metal-organic compounds
catena-Poly[[[(1,10-phenanthroline)copper(I)]-μ-cyanido] ethanol hemisolvate]
aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com
In the title coordination polymer, {[Cu(CN)(C12H10N2)]·0.5C2H5OH}n, there are two CuI ions, two 1,10-phenanthroline (phen) ligands and two cyanide ions in the along with a highly disordered ethanol solvent molecule, which was modelled as being disordered over two sets of sites in a 0.829 (7):0.171 (7) ratio. The orientation/ordering of the C and N atoms of the cyanide ions could not be determined in the present and they were modelled as being statistically disordered. Both copper ions are coordinated by an N,N′-bidentate phen ligand and two cyanide ligands, generating distorted tetrahedral CuN2Q2 (Q = C or N) tetrahedra. The μ-cyanide ligands link the metal ions, forming a zigzag chain propagating in [001]. The chains are cross-linked by numerous aromatic π–π stacking contacts between adjacent phen rings [minimum centroid–centroid separation = 3.620 (3) Å].
Related literature
For general background to cyanide coordination polymers, see: Holmes & Girolami (1999); Deng et al. (2008). For related structures, see: Dyason et al. (1985); Chesnut et al. (1999); Zhao et al. (2004); Huang et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810045186/hb5723sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045186/hb5723Isup2.hkl
Copper(I) cyanide (0.089 g, 1 mmol) and 1,10-phenanthroline (0.1801 g, 1 mmol) were added to a mixture of water (5 ml) and ethanol (5 ml). The resultant mixture was sealed in a 20 ml stainless steel reactor with a Teflon liner and kept under autogenous pressure at 413 K for 48 h, and then cooled to room temperature at a rate of 5 K/min. Yellow blocks of (I) formed with a yield of approximately 58% based on 1,10-phenanthroline.
The lattice ethanol molecules are arranged as symmetry related pairs around a center of inversion. In the original
the molecule showed significantly elongated thermal ellipsoids indicating disorder. The ethanol molecule was thus refined as being disordered over two sites in a ratio of 0.829 (7): 0.171 (7). Due to the significant overlap of the disordered atoms the following restraints and constraints were applied: The adps of the disordered atoms were restrained to be close to isotropic and those of equivalent atoms were set to be identical.The C and N atoms of each bridging cyano groups are ambiguous and were refined to be same ratios and their equivalent atoms were set to be identical.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93-0.97 and O—H = 1.2 Å, and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).
Metal coordination polymer based on cyanide group have raised intense interest due to their structural diversity and their potential applications in magnetic materials (Holmes & Girolami, 1999; Deng et al., 2008). Up to date, a large number of one-, two-, and three-dimensional coordination polymers have been prepared by the choice of metal-cyanide bridging centers and versatile secondary ligands such as 1,10-phenanthroline and 2,2-pyridine (Dyason et al., 1985; Chesnut et al., 1999; Zhao et al., 2004; Huang et al., 2004). Herein, we obtained one copper coordination polymer of [Cu(C12H10N2)(CN).C2H6O]n under hydrothermal condition, and its structure was reported.
As depicted in Fig. 1, each Cui ion is four-coordianted by two N atoms from one 1,10-phenanthroline (phen) ligand and two cyano ligands. The Cu-phen subunits are in turn interconnected by /m2-cyano ligands to form a 1D zigzag chain. These chains are further assembled by /p···/p stacking contacts between adjacent phen rings and extend to form a three-dimensional supramolecular network (Fig. 2). The interplanar distance between them is ca. 3.60 Å (symmetry operator for the 1,10-phenanthroline ligand: 1-x, 1-y, 2-z). The lattice ethanol molecule is independently disordered over two parts of 0.829 (7): 0.171 (7). (see
section for details).For general background to cyanide coordination polymers, see: Holmes & Girolami (1999); Deng et al. (2008). For related structures, see: Dyason et al. (1985); Chesnut et al. (1999); Zhao et al. (2004); Huang et al. (2004).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. ORTEP represention of (I), showing 30% probability displacement ellipsoids. Symmetry codes: (a) x, 1.5-y, 0.5+z. | |
Fig. 2. View of the three-dimensional structure of the title compound. |
[Cu(CN)(C12H10N2)]·0.5C2H6O | F(000) = 1192 |
Mr = 292.8 | Dx = 1.613 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4800 reflections |
a = 18.4896 (6) Å | θ = 1.4–28.0° |
b = 8.4033 (3) Å | µ = 1.80 mm−1 |
c = 16.5166 (5) Å | T = 293 K |
β = 109.974 (2)° | Block, yellow |
V = 2411.88 (14) Å3 | 0.25 × 0.23 × 0.19 mm |
Z = 8 |
Bruker APEXII area-detector diffractometer | 4729 independent reflections |
Radiation source: fine-focus sealed tube | 2624 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.090 |
φ and ω scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −22→22 |
Tmin = 0.662, Tmax = 0.726 | k = −9→10 |
21068 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0686P)2 + 1.9113P] where P = (Fo2 + 2Fc2)/3 |
4729 reflections | (Δ/σ)max = 0.004 |
344 parameters | Δρmax = 0.37 e Å−3 |
65 restraints | Δρmin = −0.53 e Å−3 |
[Cu(CN)(C12H10N2)]·0.5C2H6O | V = 2411.88 (14) Å3 |
Mr = 292.8 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 18.4896 (6) Å | µ = 1.80 mm−1 |
b = 8.4033 (3) Å | T = 293 K |
c = 16.5166 (5) Å | 0.25 × 0.23 × 0.19 mm |
β = 109.974 (2)° |
Bruker APEXII area-detector diffractometer | 4729 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2624 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 0.726 | Rint = 0.090 |
21068 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 65 restraints |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.37 e Å−3 |
4729 reflections | Δρmin = −0.53 e Å−3 |
344 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.19744 (4) | 0.57901 (10) | 0.46043 (5) | 0.0533 (3) | |
Cu2 | 0.32714 (4) | 0.65348 (10) | 0.77685 (4) | 0.0523 (3) | |
C1 | 0.2519 (3) | 0.5967 (7) | 0.5813 (4) | 0.0557 (15) | 0.50 |
N1' | 0.2519 (3) | 0.5967 (7) | 0.5813 (4) | 0.0557 (15) | 0.50 |
C2 | 0.2732 (3) | 0.7392 (7) | 0.3409 (3) | 0.0470 (13) | 0.50 |
N2' | 0.2732 (3) | 0.7392 (7) | 0.3409 (3) | 0.0470 (13) | 0.50 |
N1 | 0.2828 (3) | 0.6179 (7) | 0.6549 (3) | 0.0501 (14) | 0.50 |
C1' | 0.2828 (3) | 0.6179 (7) | 0.6549 (3) | 0.0501 (14) | 0.50 |
N2 | 0.2420 (3) | 0.6744 (7) | 0.3810 (3) | 0.0477 (14) | 0.50 |
C2' | 0.2420 (3) | 0.6744 (7) | 0.3810 (3) | 0.0477 (14) | 0.50 |
C3 | 0.0414 (4) | 0.7502 (8) | 0.4464 (4) | 0.0511 (16) | |
H3 | 0.0709 | 0.8383 | 0.4719 | 0.061* | |
C4 | −0.0382 (4) | 0.7600 (9) | 0.4252 (4) | 0.0624 (18) | |
H4 | −0.0610 | 0.8524 | 0.4363 | 0.075* | |
C5 | −0.0817 (4) | 0.6332 (10) | 0.3883 (4) | 0.0644 (19) | |
H5 | −0.1349 | 0.6380 | 0.3736 | 0.077* | |
C6 | −0.0470 (3) | 0.4939 (8) | 0.3722 (3) | 0.0472 (15) | |
C7 | −0.0889 (4) | 0.3551 (10) | 0.3317 (4) | 0.0605 (19) | |
H7 | −0.1423 | 0.3555 | 0.3143 | 0.073* | |
C8 | −0.0529 (4) | 0.2249 (9) | 0.3185 (4) | 0.0594 (18) | |
H8 | −0.0818 | 0.1375 | 0.2911 | 0.071* | |
C9 | 0.0284 (4) | 0.2175 (8) | 0.3455 (3) | 0.0491 (15) | |
C10 | 0.0687 (4) | 0.0835 (9) | 0.3361 (4) | 0.0640 (19) | |
H10 | 0.0424 | −0.0067 | 0.3086 | 0.077* | |
C11 | 0.1467 (5) | 0.0854 (9) | 0.3675 (5) | 0.071 (2) | |
H11 | 0.1741 | −0.0056 | 0.3639 | 0.085* | |
C12 | 0.1861 (4) | 0.2228 (9) | 0.4050 (4) | 0.0619 (18) | |
H12 | 0.2396 | 0.2219 | 0.4249 | 0.074* | |
C13 | 0.0718 (3) | 0.3522 (7) | 0.3842 (3) | 0.0390 (13) | |
C14 | 0.0331 (3) | 0.4941 (7) | 0.3959 (3) | 0.0397 (13) | |
C15 | 0.4760 (4) | 0.8556 (8) | 0.8029 (4) | 0.0519 (16) | |
H15 | 0.4437 | 0.9339 | 0.7698 | 0.062* | |
C16 | 0.5546 (4) | 0.8874 (9) | 0.8372 (4) | 0.0601 (18) | |
H16 | 0.5737 | 0.9853 | 0.8276 | 0.072* | |
C17 | 0.6029 (3) | 0.7741 (9) | 0.8847 (4) | 0.0586 (18) | |
H17 | 0.6554 | 0.7944 | 0.9081 | 0.070* | |
C18 | 0.5739 (3) | 0.6280 (8) | 0.8983 (4) | 0.0513 (17) | |
C19 | 0.6205 (4) | 0.5004 (10) | 0.9452 (4) | 0.0663 (19) | |
H19 | 0.6735 | 0.5141 | 0.9693 | 0.080* | |
C20 | 0.5893 (4) | 0.3616 (10) | 0.9550 (4) | 0.070 (2) | |
H20 | 0.6211 | 0.2808 | 0.9862 | 0.084* | |
C21 | 0.5079 (4) | 0.3337 (8) | 0.9189 (4) | 0.0519 (16) | |
C22 | 0.4723 (5) | 0.1913 (10) | 0.9253 (5) | 0.074 (2) | |
H22 | 0.5018 | 0.1072 | 0.9559 | 0.089* | |
C23 | 0.3964 (5) | 0.1732 (9) | 0.8881 (5) | 0.078 (2) | |
H23 | 0.3729 | 0.0772 | 0.8924 | 0.094* | |
C24 | 0.3532 (4) | 0.2993 (9) | 0.8432 (4) | 0.0617 (18) | |
H24 | 0.3005 | 0.2848 | 0.8168 | 0.074* | |
C25 | 0.4607 (3) | 0.4565 (7) | 0.8732 (3) | 0.0419 (14) | |
C26 | 0.4937 (3) | 0.6066 (7) | 0.8619 (3) | 0.0390 (14) | |
N3 | 0.0772 (2) | 0.6226 (6) | 0.4324 (3) | 0.0404 (12) | |
N4 | 0.1499 (3) | 0.3554 (6) | 0.4134 (3) | 0.0466 (12) | |
N5 | 0.4451 (2) | 0.7205 (6) | 0.8149 (3) | 0.0392 (11) | |
N6 | 0.3829 (3) | 0.4406 (6) | 0.8355 (3) | 0.0424 (12) | |
C27 | 0.1951 (6) | 0.5287 (13) | 0.0858 (7) | 0.100 (4) | 0.829 (7) |
H27A | 0.2274 | 0.5476 | 0.0520 | 0.150* | 0.829 (7) |
H27B | 0.1758 | 0.6283 | 0.0984 | 0.150* | 0.829 (7) |
H27C | 0.1528 | 0.4620 | 0.0541 | 0.150* | 0.829 (7) |
C28 | 0.2396 (8) | 0.450 (4) | 0.1658 (10) | 0.112 (6) | 0.829 (7) |
H28A | 0.2562 | 0.3474 | 0.1522 | 0.135* | 0.829 (7) |
H28B | 0.2853 | 0.5131 | 0.1940 | 0.135* | 0.829 (7) |
O1 | 0.2007 (8) | 0.4284 (18) | 0.2226 (10) | 0.274 (9) | 0.829 (7) |
H1 | 0.1873 | 0.5150 | 0.2355 | 0.411* | 0.829 (7) |
C27' | 0.230 (3) | 0.475 (17) | 0.147 (6) | 0.100 (4) | 0.171 (7) |
H27D | 0.2071 | 0.3846 | 0.1122 | 0.150* | 0.171 (7) |
H27E | 0.1988 | 0.5674 | 0.1261 | 0.150* | 0.171 (7) |
H27F | 0.2345 | 0.4553 | 0.2057 | 0.150* | 0.171 (7) |
C28' | 0.309 (3) | 0.503 (8) | 0.142 (3) | 0.112 (6) | 0.171 (7) |
H28C | 0.3146 | 0.4410 | 0.0951 | 0.135* | 0.171 (7) |
H28D | 0.3145 | 0.6143 | 0.1304 | 0.135* | 0.171 (7) |
O1' | 0.367 (3) | 0.459 (8) | 0.220 (4) | 0.274 (9) | 0.171 (7) |
H1' | 0.3630 | 0.3649 | 0.2298 | 0.411* | 0.171 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0405 (4) | 0.0661 (6) | 0.0510 (4) | −0.0090 (4) | 0.0126 (3) | −0.0044 (4) |
Cu2 | 0.0375 (4) | 0.0655 (6) | 0.0503 (4) | 0.0059 (4) | 0.0103 (3) | −0.0013 (4) |
C1 | 0.038 (3) | 0.074 (4) | 0.053 (3) | 0.005 (3) | 0.013 (3) | 0.002 (3) |
N1' | 0.038 (3) | 0.074 (4) | 0.053 (3) | 0.005 (3) | 0.013 (3) | 0.002 (3) |
C2 | 0.039 (3) | 0.054 (4) | 0.044 (3) | −0.001 (3) | 0.009 (2) | −0.001 (3) |
N2' | 0.039 (3) | 0.054 (4) | 0.044 (3) | −0.001 (3) | 0.009 (2) | −0.001 (3) |
C3 | 0.064 (4) | 0.041 (4) | 0.049 (3) | 0.002 (3) | 0.020 (3) | 0.003 (3) |
C4 | 0.063 (5) | 0.054 (5) | 0.071 (4) | 0.021 (4) | 0.024 (4) | 0.008 (4) |
C5 | 0.042 (4) | 0.082 (6) | 0.069 (4) | 0.012 (4) | 0.019 (3) | 0.014 (4) |
C6 | 0.037 (3) | 0.059 (4) | 0.044 (3) | −0.003 (3) | 0.012 (2) | 0.009 (3) |
C7 | 0.036 (3) | 0.086 (6) | 0.055 (4) | −0.017 (4) | 0.011 (3) | 0.008 (4) |
C8 | 0.056 (4) | 0.063 (5) | 0.057 (4) | −0.020 (4) | 0.016 (3) | −0.008 (4) |
C9 | 0.061 (4) | 0.047 (4) | 0.045 (3) | −0.009 (3) | 0.025 (3) | −0.004 (3) |
C10 | 0.086 (6) | 0.056 (5) | 0.056 (4) | −0.009 (4) | 0.031 (4) | −0.008 (3) |
C11 | 0.094 (6) | 0.050 (5) | 0.076 (5) | 0.017 (4) | 0.038 (4) | −0.001 (4) |
C12 | 0.062 (4) | 0.061 (5) | 0.063 (4) | 0.018 (4) | 0.022 (3) | 0.003 (4) |
C13 | 0.042 (3) | 0.043 (4) | 0.035 (3) | −0.001 (3) | 0.017 (2) | 0.001 (3) |
C14 | 0.038 (3) | 0.046 (4) | 0.035 (3) | −0.001 (3) | 0.012 (2) | 0.003 (3) |
C15 | 0.055 (4) | 0.053 (4) | 0.049 (3) | −0.007 (3) | 0.019 (3) | 0.004 (3) |
C16 | 0.059 (4) | 0.067 (5) | 0.064 (4) | −0.022 (4) | 0.033 (3) | −0.001 (4) |
C17 | 0.036 (3) | 0.080 (5) | 0.060 (4) | −0.017 (4) | 0.015 (3) | −0.008 (4) |
C18 | 0.032 (3) | 0.072 (5) | 0.048 (3) | 0.001 (3) | 0.011 (3) | −0.005 (3) |
C19 | 0.039 (4) | 0.084 (6) | 0.061 (4) | 0.010 (4) | −0.002 (3) | 0.003 (4) |
C20 | 0.060 (5) | 0.087 (6) | 0.052 (4) | 0.034 (4) | 0.004 (3) | 0.011 (4) |
C21 | 0.069 (4) | 0.041 (4) | 0.046 (3) | 0.014 (3) | 0.019 (3) | 0.003 (3) |
C22 | 0.097 (6) | 0.059 (6) | 0.068 (4) | 0.021 (5) | 0.031 (4) | 0.009 (4) |
C23 | 0.110 (7) | 0.045 (5) | 0.094 (6) | −0.010 (5) | 0.053 (5) | 0.009 (4) |
C24 | 0.065 (4) | 0.061 (5) | 0.064 (4) | −0.021 (4) | 0.029 (3) | −0.010 (4) |
C25 | 0.041 (3) | 0.052 (4) | 0.032 (3) | 0.005 (3) | 0.011 (2) | −0.006 (3) |
C26 | 0.036 (3) | 0.048 (4) | 0.033 (3) | −0.002 (3) | 0.011 (2) | −0.008 (3) |
N1 | 0.033 (3) | 0.064 (4) | 0.052 (3) | 0.010 (3) | 0.013 (2) | −0.009 (3) |
C1' | 0.033 (3) | 0.064 (4) | 0.052 (3) | 0.010 (3) | 0.013 (2) | −0.009 (3) |
N2 | 0.036 (3) | 0.060 (4) | 0.044 (3) | −0.003 (3) | 0.011 (2) | −0.001 (3) |
C2' | 0.036 (3) | 0.060 (4) | 0.044 (3) | −0.003 (3) | 0.011 (2) | −0.001 (3) |
N3 | 0.041 (3) | 0.041 (3) | 0.038 (2) | 0.000 (2) | 0.013 (2) | 0.000 (2) |
N4 | 0.040 (3) | 0.058 (4) | 0.042 (2) | 0.010 (3) | 0.015 (2) | −0.002 (2) |
N5 | 0.039 (3) | 0.041 (3) | 0.036 (2) | 0.003 (2) | 0.011 (2) | 0.000 (2) |
N6 | 0.047 (3) | 0.044 (3) | 0.041 (2) | −0.006 (2) | 0.020 (2) | −0.004 (2) |
C27 | 0.084 (8) | 0.078 (8) | 0.118 (9) | −0.019 (6) | 0.008 (6) | −0.006 (7) |
C28 | 0.100 (10) | 0.134 (17) | 0.119 (13) | −0.017 (9) | 0.058 (9) | −0.018 (11) |
O1 | 0.205 (14) | 0.190 (14) | 0.35 (2) | 0.042 (11) | 0.002 (13) | −0.103 (14) |
C27' | 0.084 (8) | 0.078 (8) | 0.118 (9) | −0.019 (6) | 0.008 (6) | −0.006 (7) |
C28' | 0.100 (10) | 0.134 (17) | 0.119 (13) | −0.017 (9) | 0.058 (9) | −0.018 (11) |
O1' | 0.205 (14) | 0.190 (14) | 0.35 (2) | 0.042 (11) | 0.002 (13) | −0.103 (14) |
Cu1—C1 | 1.910 (6) | C15—C16 | 1.393 (8) |
Cu1—N1' | 1.910 (6) | C15—H15 | 0.9300 |
Cu1—N2 | 1.944 (6) | C16—C17 | 1.357 (9) |
Cu1—C2' | 1.944 (6) | C16—H16 | 0.9300 |
Cu1—N4 | 2.108 (5) | C17—C18 | 1.389 (9) |
Cu1—N3 | 2.142 (4) | C17—H17 | 0.9300 |
Cu2—N2'i | 1.909 (6) | C18—C26 | 1.409 (7) |
Cu2—C2i | 1.909 (6) | C18—C19 | 1.427 (9) |
Cu2—N1 | 1.921 (5) | C19—C20 | 1.336 (10) |
Cu2—C1' | 1.921 (5) | C19—H19 | 0.9300 |
Cu2—N6 | 2.126 (5) | C20—C21 | 1.435 (9) |
Cu2—N5 | 2.130 (4) | C20—H20 | 0.9300 |
C1—N1 | 1.167 (7) | C21—C22 | 1.387 (10) |
C2—N2 | 1.154 (6) | C21—C25 | 1.395 (8) |
C2—Cu2ii | 1.909 (6) | C22—C23 | 1.335 (10) |
C3—N3 | 1.322 (7) | C22—H22 | 0.9300 |
C3—C4 | 1.395 (9) | C23—C24 | 1.380 (10) |
C3—H3 | 0.9300 | C23—H23 | 0.9300 |
C4—C5 | 1.348 (9) | C24—N6 | 1.332 (8) |
C4—H4 | 0.9300 | C24—H24 | 0.9300 |
C5—C6 | 1.405 (9) | C25—N6 | 1.365 (7) |
C5—H5 | 0.9300 | C25—C26 | 1.441 (8) |
C6—C14 | 1.395 (7) | C26—N5 | 1.358 (7) |
C6—C7 | 1.433 (9) | C27—C28 | 1.454 (9) |
C7—C8 | 1.337 (9) | C27—H27A | 0.9600 |
C7—H7 | 0.9300 | C27—H27B | 0.9600 |
C8—C9 | 1.416 (8) | C27—H27C | 0.9600 |
C8—H8 | 0.9300 | C28—O1 | 1.375 (9) |
C9—C10 | 1.387 (9) | C28—H28A | 0.9700 |
C9—C13 | 1.408 (8) | C28—H28B | 0.9700 |
C10—C11 | 1.356 (9) | O1—H1 | 0.8200 |
C10—H10 | 0.9300 | C27'—C28' | 1.503 (10) |
C11—C12 | 1.393 (10) | C27'—H27D | 0.9600 |
C11—H11 | 0.9300 | C27'—H27E | 0.9600 |
C12—N4 | 1.331 (8) | C27'—H27F | 0.9600 |
C12—H12 | 0.9300 | C28'—O1' | 1.415 (10) |
C13—N4 | 1.357 (7) | C28'—H28C | 0.9700 |
C13—C14 | 1.437 (8) | C28'—H28D | 0.9700 |
C14—N3 | 1.363 (7) | O1'—H1' | 0.8200 |
C15—N5 | 1.316 (7) | ||
C1—Cu1—N2 | 118.7 (2) | C20—C19—H19 | 119.4 |
C1—Cu1—N4 | 117.3 (2) | C18—C19—H19 | 119.4 |
N2—Cu1—N4 | 109.8 (2) | C19—C20—C21 | 121.8 (6) |
C1—Cu1—N3 | 110.49 (19) | C19—C20—H20 | 119.1 |
N2—Cu1—N3 | 115.55 (19) | C21—C20—H20 | 119.1 |
N4—Cu1—N3 | 78.53 (18) | C22—C21—C25 | 116.9 (6) |
C2i—Cu2—N1 | 122.6 (2) | C22—C21—C20 | 124.5 (7) |
C2i—Cu2—N6 | 114.1 (2) | C25—C21—C20 | 118.6 (6) |
N1—Cu2—N6 | 108.3 (2) | C23—C22—C21 | 121.0 (7) |
C2i—Cu2—N5 | 112.80 (19) | C23—C22—H22 | 119.5 |
N1—Cu2—N5 | 112.18 (19) | C21—C22—H22 | 119.5 |
N6—Cu2—N5 | 78.45 (18) | C22—C23—C24 | 118.9 (7) |
N1—C1—Cu1 | 175.2 (5) | C22—C23—H23 | 120.5 |
N2—C2—Cu2ii | 178.6 (5) | C24—C23—H23 | 120.5 |
N3—C3—C4 | 123.5 (6) | N6—C24—C23 | 123.6 (7) |
N3—C3—H3 | 118.2 | N6—C24—H24 | 118.2 |
C4—C3—H3 | 118.2 | C23—C24—H24 | 118.2 |
C5—C4—C3 | 118.9 (6) | N6—C25—C21 | 122.8 (6) |
C5—C4—H4 | 120.6 | N6—C25—C26 | 117.0 (5) |
C3—C4—H4 | 120.6 | C21—C25—C26 | 120.2 (5) |
C4—C5—C6 | 120.2 (6) | N5—C26—C18 | 123.2 (6) |
C4—C5—H5 | 119.9 | N5—C26—C25 | 117.7 (5) |
C6—C5—H5 | 119.9 | C18—C26—C25 | 119.1 (5) |
C14—C6—C5 | 117.1 (6) | C1—N1—Cu2 | 176.2 (5) |
C14—C6—C7 | 119.0 (6) | C2—N2—Cu1 | 173.2 (5) |
C5—C6—C7 | 123.9 (6) | C3—N3—C14 | 117.4 (5) |
C8—C7—C6 | 121.4 (6) | C3—N3—Cu1 | 130.2 (4) |
C8—C7—H7 | 119.3 | C14—N3—Cu1 | 112.3 (4) |
C6—C7—H7 | 119.3 | C12—N4—C13 | 117.3 (6) |
C7—C8—C9 | 121.3 (6) | C12—N4—Cu1 | 128.5 (4) |
C7—C8—H8 | 119.4 | C13—N4—Cu1 | 114.1 (4) |
C9—C8—H8 | 119.4 | C15—N5—C26 | 117.3 (5) |
C10—C9—C13 | 117.4 (6) | C15—N5—Cu2 | 129.6 (4) |
C10—C9—C8 | 123.6 (6) | C26—N5—Cu2 | 113.1 (4) |
C13—C9—C8 | 119.1 (6) | C24—N6—C25 | 116.6 (5) |
C11—C10—C9 | 119.3 (7) | C24—N6—Cu2 | 130.0 (4) |
C11—C10—H10 | 120.4 | C25—N6—Cu2 | 113.4 (4) |
C9—C10—H10 | 120.4 | C28—C27—H27A | 109.5 |
C10—C11—C12 | 120.4 (7) | C28—C27—H27B | 109.5 |
C10—C11—H11 | 119.8 | H27A—C27—H27B | 109.5 |
C12—C11—H11 | 119.8 | C28—C27—H27C | 109.5 |
N4—C12—C11 | 122.3 (6) | H27A—C27—H27C | 109.5 |
N4—C12—H12 | 118.8 | H27B—C27—H27C | 109.5 |
C11—C12—H12 | 118.8 | O1—C28—C27 | 114.6 (13) |
N4—C13—C9 | 123.3 (6) | O1—C28—H28A | 108.6 |
N4—C13—C14 | 117.0 (5) | C27—C28—H28A | 108.6 |
C9—C13—C14 | 119.7 (5) | O1—C28—H28B | 108.6 |
N3—C14—C6 | 122.8 (6) | C27—C28—H28B | 108.6 |
N3—C14—C13 | 117.8 (5) | H28A—C28—H28B | 107.6 |
C6—C14—C13 | 119.3 (5) | C28—O1—H1 | 109.5 |
N5—C15—C16 | 123.3 (6) | C28'—C27'—H27D | 109.5 |
N5—C15—H15 | 118.3 | C28'—C27'—H27E | 109.5 |
C16—C15—H15 | 118.3 | H27D—C27'—H27E | 109.5 |
C17—C16—C15 | 119.4 (6) | C28'—C27'—H27F | 109.5 |
C17—C16—H16 | 120.3 | H27D—C27'—H27F | 109.5 |
C15—C16—H16 | 120.3 | H27E—C27'—H27F | 109.5 |
C16—C17—C18 | 119.9 (6) | O1'—C28'—C27' | 111.5 (16) |
C16—C17—H17 | 120.0 | O1'—C28'—H28C | 109.3 |
C18—C17—H17 | 120.0 | C27'—C28'—H28C | 109.3 |
C17—C18—C26 | 116.9 (6) | O1'—C28'—H28D | 109.3 |
C17—C18—C19 | 123.9 (6) | C27'—C28'—H28D | 109.3 |
C26—C18—C19 | 119.2 (6) | H28C—C28'—H28D | 108.0 |
C20—C19—C18 | 121.1 (6) | C28'—O1'—H1' | 109.5 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(CN)(C12H10N2)]·0.5C2H6O |
Mr | 292.8 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 18.4896 (6), 8.4033 (3), 16.5166 (5) |
β (°) | 109.974 (2) |
V (Å3) | 2411.88 (14) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.80 |
Crystal size (mm) | 0.25 × 0.23 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.662, 0.726 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21068, 4729, 2624 |
Rint | 0.090 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.159, 1.02 |
No. of reflections | 4729 |
No. of parameters | 344 |
No. of restraints | 65 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.53 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—C1 | 1.910 (6) | Cu2—C2i | 1.909 (6) |
Cu1—C2' | 1.944 (6) | Cu2—C1' | 1.921 (5) |
Cu1—N4 | 2.108 (5) | Cu2—N6 | 2.126 (5) |
Cu1—N3 | 2.142 (4) | Cu2—N5 | 2.130 (4) |
Symmetry code: (i) x, −y+3/2, z+1/2. |
Acknowledgements
The authors acknowledge Zhongshan Polytechnic for supporting this work.
References
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (1999). Inorg. Chem. 38, 5484–5489. Web of Science CSD CrossRef PubMed CAS Google Scholar
Deng, H., Qiu, Y. C., Daiguebonne, C., Kerbellec, N., Guillou, O., Zeller, M. & Batten, S. R. (2008). Inorg. Chem. 47, 5866–5872. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dyason, J. S., Healy, P. C., Engelhardt, L. M., Pakawatchai, L. M., Patrick, V. A. & White, A. H. (1985). J. Chem. Soc. Dalton Trans pp. 839–844. Google Scholar
Holmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc. 121, 5593–5594. Web of Science CrossRef CAS Google Scholar
Huang, X. C., Zheng, S. L., Zhang, J. P. & Chen, X. M. (2004). Eur. J. Inorg. Chem. pp. 1024–1029. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, Q.-H., Wang, Q.-H. & Fang, R.-B. (2004). Transition Met. Chem. 29, 144–148. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal coordination polymer based on cyanide group have raised intense interest due to their structural diversity and their potential applications in magnetic materials (Holmes & Girolami, 1999; Deng et al., 2008). Up to date, a large number of one-, two-, and three-dimensional coordination polymers have been prepared by the choice of metal-cyanide bridging centers and versatile secondary ligands such as 1,10-phenanthroline and 2,2-pyridine (Dyason et al., 1985; Chesnut et al., 1999; Zhao et al., 2004; Huang et al., 2004). Herein, we obtained one copper coordination polymer of [Cu(C12H10N2)(CN).C2H6O]n under hydrothermal condition, and its structure was reported.
As depicted in Fig. 1, each Cui ion is four-coordianted by two N atoms from one 1,10-phenanthroline (phen) ligand and two cyano ligands. The Cu-phen subunits are in turn interconnected by /m2-cyano ligands to form a 1D zigzag chain. These chains are further assembled by /p···/p stacking contacts between adjacent phen rings and extend to form a three-dimensional supramolecular network (Fig. 2). The interplanar distance between them is ca. 3.60 Å (symmetry operator for the 1,10-phenanthroline ligand: 1-x, 1-y, 2-z). The lattice ethanol molecule is independently disordered over two parts of 0.829 (7): 0.171 (7). (see refinement section for details).