organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Bromo­eth­­oxy)-4-(4-bromo­phen­yl)furan-5(2H)-one

aCollege of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 31 October 2010; accepted 31 October 2010; online 6 November 2010)

In the title compound, C12H10Br2O3, the dihedral angle between the furan-5(2H)-one ring and the benzene ring is 1.2 (3)°. Two intra­molecular C—H⋯O inter­actions occur in the mol­ecule, both of which generate S(6) rings. The bromo­ethyl fragment is disordered over two sets of sites in a 0.773 (8):0.227 (8) ratio. In the crystal, inversion dimers linked by pairs of C—H⋯π inter­actions occur.

Related literature

For background to furan­ones, see: Bailly et al. (2008[Bailly, F., Queffèlec, C., Mbemba, G., Mouscadet, J. F., Pommery, N., Pommery, J., Hènichart, J. P. & Cotelle, P. (2008). Eur. J. Med. Chem. 43, 1222-1229.]); Weber et al. (2005[Weber, V., Rubat, C., Duroux, E., Lartigue, C., Madesclaire, M. & Coudert, P. (2005). Bioorg. Med. Chem. 13, 4552-4564.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10Br2O3

  • Mr = 362.02

  • Monoclinic, P 21 /c

  • a = 8.6171 (13) Å

  • b = 10.4434 (16) Å

  • c = 13.958 (2) Å

  • β = 95.831 (3)°

  • V = 1249.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.48 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.357, Tmax = 0.564

  • 7195 measured reflections

  • 2582 independent reflections

  • 1765 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.187

  • S = 1.05

  • 2582 reflections

  • 155 parameters

  • 29 restraints

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.35 3.018 (10) 129
C6—H6⋯O3 0.93 2.25 2.916 (8) 128
C9—H9BCg1i 0.97 2.80 3.632 (9) 144
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds with γ-butyrolactone-core (furanone) show diverse biological activities such as antitumor and anti-inflammatory activity (Bailly et al., 2008; Weber et al., 2005). Recently, we focused our efforts to synthesize enamines with γ-butyrolactone-core for antibacterial activity screening. Herein, we report the crystal structure of the title compound (I).

Bond distance C7—C10 (1.334 (10) Å) is followed in the range of a typical double bond (1.32–1.38 Å), and the title compound was therefore identified as a furan-5(2H)-one not a furan-2(3H)-one. C10—O3 (1.348 (8) Å) bond has shorter bond distance than the standard C—O single bond (1.41–1.44 Å), but longer than C—O double bond (1.19–1.23 Å). This clearly indicated that an sp3 orbital of O3 is conjugated with the π molecular orbital of C7—C10 double bond, which was supported by the small torsion angle (0.4 (12) °) of C1—C7—C10—O3. The stereochemistry of the double bond in lactone ring was assigned as (E)-configuration based on X-ray crystallography of the title compound (Fig. 1). The butyrolactone moiety makes a dihedral angle of 1.2 (3) ° with the 4-fluorophenyl group. The side chain bromoethyl group is disorder (Fig. 1). C—H···Π contacts link molecules into dimers (Fig. 2), and the result dimers are packed by van der waals.

Related literature top

For background to furanones, see: Bailly et al. (2008); Weber et al. (2005).

Experimental top

3-(4-Bromophenyl)-4-hydroxyfuran-5(2H)-one (0.77 g, 3 mmol) was added to a solution of 1,2-dibromoethane (2.8 g, 15 mmol) and triethylamine (0.7 g, 7 mmol) in dry acetone. The stirring was maintained at reflux temperature for 5 h. After the solvent was removed, the residue was partitioned between EtOAc and water. The organic layer was then dryed over MgSO4 and concentrated under reduced pressure. Flash chromatography (EtOAc/petroleum ether, 1/1, v/v) gave a fraction, which was partially evaporated to give the colorless blocks of (I).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 and 0.96 Å for the aromatic and CH2 type H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for all H atoms.

Structure description top

Many compounds with γ-butyrolactone-core (furanone) show diverse biological activities such as antitumor and anti-inflammatory activity (Bailly et al., 2008; Weber et al., 2005). Recently, we focused our efforts to synthesize enamines with γ-butyrolactone-core for antibacterial activity screening. Herein, we report the crystal structure of the title compound (I).

Bond distance C7—C10 (1.334 (10) Å) is followed in the range of a typical double bond (1.32–1.38 Å), and the title compound was therefore identified as a furan-5(2H)-one not a furan-2(3H)-one. C10—O3 (1.348 (8) Å) bond has shorter bond distance than the standard C—O single bond (1.41–1.44 Å), but longer than C—O double bond (1.19–1.23 Å). This clearly indicated that an sp3 orbital of O3 is conjugated with the π molecular orbital of C7—C10 double bond, which was supported by the small torsion angle (0.4 (12) °) of C1—C7—C10—O3. The stereochemistry of the double bond in lactone ring was assigned as (E)-configuration based on X-ray crystallography of the title compound (Fig. 1). The butyrolactone moiety makes a dihedral angle of 1.2 (3) ° with the 4-fluorophenyl group. The side chain bromoethyl group is disorder (Fig. 1). C—H···Π contacts link molecules into dimers (Fig. 2), and the result dimers are packed by van der waals.

For background to furanones, see: Bailly et al. (2008); Weber et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing isplacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Dimers are formed through intermolecular C—H···π hydrogen bond pairs. Dashed lines indicate C—H···π contacts.
3-(2-Bromoethoxy)-4-(4-bromophenyl)furan-5(2H)-one top
Crystal data top
C12H10Br2O3F(000) = 704
Mr = 362.02Dx = 1.924 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1832 reflections
a = 8.6171 (13) Åθ = 2.6–26.1°
b = 10.4434 (16) ŵ = 6.48 mm1
c = 13.958 (2) ÅT = 298 K
β = 95.831 (3)°Block, colorless
V = 1249.6 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2582 independent reflections
Radiation source: fine-focus sealed tube1765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.357, Tmax = 0.564k = 613
7195 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1008P)2 + 2.0749P]
where P = (Fo2 + 2Fc2)/3
2582 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 1.37 e Å3
29 restraintsΔρmin = 1.15 e Å3
Crystal data top
C12H10Br2O3V = 1249.6 (3) Å3
Mr = 362.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6171 (13) ŵ = 6.48 mm1
b = 10.4434 (16) ÅT = 298 K
c = 13.958 (2) Å0.20 × 0.10 × 0.10 mm
β = 95.831 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2582 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1765 reflections with I > 2σ(I)
Tmin = 0.357, Tmax = 0.564Rint = 0.025
7195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06129 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.05Δρmax = 1.37 e Å3
2582 reflectionsΔρmin = 1.15 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.50480 (10)0.34315 (8)0.21873 (6)0.0737 (4)
Br2A0.2920 (5)0.92938 (17)0.48473 (18)0.0900 (8)0.773 (8)
Br2B0.2207 (13)0.9329 (7)0.4681 (7)0.0900 (8)0.227 (8)
C10.2553 (7)0.4284 (6)0.4943 (5)0.0478 (14)
C20.2843 (9)0.3041 (7)0.4667 (5)0.0600 (18)
H20.25340.23680.50410.072*
C30.3561 (9)0.2770 (7)0.3870 (6)0.0627 (18)
H30.37110.19230.36960.075*
C40.4069 (8)0.3750 (7)0.3319 (5)0.0516 (15)
C50.3815 (9)0.5002 (6)0.3576 (5)0.0562 (17)
H50.41470.56680.32050.067*
C60.3076 (8)0.5270 (6)0.4379 (5)0.0566 (17)
H60.29200.61170.45490.068*
C70.1745 (8)0.4574 (7)0.5800 (5)0.0491 (15)
C80.1126 (9)0.3606 (9)0.6426 (6)0.067 (2)
C90.0595 (10)0.5553 (9)0.7061 (5)0.069 (2)
H9A0.12080.59230.76140.083*
H9B0.04250.59540.69880.083*
C100.1405 (8)0.5708 (7)0.6165 (5)0.0548 (16)
C110.1273 (12)0.7904 (7)0.6271 (7)0.092 (3)
H11A0.14060.77430.69590.110*0.773 (8)
H11B0.01720.80500.60850.110*0.773 (8)
H11C0.21250.82020.67240.110*0.227 (8)
H11D0.04120.76710.66330.110*0.227 (8)
C12A0.2190 (15)0.9106 (9)0.6052 (6)0.0900 (8)0.773 (8)
H12A0.30850.91600.65320.108*0.773 (8)
H12B0.15340.98400.61500.108*0.773 (8)
C12B0.076 (3)0.899 (2)0.5565 (19)0.0900 (8)0.227 (8)
H12C0.05990.97630.59290.108*0.227 (8)
H12D0.02350.87630.52140.108*0.227 (8)
O10.1076 (8)0.2448 (6)0.6373 (5)0.0886 (18)
O20.0467 (7)0.4217 (6)0.7160 (4)0.0808 (17)
O30.1739 (7)0.6861 (5)0.5802 (4)0.0731 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0856 (6)0.0761 (6)0.0639 (5)0.0142 (4)0.0292 (4)0.0115 (4)
Br2A0.102 (2)0.0635 (7)0.1132 (11)0.0048 (10)0.0551 (13)0.0016 (6)
Br2B0.102 (2)0.0635 (7)0.1132 (11)0.0048 (10)0.0551 (13)0.0016 (6)
C10.046 (3)0.045 (4)0.052 (3)0.003 (3)0.008 (3)0.007 (3)
C20.080 (5)0.038 (4)0.064 (4)0.003 (3)0.016 (4)0.012 (3)
C30.076 (5)0.038 (4)0.076 (5)0.008 (3)0.017 (4)0.002 (3)
C40.055 (4)0.049 (4)0.053 (3)0.004 (3)0.015 (3)0.008 (3)
C50.079 (5)0.040 (4)0.054 (4)0.005 (3)0.024 (3)0.002 (3)
C60.076 (5)0.038 (3)0.060 (4)0.004 (3)0.028 (3)0.006 (3)
C70.052 (4)0.054 (4)0.043 (3)0.005 (3)0.012 (3)0.005 (3)
C80.060 (4)0.081 (6)0.061 (4)0.002 (4)0.015 (3)0.022 (4)
C90.074 (5)0.089 (6)0.049 (4)0.004 (4)0.026 (3)0.000 (4)
C100.053 (4)0.068 (5)0.046 (3)0.000 (3)0.018 (3)0.001 (3)
C110.116 (7)0.071 (5)0.096 (6)0.002 (5)0.054 (5)0.024 (4)
C12A0.102 (2)0.0635 (7)0.1132 (11)0.0048 (10)0.0551 (13)0.0016 (6)
C12B0.102 (2)0.0635 (7)0.1132 (11)0.0048 (10)0.0551 (13)0.0016 (6)
O10.106 (5)0.067 (4)0.099 (4)0.010 (3)0.037 (3)0.031 (3)
O20.084 (4)0.098 (5)0.067 (3)0.003 (3)0.039 (3)0.021 (3)
O30.111 (4)0.048 (3)0.069 (3)0.000 (3)0.053 (3)0.006 (2)
Geometric parameters (Å, º) top
Br1—C41.895 (6)C8—O21.377 (10)
Br2A—C12A1.864 (5)C9—O21.407 (11)
Br2B—C12B1.878 (6)C9—C101.501 (9)
C1—C21.384 (10)C9—H9A0.9700
C1—C61.397 (9)C9—H9B0.9700
C1—C71.476 (9)C10—O31.348 (8)
C2—C31.357 (11)C11—O31.352 (9)
C2—H20.9300C11—C12A1.531 (5)
C3—C41.378 (10)C11—C12B1.539 (6)
C3—H30.9300C11—H11A0.9700
C4—C51.379 (10)C11—H11B0.9700
C5—C61.372 (9)C11—H11C0.9700
C5—H50.9300C11—H11D0.9700
C6—H60.9300C12A—H12A0.9700
C7—C101.334 (10)C12A—H12B0.9700
C7—C81.471 (10)C12B—H12C0.9700
C8—O11.212 (10)C12B—H12D0.9700
C2—C1—C6117.2 (6)O3—C11—C12B111.5 (12)
C2—C1—C7122.0 (6)C12A—C11—C12B52.3 (13)
C6—C1—C7120.8 (6)O3—C11—H11A109.1
C3—C2—C1122.2 (6)C12A—C11—H11A109.1
C3—C2—H2118.9C12B—C11—H11A139.4
C1—C2—H2118.9O3—C11—H11B109.1
C2—C3—C4120.0 (6)C12A—C11—H11B109.1
C2—C3—H3120.0C12B—C11—H11B60.0
C4—C3—H3120.0H11A—C11—H11B107.9
C3—C4—C5119.4 (6)O3—C11—H11C109.3
C3—C4—Br1121.9 (5)C12A—C11—H11C59.7
C5—C4—Br1118.6 (5)C12B—C11—H11C109.3
C6—C5—C4120.3 (6)H11A—C11—H11C53.5
C6—C5—H5119.9H11B—C11—H11C141.2
C4—C5—H5119.9O3—C11—H11D109.3
C5—C6—C1120.8 (7)C12A—C11—H11D138.3
C5—C6—H6119.6C12B—C11—H11D109.3
C1—C6—H6119.6H11A—C11—H11D57.4
C10—C7—C8106.0 (6)H11B—C11—H11D53.1
C10—C7—C1129.2 (6)H11C—C11—H11D108.0
C8—C7—C1124.8 (7)C11—C12A—Br2A119.6 (6)
O1—C8—O2119.5 (7)C11—C12A—H12A107.4
O1—C8—C7131.4 (8)Br2A—C12A—H12A107.4
O2—C8—C7109.0 (7)C11—C12A—H12B107.4
O2—C9—C10103.7 (6)Br2A—C12A—H12B107.4
O2—C9—H9A111.0H12A—C12A—H12B106.9
C10—C9—H9A111.0C11—C12B—Br2B113.0 (7)
O2—C9—H9B111.0C11—C12B—H12C109.0
C10—C9—H9B111.0Br2B—C12B—H12C109.0
H9A—C9—H9B109.0C11—C12B—H12D109.0
C7—C10—O3125.9 (6)Br2B—C12B—H12D109.0
C7—C10—C9111.1 (6)H12C—C12B—H12D107.8
O3—C10—C9123.0 (6)C8—O2—C9110.1 (6)
O3—C11—C12A112.3 (6)C10—O3—C11116.9 (5)
C6—C1—C2—C31.9 (11)C8—C7—C10—O3178.9 (7)
C7—C1—C2—C3178.8 (7)C1—C7—C10—O30.4 (12)
C1—C2—C3—C41.8 (12)C8—C7—C10—C91.8 (8)
C2—C3—C4—C51.1 (11)C1—C7—C10—C9178.9 (7)
C2—C3—C4—Br1178.9 (6)O2—C9—C10—C71.5 (9)
C3—C4—C5—C60.5 (11)O2—C9—C10—O3179.1 (7)
Br1—C4—C5—C6178.4 (6)O3—C11—C12A—Br2A31.9 (14)
C4—C5—C6—C10.6 (12)C12B—C11—C12A—Br2A68.7 (13)
C2—C1—C6—C51.3 (11)O3—C11—C12B—Br2B49 (2)
C7—C1—C6—C5179.4 (7)C12A—C11—C12B—Br2B53.0 (14)
C2—C1—C7—C10178.8 (7)O1—C8—O2—C9177.4 (8)
C6—C1—C7—C100.5 (11)C7—C8—O2—C90.4 (8)
C2—C1—C7—C82.0 (11)C10—C9—O2—C80.6 (8)
C6—C1—C7—C8178.7 (7)C7—C10—O3—C11179.0 (8)
C10—C7—C8—O1176.1 (9)C9—C10—O3—C111.7 (11)
C1—C7—C8—O13.2 (13)C12A—C11—O3—C10158.9 (8)
C10—C7—C8—O21.4 (8)C12B—C11—O3—C10144.3 (13)
C1—C7—C8—O2179.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.353.018 (10)129
C6—H6···O30.932.252.916 (8)128
C9—H9B···Cg1i0.972.803.632 (9)144
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H10Br2O3
Mr362.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.6171 (13), 10.4434 (16), 13.958 (2)
β (°) 95.831 (3)
V3)1249.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.48
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.357, 0.564
No. of measured, independent and
observed [I > 2σ(I)] reflections
7195, 2582, 1765
Rint0.025
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.187, 1.05
No. of reflections2582
No. of parameters155
No. of restraints29
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.353.018 (10)129
C6—H6···O30.932.252.916 (8)128
C9—H9B···Cg1i0.972.803.632 (9)144
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The work was financed by the Scientific Research Fund of Hunan Provincial Education Department (Project 09B083) of China and by a grant (No. JSDXKYZZ0801) from Jishou University for talent introduction, Hunan Province, China

References

First citationBailly, F., Queffèlec, C., Mbemba, G., Mouscadet, J. F., Pommery, N., Pommery, J., Hènichart, J. P. & Cotelle, P. (2008). Eur. J. Med. Chem. 43, 1222–1229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, V., Rubat, C., Duroux, E., Lartigue, C., Madesclaire, M. & Coudert, P. (2005). Bioorg. Med. Chem. 13, 4552–4564.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds