 (2)0.0198 (17)0.0038 (18)0.005 (2)
O10.0565 (17)0.0393 (15)0.0598 (17)0.0088 (12)0.0209 (13)0.0036 (13)
O20.0441 (17)0.0680 (18)0.0662 (19)0.0195 (13)0.0250 (14)0.0087 (15)
O30.0517 (18)0.086 (2)0.0418 (17)0.0123 (14)0.0052 (13)0.0030 (14)
O40.047 (11)0.17 (3)0.047 (6)0.058 (16)0.005 (5)0.007 (8)
O4A0.028 (8)0.068 (17)0.071 (11)0.025 (6)0.007 (6)0.023 (9)
P10.0272 (5)0.0603 (7)0.0411 (7)0.0103 (4)0.0019 (4)0.0019 (5)
Geometric parameters (Å, º) top
C1—C21.511 (5)C13—C141.55 (2)
C1—H1A0.9600C13—H13A0.9700
C1—H1B0.9600C13—H13B0.9700
C1—H1C0.9600C9A—C10A1.474 (17)
C2—C31.362 (5)C9A—O11.486 (10)
C2—C71.383 (5)C9A—C141.538 (10)
C3—C41.381 (5)C9A—H9A0.9800
C3—H30.9300C10A—C111.473 (10)
C4—C51.390 (5)C10A—O21.534 (8)
C4—H40.9300C10A—H10A0.9800
C5—C61.376 (5)C12A—C13A1.50 (4)
C5—C81.507 (5)C12A—C111.628 (19)
C6—C71.378 (5)C12A—H12C0.9700
C6—H60.9300C12A—H12D0.9700
C7—H70.9300C13A—C141.52 (2)
C8—N11.476 (5)C13A—H13C0.9700
C8—H8A0.9700C13A—H13D0.9700
C8—H8B0.9700C11—H11A0.9700
C9—O11.464 (9)C11—H11B0.9700
C9—C141.478 (9)C14—H14A0.9700
C9—C101.500 (16)C14—H14B0.9700
C9—H90.9800N1—H3N0.92 (4)
C10—O21.445 (8)N1—H2N1.00 (6)
C10—C111.555 (9)N1—H1N0.92 (5)
C10—H100.9800O1—P11.603 (2)
C12—C111.48 (2)O2—P11.590 (3)
C12—C131.58 (3)O3—P11.471 (3)
C12—H12A0.9700O4—P11.471 (17)
C12—H12B0.9700O4A—P11.50 (3)
C2—C1—H1A109.5O2—C10A—H10A112.8
C2—C1—H1B109.5C13A—C12A—C11109.5 (12)
H1A—C1—H1B109.5C13A—C12A—H12C109.8
C2—C1—H1C109.5C11—C12A—H12C109.8
H1A—C1—H1C109.5C13A—C12A—H12D109.8
H1B—C1—H1C109.5C11—C12A—H12D109.8
C3—C2—C7117.3 (3)H12C—C12A—H12D108.2
C3—C2—C1122.7 (4)C12A—C13A—C14110.0 (14)
C7—C2—C1119.9 (4)C12A—C13A—H13C109.7
C2—C3—C4122.6 (3)C14—C13A—H13C109.7
C2—C3—H3118.7C12A—C13A—H13D109.7
C4—C3—H3118.7C14—C13A—H13D109.7
C3—C4—C5119.8 (3)H13C—C13A—H13D108.2
C3—C4—H4120.1C10A—C11—C12114.1 (9)
C5—C4—H4120.1C10A—C11—C1032.9 (4)
C6—C5—C4118.0 (3)C12—C11—C10108.7 (9)
C6—C5—C8118.0 (3)C10A—C11—C12A101.9 (8)
C4—C5—C8123.9 (3)C12—C11—C12A26.9 (7)
C5—C6—C7121.0 (4)C10—C11—C12A112.1 (9)
C5—C6—H6119.5C10A—C11—H11A129.8
C7—C6—H6119.5C12—C11—H11A109.9
C6—C7—C2121.3 (4)C10—C11—H11A109.9
C6—C7—H7119.4C12A—C11—H11A128.1
C2—C7—H7119.4C10A—C11—H11B78.0
N1—C8—C5114.7 (3)C12—C11—H11B109.9
N1—C8—H8A108.6C10—C11—H11B109.9
C5—C8—H8A108.6C12A—C11—H11B84.3
N1—C8—H8B108.6H11A—C11—H11B108.3
C5—C8—H8B108.6C9—C14—C13A115.1 (10)
H8A—C8—H8B107.6C9—C14—C9A30.4 (3)
O1—C9—C14115.2 (7)C13A—C14—C9A105.0 (9)
O1—C9—C1097.5 (6)C9—C14—C13106.8 (9)
C14—C9—C10111.7 (7)C13A—C14—C1327.7 (7)
O1—C9—H9110.6C9A—C14—C13111.9 (9)
C14—C9—H9110.6C9—C14—H14A110.4
C10—C9—H9110.6C13A—C14—H14A82.9
O2—C10—C9102.6 (7)C9A—C14—H14A80.9
O2—C10—C11112.0 (6)C13—C14—H14A110.4
C9—C10—C11107.8 (6)C9—C14—H14B110.4
O2—C10—H10111.4C13A—C14—H14B125.1
C9—C10—H10111.4C9A—C14—H14B129.5
C11—C10—H10111.4C13—C14—H14B110.4
C11—C12—C13111.2 (12)H14A—C14—H14B108.6
C11—C12—H12A109.4C8—N1—H3N109 (2)
C13—C12—H12A109.4C8—N1—H2N112 (3)
C11—C12—H12B109.4H3N—N1—H2N105 (4)
C13—C12—H12B109.4C8—N1—H1N104 (3)
H12A—C12—H12B108.0H3N—N1—H1N116 (4)
C14—C13—C12111.1 (10)H2N—N1—H1N111 (4)
C14—C13—H13A109.4C9—O1—C9A31.2 (3)
C12—C13—H13A109.4C9—O1—P1107.3 (4)
C14—C13—H13B109.4C9A—O1—P1106.5 (4)
C12—C13—H13B109.4C10—O2—C10A33.4 (4)
H13A—C13—H13B108.0C10—O2—P1106.6 (4)
C10A—C9A—O1102.8 (7)C10A—O2—P1107.4 (4)
C10A—C9A—C14107.4 (7)O4—P1—O3115.7 (8)
O1—C9A—C14110.5 (7)O4—P1—O4A20 (3)
C10A—C9A—H9A111.9O3—P1—O4A115.4 (12)
O1—C9A—H9A111.9O4—P1—O2104 (3)
C14—C9A—H9A111.9O3—P1—O2110.38 (16)
C9A—C10A—C11109.4 (8)O4A—P1—O2120.3 (14)
C9A—C10A—O296.3 (6)O4—P1—O1118 (3)
C11—C10A—O2111.6 (6)O3—P1—O1109.49 (16)
C9A—C10A—H10A112.8O4A—P1—O1101.8 (11)
C11—C10A—H10A112.8O2—P1—O196.79 (13)
C7—C2—C3—C40.1 (6)C10—C9—C14—C1363.4 (10)
C1—C2—C3—C4177.9 (4)C12A—C13A—C14—C930.4 (14)
C2—C3—C4—C50.1 (6)C12A—C13A—C14—C9A61.0 (13)
C3—C4—C5—C60.5 (5)C12A—C13A—C14—C1348 (3)
C3—C4—C5—C8176.4 (3)C10A—C9A—C14—C949.1 (12)
C4—C5—C6—C70.8 (6)O1—C9A—C14—C962.3 (11)
C8—C5—C6—C7176.3 (3)C10A—C9A—C14—C13A65.2 (11)
C5—C6—C7—C20.7 (6)O1—C9A—C14—C13A176.6 (8)
C3—C2—C7—C60.2 (6)C10A—C9A—C14—C1336.9 (11)
C1—C2—C7—C6178.2 (4)O1—C9A—C14—C13148.2 (7)
C6—C5—C8—N1156.8 (3)C12—C13—C14—C955.5 (15)
C4—C5—C8—N126.3 (5)C12—C13—C14—C13A57 (3)
O1—C9—C10—O253.9 (7)C12—C13—C14—C9A23.7 (16)
C14—C9—C10—O2174.9 (5)C14—C9—O1—C9A70.4 (12)
O1—C9—C10—C11172.2 (5)C10—C9—O1—C9A47.9 (12)
C14—C9—C10—C1166.8 (9)C14—C9—O1—P1163.7 (5)
C11—C12—C13—C1454.8 (18)C10—C9—O1—P145.4 (7)
O1—C9A—C10A—C11169.5 (5)C10A—C9A—O1—C953.4 (12)
C14—C9A—C10A—C1173.9 (9)C14—C9A—O1—C960.9 (11)
O1—C9A—C10A—O253.9 (7)C10A—C9A—O1—P143.0 (7)
C14—C9A—C10A—O2170.5 (6)C14—C9A—O1—P1157.4 (5)
C11—C12A—C13A—C1461.2 (15)C9—C10—O2—C10A54.3 (10)
C9A—C10A—C11—C1242.3 (11)C11—C10—O2—C10A61.0 (10)
O2—C10A—C11—C12147.6 (8)C9—C10—O2—P142.3 (7)
C9A—C10A—C11—C1045.1 (9)C11—C10—O2—P1157.6 (5)
O2—C10A—C11—C1060.2 (8)C9A—C10A—O2—C1046.7 (10)
C9A—C10A—C11—C12A67.5 (10)C11—C10A—O2—C1067.1 (10)
O2—C10A—C11—C12A172.8 (8)C9A—C10A—O2—P147.2 (7)
C13—C12—C11—C10A21.1 (16)C11—C10A—O2—P1161.0 (5)
C13—C12—C11—C1056.1 (15)C10—O2—P1—O4108 (3)
C13—C12—C11—C12A46 (3)C10A—O2—P1—O4143 (3)
O2—C10—C11—C10A67.5 (10)C10—O2—P1—O3127.1 (4)
C9—C10—C11—C10A44.6 (9)C10A—O2—P1—O392.1 (5)
O2—C10—C11—C12173.3 (6)C10—O2—P1—O4A94.5 (13)
C9—C10—C11—C1261.2 (10)C10A—O2—P1—O4A129.5 (13)
O2—C10—C11—C12A144.8 (7)C10—O2—P1—O113.4 (4)
C9—C10—C11—C12A32.7 (11)C10A—O2—P1—O121.6 (5)
C13A—C12A—C11—C10A61.4 (15)C9—O1—P1—O4131 (3)
C13A—C12A—C11—C1259 (3)C9A—O1—P1—O498 (3)
C13A—C12A—C11—C1028.6 (16)C9—O1—P1—O393.8 (4)
O1—C9—C14—C13A145.1 (7)C9A—O1—P1—O3126.4 (4)
C10—C9—C14—C13A35.1 (11)C9—O1—P1—O4A143.6 (15)
O1—C9—C14—C9A68.6 (12)C9A—O1—P1—O4A111.0 (15)
C10—C9—C14—C9A41.4 (11)C9—O1—P1—O220.7 (5)
O1—C9—C14—C13173.4 (7)C9A—O1—P1—O211.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3N···O3i0.92 (4)1.90 (4)2.788 (5)161 (3)
N1—H2N···O3ii1.00 (6)1.86 (6)2.834 (5)164 (4)
N1—H1N···O4iii0.92 (5)1.72 (6)2.63 (2)171 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H12N+·C6H10O4P
Mr299.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.9642 (6), 9.6077 (10), 13.7070 (15)
α, β, γ (°)78.326 (6), 82.549 (7), 84.900 (6)
V3)761.11 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.22 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.959, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9372, 3112, 1549
Rint0.070
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.177, 0.99
No. of reflections3112
No. of parameters217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3N···O3i0.92 (4)1.90 (4)2.788 (5)161 (3)
N1—H2N···O3ii1.00 (6)1.86 (6)2.834 (5)164 (4)
N1—H1N···O4iii0.92 (5)1.72 (6)2.63 (2)171 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, R. R., Ramkumar, V. & Chakraborty, D. (2010). Acta Cryst. E66, o1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds