organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3,5-tricarb­­oxy­lic acid–1,10-bis­­(1,2,4-triazol-1-yl)deca­ne–water (1/1/2)

aBoHai University, JinZhou, LiaoNing 121013, People's Republic of China
*Correspondence e-mail: lianpengZhao@yahoo.com.cn

(Received 31 October 2010; accepted 1 November 2010; online 6 November 2010)

In the title 1:1:2 association, C14H24N6·C9H6O6·2H2O, the alkyl chain in the 1,10-bis­(1,2,4-triazol-1-yl)decane mol­ecule adopts an extended conformation and the dihedral angle between the aromatic rings is 10.28 (13)°. The benzene-1,3,5-tricarb­oxy­lic acid mol­ecule is close to being planar (r.m.s. deviation = 0.052 Å). In the crystal, the components are linked by O—H⋯O and O—H⋯N hydrogen bonds, generating a layered network.

Related literature

For backgound to supra­molecular networks, see: Ma & Coppens (2003[Ma, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 2290-2291.]).

[Scheme 1]

Experimental

Crystal data
  • C14H24N6·C9H6O6·2H2O

  • Mr = 522.56

  • Triclinic, [P \overline 1]

  • a = 10.7715 (6) Å

  • b = 11.4405 (6) Å

  • c = 11.7458 (6) Å

  • α = 101.790 (4)°

  • β = 105.800 (4)°

  • γ = 92.740 (4)°

  • V = 1355.13 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.32 × 0.29 × 0.2 mm

Data collection
  • Oxford Diffraction Gemini R Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.952, Tmax = 0.984

  • 8774 measured reflections

  • 4921 independent reflections

  • 1989 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.052

  • S = 0.88

  • 4921 reflections

  • 355 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2WA⋯O1W 0.89 (2) 1.66 (2) 2.549 (2) 177 (3)
O4—H4WA⋯O2W 0.88 (2) 1.70 (2) 2.571 (2) 169 (3)
O5—H5WA⋯N6i 0.99 (2) 1.59 (2) 2.5750 (19) 174 (3)
O1W—H1AW⋯O3ii 0.87 (2) 1.86 (2) 2.711 (2) 163 (3)
O1W—H1BW⋯O1iii 0.78 (2) 1.99 (2) 2.757 (2) 170 (3)
O2W—H2BW⋯N3ii 0.90 (2) 2.12 (2) 2.875 (2) 140 (3)
O2W—H2AW⋯O6iv 0.80 (2) 2.05 (2) 2.841 (2) 170 (3)
Symmetry codes: (i) -x+1, -y+3, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There are numerous framework building blocks from benzene-1,3,5-tricarboxylic acid in the synthesis of organic supramlecular solids because of its rigidity and triangular geometry (Ma & Coppens, 2003). Up to now, the bis(1,2,4-triazol-1-yl)decane ligand, as a flexible ligand, is rarely investigated in constructing supramlecular compounds.

In the crystal structure of the title compound, (I), there are one benzene-1,3,5-tricarboxylic acid, one bis(1,2,4-triazol-1-yl)decane and two water molecules (Fig. 1). O1W water molelcule acts as both acceptor and donor, forming three hydrogen bonds, which link adjacent benzene-1,3,5-tricarboxylic acid molecules. As well as O2W water molecule, which also acts as both acceptor and donor, linking two adjacent benzene-1,3,5-tricarboxylic acid and one adjacent bis(1,2,4-triazol-1-yl)decane molecules. Thus, benzene-1,3,5-tricarboxylic acid and bis(1,2,4-triazol-1-yl)decane molecules are linked through strong intermolecular O—H···O and O—H···N interactions, forming a two dimensional supramolecular layer (Fig. 2).

Related literature top

For backgound to supramolecular networks, see: Ma & Coppens (2003).

Experimental top

Benzene-1,3,5-tricarboxylic acid (0.042 g, 0.2 mmol) and bis(1,2,4-triazol-1-yl)decane (0.055 g, 0.2 mmol) was added in a beaker of a methanol (10 ml) and water (5 ml) solution. The mixture was heated to 60 °C and held at that temperature for 10 minutes, then cooled to room temperature and filtered. The filtrate was left in a beaker for two days and colourless blocks of (I) were isolated.

Refinement top

C–bound H–atoms were geometrically positioned (C—H 0.93 Å) and refined using a riding model, with Uiso = 1.2Ueq (C). The water H atoms were located in a difference Fourier map and refined with Uiso(H)= 1.5Ueq(O).

Structure description top

There are numerous framework building blocks from benzene-1,3,5-tricarboxylic acid in the synthesis of organic supramlecular solids because of its rigidity and triangular geometry (Ma & Coppens, 2003). Up to now, the bis(1,2,4-triazol-1-yl)decane ligand, as a flexible ligand, is rarely investigated in constructing supramlecular compounds.

In the crystal structure of the title compound, (I), there are one benzene-1,3,5-tricarboxylic acid, one bis(1,2,4-triazol-1-yl)decane and two water molecules (Fig. 1). O1W water molelcule acts as both acceptor and donor, forming three hydrogen bonds, which link adjacent benzene-1,3,5-tricarboxylic acid molecules. As well as O2W water molecule, which also acts as both acceptor and donor, linking two adjacent benzene-1,3,5-tricarboxylic acid and one adjacent bis(1,2,4-triazol-1-yl)decane molecules. Thus, benzene-1,3,5-tricarboxylic acid and bis(1,2,4-triazol-1-yl)decane molecules are linked through strong intermolecular O—H···O and O—H···N interactions, forming a two dimensional supramolecular layer (Fig. 2).

For backgound to supramolecular networks, see: Ma & Coppens (2003).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) in the crystal of the title compound.
Benzene-1,3,5-tricarboxylic acid–1,10-bis(1,2,4-triazol-1-yl)decane–water (1/1/2) top
Crystal data top
C14H24N6·C9H6O6·2H2OZ = 2
Mr = 522.56F(000) = 556
Triclinic, P1Dx = 1.281 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7715 (6) ÅCell parameters from 4921 reflections
b = 11.4405 (6) Åθ = 3.0–25.4°
c = 11.7458 (6) ŵ = 0.10 mm1
α = 101.790 (4)°T = 293 K
β = 105.800 (4)°Block, colorless
γ = 92.740 (4)°0.32 × 0.29 × 0.2 mm
V = 1355.13 (12) Å3
Data collection top
Oxford Diffraction Gemini R Ultra CCD
diffractometer
4921 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scanh = 1211
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2006)
k = 1013
Tmin = 0.952, Tmax = 0.984l = 1411
8774 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0072P)2]
where P = (Fo2 + 2Fc2)/3
4921 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.13 e Å3
9 restraintsΔρmin = 0.12 e Å3
Crystal data top
C14H24N6·C9H6O6·2H2Oγ = 92.740 (4)°
Mr = 522.56V = 1355.13 (12) Å3
Triclinic, P1Z = 2
a = 10.7715 (6) ÅMo Kα radiation
b = 11.4405 (6) ŵ = 0.10 mm1
c = 11.7458 (6) ÅT = 293 K
α = 101.790 (4)°0.32 × 0.29 × 0.2 mm
β = 105.800 (4)°
Data collection top
Oxford Diffraction Gemini R Ultra CCD
diffractometer
4921 independent reflections
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2006)
1989 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.984Rint = 0.030
8774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0369 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.13 e Å3
4921 reflectionsΔρmin = 0.12 e Å3
355 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39170 (19)0.95737 (17)0.80707 (17)0.0449 (5)
C20.52268 (18)0.95284 (16)0.81530 (16)0.0493 (6)
H20.58291.01740.86250.059*
C30.56376 (19)0.85253 (17)0.75336 (18)0.0470 (5)
C40.47358 (19)0.75609 (17)0.68424 (18)0.0520 (6)
H40.50100.68870.64280.062*
C50.34384 (19)0.75882 (17)0.67614 (17)0.0480 (6)
C60.30284 (18)0.86009 (17)0.73798 (17)0.0502 (6)
H60.21530.86230.73280.060*
C70.2450 (2)0.65651 (19)0.6038 (2)0.0570 (6)
C80.7031 (2)0.8428 (2)0.7614 (2)0.0571 (6)
C100.3452 (2)1.06481 (18)0.87083 (19)0.0542 (6)
C110.7731 (2)1.65574 (19)0.9521 (2)0.0672 (7)
H110.84211.71420.99510.081*
C120.58551 (19)1.56741 (18)0.88510 (19)0.0610 (6)
H120.49671.54730.86880.073*
C130.63731 (19)1.38270 (17)0.7527 (2)0.0719 (7)
H13A0.68841.32620.79090.086*
H13B0.66451.39000.68200.086*
C140.49697 (19)1.33401 (16)0.71237 (19)0.0626 (6)
H14A0.44571.38810.67030.075*
H14B0.46821.32920.78290.075*
C150.47559 (18)1.20989 (16)0.62827 (18)0.0619 (6)
H15A0.50701.21500.55930.074*
H15B0.52621.15610.67130.074*
C160.33408 (18)1.15749 (16)0.58242 (18)0.0585 (6)
H16A0.28381.21030.53770.070*
H16B0.30211.15410.65140.070*
C170.31336 (17)1.03190 (15)0.50045 (18)0.0577 (6)
H17A0.34381.03560.43070.069*
H17B0.36500.97950.54460.069*
C180.17162 (18)0.97804 (16)0.45616 (18)0.0639 (6)
H18A0.11991.03030.41170.077*
H18B0.14100.97440.52590.077*
C190.15155 (18)0.85218 (15)0.37448 (19)0.0625 (6)
H19A0.17210.85720.30010.075*
H19B0.21110.80250.41520.075*
C200.01312 (18)0.79255 (16)0.34285 (19)0.0675 (7)
H20A0.04600.83900.29690.081*
H20B0.00970.79250.41720.081*
C210.00327 (18)0.66361 (16)0.26872 (19)0.0631 (6)
H21A0.01400.66370.19190.076*
H21B0.05890.61790.31240.076*
C220.13937 (18)0.60470 (17)0.24526 (19)0.0650 (6)
H22A0.15470.60150.32230.078*
H22B0.20130.65340.20590.078*
C230.0785 (2)0.4098 (2)0.1410 (2)0.0772 (8)
H230.01100.42970.16430.093*
C240.2628 (2)0.3200 (2)0.0669 (2)0.0728 (7)
H240.33020.25970.02470.087*
N10.28416 (16)0.42595 (17)0.12176 (17)0.0691 (6)
N20.16118 (17)0.48321 (14)0.16904 (15)0.0574 (5)
N30.13877 (18)0.30359 (15)0.07500 (18)0.0791 (6)
N40.66373 (17)1.49947 (14)0.83772 (15)0.0575 (5)
N50.78695 (16)1.55567 (16)0.88053 (17)0.0691 (6)
N60.65112 (17)1.66695 (14)0.95827 (15)0.0599 (5)
O10.13154 (14)0.65517 (12)0.59815 (14)0.0793 (5)
O20.29321 (14)0.56664 (13)0.54589 (15)0.0802 (5)
O30.73875 (13)0.75585 (13)0.70565 (14)0.0801 (5)
O40.78183 (13)0.93484 (14)0.83381 (16)0.0771 (5)
O50.43572 (13)1.15486 (12)0.92566 (13)0.0646 (4)
O60.23315 (14)1.06863 (11)0.87170 (14)0.0758 (5)
O1W0.12775 (14)0.38874 (15)0.41955 (18)0.0959 (6)
O2W1.02243 (15)0.90437 (15)0.8626 (2)0.1207 (8)
H2WA0.234 (2)0.506 (2)0.502 (3)0.181*
H4WA0.863 (2)0.925 (2)0.834 (3)0.181*
H5WA0.398 (3)1.223 (2)0.966 (2)0.181*
H1AW0.156 (3)0.333 (2)0.372 (3)0.181*
H1BW0.055 (2)0.368 (2)0.410 (3)0.181*
H2BW1.046 (3)0.855 (2)0.914 (3)0.181*
H2AW1.075 (3)0.956 (2)0.863 (3)0.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0427 (13)0.0458 (13)0.0470 (15)0.0068 (11)0.0156 (11)0.0084 (11)
C20.0460 (14)0.0494 (14)0.0501 (15)0.0031 (11)0.0144 (11)0.0056 (11)
C30.0434 (13)0.0477 (14)0.0523 (16)0.0036 (11)0.0188 (12)0.0105 (11)
C40.0589 (15)0.0506 (14)0.0528 (15)0.0144 (12)0.0246 (12)0.0126 (12)
C50.0432 (13)0.0477 (14)0.0529 (16)0.0007 (11)0.0168 (12)0.0079 (11)
C60.0442 (13)0.0530 (14)0.0566 (15)0.0087 (12)0.0211 (12)0.0101 (12)
C70.0574 (15)0.0597 (16)0.0553 (16)0.0080 (13)0.0227 (14)0.0072 (12)
C80.0507 (15)0.0543 (16)0.0676 (18)0.0066 (13)0.0199 (14)0.0126 (13)
C100.0519 (15)0.0519 (15)0.0586 (16)0.0098 (13)0.0181 (13)0.0086 (12)
C110.0554 (16)0.0580 (16)0.0782 (19)0.0045 (12)0.0161 (13)0.0004 (13)
C120.0492 (14)0.0534 (15)0.0747 (18)0.0044 (13)0.0211 (13)0.0027 (13)
C130.0639 (16)0.0571 (15)0.0881 (19)0.0031 (12)0.0339 (14)0.0140 (13)
C140.0600 (14)0.0530 (14)0.0712 (17)0.0043 (11)0.0241 (13)0.0002 (12)
C150.0668 (15)0.0513 (14)0.0644 (16)0.0018 (12)0.0249 (13)0.0011 (12)
C160.0605 (14)0.0504 (14)0.0605 (16)0.0053 (11)0.0173 (12)0.0039 (12)
C170.0586 (14)0.0502 (14)0.0635 (16)0.0066 (11)0.0203 (13)0.0074 (12)
C180.0599 (15)0.0530 (14)0.0733 (17)0.0078 (12)0.0173 (13)0.0046 (12)
C190.0606 (14)0.0459 (14)0.0729 (17)0.0028 (11)0.0161 (13)0.0003 (12)
C200.0549 (14)0.0544 (14)0.0822 (18)0.0061 (12)0.0140 (13)0.0015 (13)
C210.0476 (13)0.0589 (15)0.0730 (17)0.0009 (11)0.0119 (12)0.0016 (12)
C220.0559 (14)0.0609 (15)0.0743 (18)0.0046 (12)0.0240 (13)0.0004 (13)
C230.0478 (15)0.0671 (17)0.106 (2)0.0039 (14)0.0263 (15)0.0060 (15)
C240.0560 (17)0.0624 (18)0.091 (2)0.0045 (13)0.0150 (15)0.0085 (15)
N10.0416 (12)0.0656 (14)0.0920 (16)0.0026 (10)0.0160 (11)0.0063 (12)
N20.0434 (11)0.0559 (12)0.0693 (14)0.0004 (10)0.0183 (10)0.0048 (10)
N30.0551 (13)0.0640 (14)0.1077 (18)0.0014 (11)0.0248 (12)0.0043 (12)
N40.0485 (11)0.0497 (12)0.0717 (14)0.0026 (10)0.0239 (11)0.0004 (10)
N50.0495 (12)0.0647 (13)0.0877 (16)0.0023 (10)0.0268 (11)0.0024 (11)
N60.0509 (11)0.0511 (12)0.0702 (14)0.0031 (10)0.0169 (10)0.0018 (10)
O10.0527 (10)0.0750 (11)0.1005 (14)0.0047 (9)0.0280 (10)0.0074 (9)
O20.0658 (11)0.0609 (11)0.1015 (14)0.0001 (8)0.0298 (10)0.0152 (9)
O30.0644 (10)0.0710 (11)0.1045 (13)0.0199 (8)0.0378 (10)0.0021 (9)
O40.0471 (9)0.0732 (11)0.1037 (13)0.0061 (9)0.0265 (10)0.0024 (10)
O50.0498 (9)0.0534 (10)0.0814 (12)0.0018 (8)0.0216 (8)0.0077 (8)
O60.0500 (9)0.0625 (10)0.1115 (14)0.0059 (8)0.0364 (10)0.0054 (8)
O1W0.0561 (11)0.0839 (12)0.1221 (16)0.0023 (10)0.0295 (11)0.0366 (10)
O2W0.0487 (11)0.0888 (16)0.228 (3)0.0104 (9)0.0399 (14)0.0417 (14)
Geometric parameters (Å, º) top
C1—C61.385 (2)C16—H16A0.9700
C1—C21.392 (2)C16—H16B0.9700
C1—C101.487 (2)C17—C181.526 (2)
C2—C31.387 (2)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.386 (2)C18—C191.528 (2)
C3—C81.489 (2)C18—H18A0.9700
C4—C51.377 (2)C18—H18B0.9700
C4—H40.9300C19—C201.525 (2)
C5—C61.395 (2)C19—H19A0.9700
C5—C71.486 (2)C19—H19B0.9700
C6—H60.9300C20—C211.527 (2)
C7—O11.205 (2)C20—H20A0.9700
C7—O21.322 (2)C20—H20B0.9700
C8—O31.214 (2)C21—C221.513 (2)
C8—O41.307 (2)C21—H21A0.9700
C10—O61.212 (2)C21—H21B0.9700
C10—O51.311 (2)C22—N21.461 (2)
C11—N51.316 (2)C22—H22A0.9700
C11—N61.346 (2)C22—H22B0.9700
C11—H110.9300C23—N21.314 (2)
C12—N61.314 (2)C23—N31.329 (2)
C12—N41.328 (2)C23—H230.9300
C12—H120.9300C24—N11.314 (2)
C13—N41.458 (2)C24—N31.339 (2)
C13—C141.497 (2)C24—H240.9300
C13—H13A0.9700N1—N21.3639 (19)
C13—H13B0.9700N4—N51.3605 (19)
C14—C151.522 (2)O2—H2WA0.89 (2)
C14—H14A0.9700O4—H4WA0.88 (2)
C14—H14B0.9700O5—H5WA0.99 (2)
C15—C161.519 (2)O1W—H1AW0.87 (2)
C15—H15A0.9700O1W—H1BW0.78 (2)
C15—H15B0.9700O2W—H2BW0.90 (2)
C16—C171.526 (2)O2W—H2AW0.799 (19)
C6—C1—C2119.46 (16)C18—C17—C16113.00 (14)
C6—C1—C10119.30 (18)C18—C17—H17A109.0
C2—C1—C10121.24 (19)C16—C17—H17A109.0
C3—C2—C1120.31 (18)C18—C17—H17B109.0
C3—C2—H2119.8C16—C17—H17B109.0
C1—C2—H2119.8H17A—C17—H17B107.8
C4—C3—C2119.53 (18)C17—C18—C19112.76 (15)
C4—C3—C8118.28 (18)C17—C18—H18A109.0
C2—C3—C8122.2 (2)C19—C18—H18A109.0
C5—C4—C3120.81 (17)C17—C18—H18B109.0
C5—C4—H4119.6C19—C18—H18B109.0
C3—C4—H4119.6H18A—C18—H18B107.8
C4—C5—C6119.48 (18)C20—C19—C18112.65 (15)
C4—C5—C7122.12 (18)C20—C19—H19A109.1
C6—C5—C7118.39 (18)C18—C19—H19A109.1
C1—C6—C5120.40 (17)C20—C19—H19B109.1
C1—C6—H6119.8C18—C19—H19B109.1
C5—C6—H6119.8H19A—C19—H19B107.8
O1—C7—O2123.0 (2)C19—C20—C21112.14 (15)
O1—C7—C5123.4 (2)C19—C20—H20A109.2
O2—C7—C5113.60 (19)C21—C20—H20A109.2
O3—C8—O4123.8 (2)C19—C20—H20B109.2
O3—C8—C3122.1 (2)C21—C20—H20B109.2
O4—C8—C3114.10 (18)H20A—C20—H20B107.9
O6—C10—O5123.06 (17)C22—C21—C20110.80 (15)
O6—C10—C1122.80 (19)C22—C21—H21A109.5
O5—C10—C1114.14 (18)C20—C21—H21A109.5
N5—C11—N6114.77 (18)C22—C21—H21B109.5
N5—C11—H11122.6C20—C21—H21B109.5
N6—C11—H11122.6H21A—C21—H21B108.1
N6—C12—N4110.51 (17)N2—C22—C21112.51 (15)
N6—C12—H12124.7N2—C22—H22A109.1
N4—C12—H12124.7C21—C22—H22A109.1
N4—C13—C14112.99 (16)N2—C22—H22B109.1
N4—C13—H13A109.0C21—C22—H22B109.1
C14—C13—H13A109.0H22A—C22—H22B107.8
N4—C13—H13B109.0N2—C23—N3111.44 (18)
C14—C13—H13B109.0N2—C23—H23124.3
H13A—C13—H13B107.8N3—C23—H23124.3
C13—C14—C15110.88 (15)N1—C24—N3116.33 (19)
C13—C14—H14A109.5N1—C24—H24121.8
C15—C14—H14A109.5N3—C24—H24121.8
C13—C14—H14B109.5C24—N1—N2101.48 (16)
C15—C14—H14B109.5C23—N2—N1109.43 (17)
H14A—C14—H14B108.1C23—N2—C22130.70 (18)
C16—C15—C14113.00 (15)N1—N2—C22119.71 (17)
C16—C15—H15A109.0C23—N3—C24101.32 (16)
C14—C15—H15A109.0C12—N4—N5109.42 (16)
C16—C15—H15B109.0C12—N4—C13131.08 (18)
C14—C15—H15B109.0N5—N4—C13119.50 (16)
H15A—C15—H15B107.8C11—N5—N4102.27 (16)
C15—C16—C17112.87 (15)C12—N6—C11103.03 (15)
C15—C16—H16A109.0C7—O2—H2WA113.3 (18)
C17—C16—H16A109.0C8—O4—H4WA110.7 (18)
C15—C16—H16B109.0C10—O5—H5WA109.7 (17)
C17—C16—H16B109.0H1AW—O1W—H1BW107 (2)
H16A—C16—H16B107.8H2BW—O2W—H2AW119 (3)
C6—C1—C2—C31.0 (3)C14—C15—C16—C17178.69 (16)
C10—C1—C2—C3178.88 (19)C15—C16—C17—C18178.91 (18)
C1—C2—C3—C40.7 (3)C16—C17—C18—C19179.83 (16)
C1—C2—C3—C8178.80 (19)C17—C18—C19—C20173.05 (17)
C2—C3—C4—C50.1 (3)C18—C19—C20—C21175.94 (18)
C8—C3—C4—C5178.27 (19)C19—C20—C21—C22176.65 (18)
C3—C4—C5—C60.2 (3)C20—C21—C22—N2176.96 (17)
C3—C4—C5—C7179.40 (19)N3—C24—N1—N20.4 (3)
C2—C1—C6—C50.6 (3)N3—C23—N2—N10.5 (3)
C10—C1—C6—C5179.24 (17)N3—C23—N2—C22175.8 (2)
C4—C5—C6—C10.0 (3)C24—N1—N2—C230.5 (2)
C7—C5—C6—C1179.65 (18)C24—N1—N2—C22176.39 (18)
C4—C5—C7—O1177.7 (2)C21—C22—N2—C2316.7 (3)
C6—C5—C7—O11.9 (3)C21—C22—N2—N1168.43 (18)
C4—C5—C7—O22.3 (3)N2—C23—N3—C240.2 (3)
C6—C5—C7—O2178.06 (18)N1—C24—N3—C230.1 (3)
C4—C3—C8—O33.1 (3)N6—C12—N4—N50.1 (3)
C2—C3—C8—O3178.8 (2)N6—C12—N4—C13179.88 (19)
C4—C3—C8—O4176.32 (19)C14—C13—N4—C120.9 (3)
C2—C3—C8—O41.8 (3)C14—C13—N4—N5178.88 (18)
C6—C1—C10—O64.9 (3)N6—C11—N5—N40.3 (3)
C2—C1—C10—O6175.3 (2)C12—N4—N5—C110.1 (2)
C6—C1—C10—O5174.98 (18)C13—N4—N5—C11179.71 (18)
C2—C1—C10—O54.9 (3)N4—C12—N6—C110.3 (2)
N4—C13—C14—C15177.54 (17)N5—C11—N6—C120.3 (3)
C13—C14—C15—C16178.73 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2WA···O1W0.89 (2)1.66 (2)2.549 (2)177 (3)
O4—H4WA···O2W0.88 (2)1.70 (2)2.571 (2)169 (3)
O5—H5WA···N6i0.99 (2)1.59 (2)2.5750 (19)174 (3)
O1W—H1AW···O3ii0.87 (2)1.86 (2)2.711 (2)163 (3)
O1W—H1BW···O1iii0.78 (2)1.99 (2)2.757 (2)170 (3)
O2W—H2BW···N3ii0.90 (2)2.12 (2)2.875 (2)140 (3)
O2W—H2AW···O6iv0.80 (2)2.05 (2)2.841 (2)170 (3)
Symmetry codes: (i) x+1, y+3, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H24N6·C9H6O6·2H2O
Mr522.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.7715 (6), 11.4405 (6), 11.7458 (6)
α, β, γ (°)101.790 (4), 105.800 (4), 92.740 (4)
V3)1355.13 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.29 × 0.2
Data collection
DiffractometerOxford Diffraction Gemini R Ultra CCD
Absorption correctionMulti-scan
(CrysAlis CCD; Oxford Diffraction, 2006)
Tmin, Tmax0.952, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8774, 4921, 1989
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.052, 0.88
No. of reflections4921
No. of parameters355
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2WA···O1W0.89 (2)1.66 (2)2.549 (2)177 (3)
O4—H4WA···O2W0.88 (2)1.70 (2)2.571 (2)169 (3)
O5—H5WA···N6i0.99 (2)1.59 (2)2.5750 (19)174 (3)
O1W—H1AW···O3ii0.87 (2)1.86 (2)2.711 (2)163 (3)
O1W—H1BW···O1iii0.78 (2)1.986 (19)2.757 (2)170 (3)
O2W—H2BW···N3ii0.90 (2)2.12 (2)2.875 (2)140 (3)
O2W—H2AW···O6iv0.799 (19)2.05 (2)2.841 (2)170 (3)
Symmetry codes: (i) x+1, y+3, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.
 

Acknowledgements

The author thanks BoHai University for support.

References

First citationMa, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 2290–2291.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds