metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(1,10-phenanthroline)copper(I)]-μ-cyanido] ethanol hemisolvate]

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 3 November 2010; accepted 4 November 2010; online 10 November 2010)

In the title coordination polymer, {[Cu(CN)(C12H10N2)]·0.5C2H5OH}n, there are two CuI ions, two 1,10-phenanthroline (phen) ligands and two cyanide ions in the asymmetric unit along with a highly disordered ethanol solvent mol­ecule, which was modelled as being disordered over two sets of sites in a 0.829 (7):0.171 (7) ratio. The orientation/ordering of the C and N atoms of the cyanide ions could not be determined in the present refinement and they were modelled as being statistically disordered. Both copper ions are coordinated by an N,N′-bidentate phen ligand and two cyanide ligands, generating distorted tetra­hedral CuN2Q2 (Q = C or N) tetra­hedra. The μ-cyanide ligands link the metal ions, forming a zigzag chain propagating in [001]. The chains are cross-linked by numerous aromatic ππ stacking contacts between adjacent phen rings [minimum centroid–centroid separation = 3.620 (3) Å].

Related literature

For general background to cyanide coordination polymers, see: Holmes & Girolami (1999[Holmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc. 121, 5593-5594.]); Deng et al. (2008[Deng, H., Qiu, Y. C., Daiguebonne, C., Kerbellec, N., Guillou, O., Zeller, M. & Batten, S. R. (2008). Inorg. Chem. 47, 5866-5872.]). For related structures, see: Dyason et al. (1985[Dyason, J. S., Healy, P. C., Engelhardt, L. M., Pakawatchai, L. M., Patrick, V. A. & White, A. H. (1985). J. Chem. Soc. Dalton Trans pp. 839-844.]); Chesnut et al. (1999[Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (1999). Inorg. Chem. 38, 5484-5489.]); Zhao et al. (2004[Zhao, Q.-H., Wang, Q.-H. & Fang, R.-B. (2004). Transition Met. Chem. 29, 144-148.]); Huang et al. (2004[Huang, X. C., Zheng, S. L., Zhang, J. P. & Chen, X. M. (2004). Eur. J. Inorg. Chem. pp. 1024-1029.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(CN)(C12H10N2)]·0.5C2H6O

  • Mr = 292.8

  • Monoclinic, P 21 /c

  • a = 18.4896 (6) Å

  • b = 8.4033 (3) Å

  • c = 16.5166 (5) Å

  • β = 109.974 (2)°

  • V = 2411.88 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.662, Tmax = 0.726

  • 21068 measured reflections

  • 4729 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.159

  • S = 1.02

  • 4729 reflections

  • 344 parameters

  • 65 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—C1/N1 1.910 (6)
Cu1—C2′/N2′ 1.944 (6)
Cu1—N4 2.108 (5)
Cu1—N3 2.142 (4)
Cu2—C2i/N2i 1.909 (6)
Cu2—C1′/N1′ 1.921 (5)
Cu2—N6 2.126 (5)
Cu2—N5 2.130 (4)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal coordination polymer based on cyanide group have raised intense interest due to their structural diversity and their potential applications in magnetic materials (Holmes & Girolami, 1999; Deng et al., 2008). Up to date, a large number of one-, two-, and three-dimensional coordination polymers have been prepared by the choice of metal-cyanide bridging centers and versatile secondary ligands such as 1,10-phenanthroline and 2,2-pyridine (Dyason et al., 1985; Chesnut et al., 1999; Zhao et al., 2004; Huang et al., 2004). Herein, we obtained one copper coordination polymer of [Cu(C12H10N2)(CN).C2H6O]n under hydrothermal condition, and its structure was reported.

As depicted in Fig. 1, each Cui ion is four-coordianted by two N atoms from one 1,10-phenanthroline (phen) ligand and two cyano ligands. The Cu-phen subunits are in turn interconnected by /m2-cyano ligands to form a 1D zigzag chain. These chains are further assembled by /p···/p stacking contacts between adjacent phen rings and extend to form a three-dimensional supramolecular network (Fig. 2). The interplanar distance between them is ca. 3.60 Å (symmetry operator for the 1,10-phenanthroline ligand: 1-x, 1-y, 2-z). The lattice ethanol molecule is independently disordered over two parts of 0.829 (7): 0.171 (7). (see refinement section for details).

Related literature top

For general background to cyanide coordination polymers, see: Holmes & Girolami (1999); Deng et al. (2008). For related structures, see: Dyason et al. (1985); Chesnut et al. (1999); Zhao et al. (2004); Huang et al. (2004).

Experimental top

Copper(I) cyanide (0.089 g, 1 mmol) and 1,10-phenanthroline (0.1801 g, 1 mmol) were added to a mixture of water (5 ml) and ethanol (5 ml). The resultant mixture was sealed in a 20 ml stainless steel reactor with a Teflon liner and kept under autogenous pressure at 413 K for 48 h, and then cooled to room temperature at a rate of 5 K/min. Yellow blocks of (I) formed with a yield of approximately 58% based on 1,10-phenanthroline.

Refinement top

The lattice ethanol molecules are arranged as symmetry related pairs around a center of inversion. In the original refinement the molecule showed significantly elongated thermal ellipsoids indicating disorder. The ethanol molecule was thus refined as being disordered over two sites in a ratio of 0.829 (7): 0.171 (7). Due to the significant overlap of the disordered atoms the following restraints and constraints were applied: The adps of the disordered atoms were restrained to be close to isotropic and those of equivalent atoms were set to be identical.

The C and N atoms of each bridging cyano groups are ambiguous and were refined to be same ratios and their equivalent atoms were set to be identical.

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93-0.97 and O—H = 1.2 Å, and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Structure description top

Metal coordination polymer based on cyanide group have raised intense interest due to their structural diversity and their potential applications in magnetic materials (Holmes & Girolami, 1999; Deng et al., 2008). Up to date, a large number of one-, two-, and three-dimensional coordination polymers have been prepared by the choice of metal-cyanide bridging centers and versatile secondary ligands such as 1,10-phenanthroline and 2,2-pyridine (Dyason et al., 1985; Chesnut et al., 1999; Zhao et al., 2004; Huang et al., 2004). Herein, we obtained one copper coordination polymer of [Cu(C12H10N2)(CN).C2H6O]n under hydrothermal condition, and its structure was reported.

As depicted in Fig. 1, each Cui ion is four-coordianted by two N atoms from one 1,10-phenanthroline (phen) ligand and two cyano ligands. The Cu-phen subunits are in turn interconnected by /m2-cyano ligands to form a 1D zigzag chain. These chains are further assembled by /p···/p stacking contacts between adjacent phen rings and extend to form a three-dimensional supramolecular network (Fig. 2). The interplanar distance between them is ca. 3.60 Å (symmetry operator for the 1,10-phenanthroline ligand: 1-x, 1-y, 2-z). The lattice ethanol molecule is independently disordered over two parts of 0.829 (7): 0.171 (7). (see refinement section for details).

For general background to cyanide coordination polymers, see: Holmes & Girolami (1999); Deng et al. (2008). For related structures, see: Dyason et al. (1985); Chesnut et al. (1999); Zhao et al. (2004); Huang et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP represention of (I), showing 30% probability displacement ellipsoids. Symmetry codes: (a) x, 1.5-y, 0.5+z.
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound.
catena-Poly[[[(1,10-phenanthroline)copper(I)]-µ-cyanido] ethanol hemisolvate] top
Crystal data top
[Cu(CN)(C12H10N2)]·0.5C2H6OF(000) = 1192
Mr = 292.8Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4800 reflections
a = 18.4896 (6) Åθ = 1.4–28.0°
b = 8.4033 (3) ŵ = 1.80 mm1
c = 16.5166 (5) ÅT = 293 K
β = 109.974 (2)°Block, yellow
V = 2411.88 (14) Å30.25 × 0.23 × 0.19 mm
Z = 8
Data collection top
Bruker APEXII area-detector
diffractometer
4729 independent reflections
Radiation source: fine-focus sealed tube2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2222
Tmin = 0.662, Tmax = 0.726k = 910
21068 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0686P)2 + 1.9113P]
where P = (Fo2 + 2Fc2)/3
4729 reflections(Δ/σ)max = 0.004
344 parametersΔρmax = 0.37 e Å3
65 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu(CN)(C12H10N2)]·0.5C2H6OV = 2411.88 (14) Å3
Mr = 292.8Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.4896 (6) ŵ = 1.80 mm1
b = 8.4033 (3) ÅT = 293 K
c = 16.5166 (5) Å0.25 × 0.23 × 0.19 mm
β = 109.974 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
4729 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2624 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.726Rint = 0.090
21068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05765 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
4729 reflectionsΔρmin = 0.53 e Å3
344 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.19744 (4)0.57901 (10)0.46043 (5)0.0533 (3)
Cu20.32714 (4)0.65348 (10)0.77685 (4)0.0523 (3)
C10.2519 (3)0.5967 (7)0.5813 (4)0.0557 (15)0.50
N1'0.2519 (3)0.5967 (7)0.5813 (4)0.0557 (15)0.50
C20.2732 (3)0.7392 (7)0.3409 (3)0.0470 (13)0.50
N2'0.2732 (3)0.7392 (7)0.3409 (3)0.0470 (13)0.50
N10.2828 (3)0.6179 (7)0.6549 (3)0.0501 (14)0.50
C1'0.2828 (3)0.6179 (7)0.6549 (3)0.0501 (14)0.50
N20.2420 (3)0.6744 (7)0.3810 (3)0.0477 (14)0.50
C2'0.2420 (3)0.6744 (7)0.3810 (3)0.0477 (14)0.50
C30.0414 (4)0.7502 (8)0.4464 (4)0.0511 (16)
H30.07090.83830.47190.061*
C40.0382 (4)0.7600 (9)0.4252 (4)0.0624 (18)
H40.06100.85240.43630.075*
C50.0817 (4)0.6332 (10)0.3883 (4)0.0644 (19)
H50.13490.63800.37360.077*
C60.0470 (3)0.4939 (8)0.3722 (3)0.0472 (15)
C70.0889 (4)0.3551 (10)0.3317 (4)0.0605 (19)
H70.14230.35550.31430.073*
C80.0529 (4)0.2249 (9)0.3185 (4)0.0594 (18)
H80.08180.13750.29110.071*
C90.0284 (4)0.2175 (8)0.3455 (3)0.0491 (15)
C100.0687 (4)0.0835 (9)0.3361 (4)0.0640 (19)
H100.04240.00670.30860.077*
C110.1467 (5)0.0854 (9)0.3675 (5)0.071 (2)
H110.17410.00560.36390.085*
C120.1861 (4)0.2228 (9)0.4050 (4)0.0619 (18)
H120.23960.22190.42490.074*
C130.0718 (3)0.3522 (7)0.3842 (3)0.0390 (13)
C140.0331 (3)0.4941 (7)0.3959 (3)0.0397 (13)
C150.4760 (4)0.8556 (8)0.8029 (4)0.0519 (16)
H150.44370.93390.76980.062*
C160.5546 (4)0.8874 (9)0.8372 (4)0.0601 (18)
H160.57370.98530.82760.072*
C170.6029 (3)0.7741 (9)0.8847 (4)0.0586 (18)
H170.65540.79440.90810.070*
C180.5739 (3)0.6280 (8)0.8983 (4)0.0513 (17)
C190.6205 (4)0.5004 (10)0.9452 (4)0.0663 (19)
H190.67350.51410.96930.080*
C200.5893 (4)0.3616 (10)0.9550 (4)0.070 (2)
H200.62110.28080.98620.084*
C210.5079 (4)0.3337 (8)0.9189 (4)0.0519 (16)
C220.4723 (5)0.1913 (10)0.9253 (5)0.074 (2)
H220.50180.10720.95590.089*
C230.3964 (5)0.1732 (9)0.8881 (5)0.078 (2)
H230.37290.07720.89240.094*
C240.3532 (4)0.2993 (9)0.8432 (4)0.0617 (18)
H240.30050.28480.81680.074*
C250.4607 (3)0.4565 (7)0.8732 (3)0.0419 (14)
C260.4937 (3)0.6066 (7)0.8619 (3)0.0390 (14)
N30.0772 (2)0.6226 (6)0.4324 (3)0.0404 (12)
N40.1499 (3)0.3554 (6)0.4134 (3)0.0466 (12)
N50.4451 (2)0.7205 (6)0.8149 (3)0.0392 (11)
N60.3829 (3)0.4406 (6)0.8355 (3)0.0424 (12)
C270.1951 (6)0.5287 (13)0.0858 (7)0.100 (4)0.829 (7)
H27A0.22740.54760.05200.150*0.829 (7)
H27B0.17580.62830.09840.150*0.829 (7)
H27C0.15280.46200.05410.150*0.829 (7)
C280.2396 (8)0.450 (4)0.1658 (10)0.112 (6)0.829 (7)
H28A0.25620.34740.15220.135*0.829 (7)
H28B0.28530.51310.19400.135*0.829 (7)
O10.2007 (8)0.4284 (18)0.2226 (10)0.274 (9)0.829 (7)
H10.18730.51500.23550.411*0.829 (7)
C27'0.230 (3)0.475 (17)0.147 (6)0.100 (4)0.171 (7)
H27D0.20710.38460.11220.150*0.171 (7)
H27E0.19880.56740.12610.150*0.171 (7)
H27F0.23450.45530.20570.150*0.171 (7)
C28'0.309 (3)0.503 (8)0.142 (3)0.112 (6)0.171 (7)
H28C0.31460.44100.09510.135*0.171 (7)
H28D0.31450.61430.13040.135*0.171 (7)
O1'0.367 (3)0.459 (8)0.220 (4)0.274 (9)0.171 (7)
H1'0.36300.36490.22980.411*0.171 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0405 (4)0.0661 (6)0.0510 (4)0.0090 (4)0.0126 (3)0.0044 (4)
Cu20.0375 (4)0.0655 (6)0.0503 (4)0.0059 (4)0.0103 (3)0.0013 (4)
C10.038 (3)0.074 (4)0.053 (3)0.005 (3)0.013 (3)0.002 (3)
N1'0.038 (3)0.074 (4)0.053 (3)0.005 (3)0.013 (3)0.002 (3)
C20.039 (3)0.054 (4)0.044 (3)0.001 (3)0.009 (2)0.001 (3)
N2'0.039 (3)0.054 (4)0.044 (3)0.001 (3)0.009 (2)0.001 (3)
C30.064 (4)0.041 (4)0.049 (3)0.002 (3)0.020 (3)0.003 (3)
C40.063 (5)0.054 (5)0.071 (4)0.021 (4)0.024 (4)0.008 (4)
C50.042 (4)0.082 (6)0.069 (4)0.012 (4)0.019 (3)0.014 (4)
C60.037 (3)0.059 (4)0.044 (3)0.003 (3)0.012 (2)0.009 (3)
C70.036 (3)0.086 (6)0.055 (4)0.017 (4)0.011 (3)0.008 (4)
C80.056 (4)0.063 (5)0.057 (4)0.020 (4)0.016 (3)0.008 (4)
C90.061 (4)0.047 (4)0.045 (3)0.009 (3)0.025 (3)0.004 (3)
C100.086 (6)0.056 (5)0.056 (4)0.009 (4)0.031 (4)0.008 (3)
C110.094 (6)0.050 (5)0.076 (5)0.017 (4)0.038 (4)0.001 (4)
C120.062 (4)0.061 (5)0.063 (4)0.018 (4)0.022 (3)0.003 (4)
C130.042 (3)0.043 (4)0.035 (3)0.001 (3)0.017 (2)0.001 (3)
C140.038 (3)0.046 (4)0.035 (3)0.001 (3)0.012 (2)0.003 (3)
C150.055 (4)0.053 (4)0.049 (3)0.007 (3)0.019 (3)0.004 (3)
C160.059 (4)0.067 (5)0.064 (4)0.022 (4)0.033 (3)0.001 (4)
C170.036 (3)0.080 (5)0.060 (4)0.017 (4)0.015 (3)0.008 (4)
C180.032 (3)0.072 (5)0.048 (3)0.001 (3)0.011 (3)0.005 (3)
C190.039 (4)0.084 (6)0.061 (4)0.010 (4)0.002 (3)0.003 (4)
C200.060 (5)0.087 (6)0.052 (4)0.034 (4)0.004 (3)0.011 (4)
C210.069 (4)0.041 (4)0.046 (3)0.014 (3)0.019 (3)0.003 (3)
C220.097 (6)0.059 (6)0.068 (4)0.021 (5)0.031 (4)0.009 (4)
C230.110 (7)0.045 (5)0.094 (6)0.010 (5)0.053 (5)0.009 (4)
C240.065 (4)0.061 (5)0.064 (4)0.021 (4)0.029 (3)0.010 (4)
C250.041 (3)0.052 (4)0.032 (3)0.005 (3)0.011 (2)0.006 (3)
C260.036 (3)0.048 (4)0.033 (3)0.002 (3)0.011 (2)0.008 (3)
N10.033 (3)0.064 (4)0.052 (3)0.010 (3)0.013 (2)0.009 (3)
C1'0.033 (3)0.064 (4)0.052 (3)0.010 (3)0.013 (2)0.009 (3)
N20.036 (3)0.060 (4)0.044 (3)0.003 (3)0.011 (2)0.001 (3)
C2'0.036 (3)0.060 (4)0.044 (3)0.003 (3)0.011 (2)0.001 (3)
N30.041 (3)0.041 (3)0.038 (2)0.000 (2)0.013 (2)0.000 (2)
N40.040 (3)0.058 (4)0.042 (2)0.010 (3)0.015 (2)0.002 (2)
N50.039 (3)0.041 (3)0.036 (2)0.003 (2)0.011 (2)0.000 (2)
N60.047 (3)0.044 (3)0.041 (2)0.006 (2)0.020 (2)0.004 (2)
C270.084 (8)0.078 (8)0.118 (9)0.019 (6)0.008 (6)0.006 (7)
C280.100 (10)0.134 (17)0.119 (13)0.017 (9)0.058 (9)0.018 (11)
O10.205 (14)0.190 (14)0.35 (2)0.042 (11)0.002 (13)0.103 (14)
C27'0.084 (8)0.078 (8)0.118 (9)0.019 (6)0.008 (6)0.006 (7)
C28'0.100 (10)0.134 (17)0.119 (13)0.017 (9)0.058 (9)0.018 (11)
O1'0.205 (14)0.190 (14)0.35 (2)0.042 (11)0.002 (13)0.103 (14)
Geometric parameters (Å, º) top
Cu1—C11.910 (6)C15—C161.393 (8)
Cu1—N1'1.910 (6)C15—H150.9300
Cu1—N21.944 (6)C16—C171.357 (9)
Cu1—C2'1.944 (6)C16—H160.9300
Cu1—N42.108 (5)C17—C181.389 (9)
Cu1—N32.142 (4)C17—H170.9300
Cu2—N2'i1.909 (6)C18—C261.409 (7)
Cu2—C2i1.909 (6)C18—C191.427 (9)
Cu2—N11.921 (5)C19—C201.336 (10)
Cu2—C1'1.921 (5)C19—H190.9300
Cu2—N62.126 (5)C20—C211.435 (9)
Cu2—N52.130 (4)C20—H200.9300
C1—N11.167 (7)C21—C221.387 (10)
C2—N21.154 (6)C21—C251.395 (8)
C2—Cu2ii1.909 (6)C22—C231.335 (10)
C3—N31.322 (7)C22—H220.9300
C3—C41.395 (9)C23—C241.380 (10)
C3—H30.9300C23—H230.9300
C4—C51.348 (9)C24—N61.332 (8)
C4—H40.9300C24—H240.9300
C5—C61.405 (9)C25—N61.365 (7)
C5—H50.9300C25—C261.441 (8)
C6—C141.395 (7)C26—N51.358 (7)
C6—C71.433 (9)C27—C281.454 (9)
C7—C81.337 (9)C27—H27A0.9600
C7—H70.9300C27—H27B0.9600
C8—C91.416 (8)C27—H27C0.9600
C8—H80.9300C28—O11.375 (9)
C9—C101.387 (9)C28—H28A0.9700
C9—C131.408 (8)C28—H28B0.9700
C10—C111.356 (9)O1—H10.8200
C10—H100.9300C27'—C28'1.503 (10)
C11—C121.393 (10)C27'—H27D0.9600
C11—H110.9300C27'—H27E0.9600
C12—N41.331 (8)C27'—H27F0.9600
C12—H120.9300C28'—O1'1.415 (10)
C13—N41.357 (7)C28'—H28C0.9700
C13—C141.437 (8)C28'—H28D0.9700
C14—N31.363 (7)O1'—H1'0.8200
C15—N51.316 (7)
C1—Cu1—N2118.7 (2)C20—C19—H19119.4
C1—Cu1—N4117.3 (2)C18—C19—H19119.4
N2—Cu1—N4109.8 (2)C19—C20—C21121.8 (6)
C1—Cu1—N3110.49 (19)C19—C20—H20119.1
N2—Cu1—N3115.55 (19)C21—C20—H20119.1
N4—Cu1—N378.53 (18)C22—C21—C25116.9 (6)
C2i—Cu2—N1122.6 (2)C22—C21—C20124.5 (7)
C2i—Cu2—N6114.1 (2)C25—C21—C20118.6 (6)
N1—Cu2—N6108.3 (2)C23—C22—C21121.0 (7)
C2i—Cu2—N5112.80 (19)C23—C22—H22119.5
N1—Cu2—N5112.18 (19)C21—C22—H22119.5
N6—Cu2—N578.45 (18)C22—C23—C24118.9 (7)
N1—C1—Cu1175.2 (5)C22—C23—H23120.5
N2—C2—Cu2ii178.6 (5)C24—C23—H23120.5
N3—C3—C4123.5 (6)N6—C24—C23123.6 (7)
N3—C3—H3118.2N6—C24—H24118.2
C4—C3—H3118.2C23—C24—H24118.2
C5—C4—C3118.9 (6)N6—C25—C21122.8 (6)
C5—C4—H4120.6N6—C25—C26117.0 (5)
C3—C4—H4120.6C21—C25—C26120.2 (5)
C4—C5—C6120.2 (6)N5—C26—C18123.2 (6)
C4—C5—H5119.9N5—C26—C25117.7 (5)
C6—C5—H5119.9C18—C26—C25119.1 (5)
C14—C6—C5117.1 (6)C1—N1—Cu2176.2 (5)
C14—C6—C7119.0 (6)C2—N2—Cu1173.2 (5)
C5—C6—C7123.9 (6)C3—N3—C14117.4 (5)
C8—C7—C6121.4 (6)C3—N3—Cu1130.2 (4)
C8—C7—H7119.3C14—N3—Cu1112.3 (4)
C6—C7—H7119.3C12—N4—C13117.3 (6)
C7—C8—C9121.3 (6)C12—N4—Cu1128.5 (4)
C7—C8—H8119.4C13—N4—Cu1114.1 (4)
C9—C8—H8119.4C15—N5—C26117.3 (5)
C10—C9—C13117.4 (6)C15—N5—Cu2129.6 (4)
C10—C9—C8123.6 (6)C26—N5—Cu2113.1 (4)
C13—C9—C8119.1 (6)C24—N6—C25116.6 (5)
C11—C10—C9119.3 (7)C24—N6—Cu2130.0 (4)
C11—C10—H10120.4C25—N6—Cu2113.4 (4)
C9—C10—H10120.4C28—C27—H27A109.5
C10—C11—C12120.4 (7)C28—C27—H27B109.5
C10—C11—H11119.8H27A—C27—H27B109.5
C12—C11—H11119.8C28—C27—H27C109.5
N4—C12—C11122.3 (6)H27A—C27—H27C109.5
N4—C12—H12118.8H27B—C27—H27C109.5
C11—C12—H12118.8O1—C28—C27114.6 (13)
N4—C13—C9123.3 (6)O1—C28—H28A108.6
N4—C13—C14117.0 (5)C27—C28—H28A108.6
C9—C13—C14119.7 (5)O1—C28—H28B108.6
N3—C14—C6122.8 (6)C27—C28—H28B108.6
N3—C14—C13117.8 (5)H28A—C28—H28B107.6
C6—C14—C13119.3 (5)C28—O1—H1109.5
N5—C15—C16123.3 (6)C28'—C27'—H27D109.5
N5—C15—H15118.3C28'—C27'—H27E109.5
C16—C15—H15118.3H27D—C27'—H27E109.5
C17—C16—C15119.4 (6)C28'—C27'—H27F109.5
C17—C16—H16120.3H27D—C27'—H27F109.5
C15—C16—H16120.3H27E—C27'—H27F109.5
C16—C17—C18119.9 (6)O1'—C28'—C27'111.5 (16)
C16—C17—H17120.0O1'—C28'—H28C109.3
C18—C17—H17120.0C27'—C28'—H28C109.3
C17—C18—C26116.9 (6)O1'—C28'—H28D109.3
C17—C18—C19123.9 (6)C27'—C28'—H28D109.3
C26—C18—C19119.2 (6)H28C—C28'—H28D108.0
C20—C19—C18121.1 (6)C28'—O1'—H1'109.5
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(CN)(C12H10N2)]·0.5C2H6O
Mr292.8
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.4896 (6), 8.4033 (3), 16.5166 (5)
β (°) 109.974 (2)
V3)2411.88 (14)
Z8
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.25 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.662, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
21068, 4729, 2624
Rint0.090
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 1.02
No. of reflections4729
No. of parameters344
No. of restraints65
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.53

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—C11.910 (6)Cu2—C2i1.909 (6)
Cu1—C2'1.944 (6)Cu2—C1'1.921 (5)
Cu1—N42.108 (5)Cu2—N62.126 (5)
Cu1—N32.142 (4)Cu2—N52.130 (4)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge Zhongshan Polytechnic for supporting this work.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (1999). Inorg. Chem. 38, 5484–5489.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDeng, H., Qiu, Y. C., Daiguebonne, C., Kerbellec, N., Guillou, O., Zeller, M. & Batten, S. R. (2008). Inorg. Chem. 47, 5866–5872.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDyason, J. S., Healy, P. C., Engelhardt, L. M., Pakawatchai, L. M., Patrick, V. A. & White, A. H. (1985). J. Chem. Soc. Dalton Trans pp. 839–844.  Google Scholar
First citationHolmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc. 121, 5593–5594.  Web of Science CrossRef CAS Google Scholar
First citationHuang, X. C., Zheng, S. L., Zhang, J. P. & Chen, X. M. (2004). Eur. J. Inorg. Chem. pp. 1024–1029.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Q.-H., Wang, Q.-H. & Fang, R.-B. (2004). Transition Met. Chem. 29, 144–148.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds