organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­biguanidinium hydrogen succinate methanol monosolvate

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic, bDepartment of Spectroscopy, J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic, and cDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
*Correspondence e-mail: irena.mat@atlas.cz

(Received 4 November 2010; accepted 8 November 2010; online 17 November 2010)

In the crystal of the title compound, C8H12N5+·C4H5O4·CH3OH, the hydrogen succinate anions form infinite [010] chains via short, almost symmetrical, O⋯H⋯O hydrogen bonds. The 2-phenyl­biguanidium cations inter­connect these chains into layers lying parallel to the bc plane by way of N—H⋯O links. These planes only weakly inter­act in the direction of the a axis via C—H⋯π contacts between offset phenyl rings, leaving as much as 17% of the unit-cell volume accessible for the solvent. However, the methanol solvent mol­ecules could not be resolved due to extensive disorder and their assumed presence was removed from the overall scattering by the PLATON SQUEEZE procedure.

Related literature

Biguanides forms stable complexes, see: Marchi et al. (1999[Marchi, A., Marvelli, L., Cattabriga, M., Rossi, R., Neves, M., Bertolasi, V. & Ferretti, V. (1999). J. Chem. Soc. Dalton Trans. pp. 1937-1943.]); Ray (1961[Ray, P. (1961). Chem. Rev. 61, 313-359.]); Anderson et al. (1995[Anderson, K. B., Franich, R. A., Kroese, H. W. & Meder, R. (1995). Polyhedron, 14, 1149-1153.]) and also have applications in medicine, see: Sirtori & Pasik (1994[Sirtori, C. R. & Pasik, C. (1994). Pharmacol. Res. 30, 187-228.]); Clement & Girreser (1999[Clement, B. & Girreser, U. (1999). Magn. Reson. Chem. 37, 662-666.]); Thompson et al. (1999[Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2571.]); Ross et al. (2004[Ross, S. A., Gulve, E. A. & Wang, M. (2004). Chem. Rev. 104, 1255-1282.]); Woo et al. (1999[Woo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). J. Inorg. Biochem. 76, 251-257.]); Watkins et al. (1987[Watkins, W. M., Chulay, J. D., Sixsmith, D. G., Spencer, H. C. & Howells, R. E. (1987). J. Pharm. Pharmacol. 39, 261-265.]); Morain et al. (1994[Morain, P., Abraham, C., Portevin, B. & De Nanteuil, G. (1994). Mol. Pharmacol. 46, 732-742.]); Shapiro et al. (1959a[Shapiro, S. L., Parrino, V. A. & Freedman, L. (1959a). J. Am. Chem. Soc. 81, 2220-2225.],b[Shapiro, S. L., Parrino, V. A., Rogow, E. & Freedman, L. (1959b). J. Am. Chem. Soc. 81, 3725-3728.]). Ionic crystal structures containing biguanide cations are formed by relatively strong hydrogen bonds, see: Martin et al. (1996[Martin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966-970.]); Martin & Pinkerton (1996[Martin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048-1052.]); Pinkerton et al. (1978[Pinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton. Trans. pp. 989-996.]); Matulková et al. (2008[Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 886, 103-120.], 2010[Matulková, I., Němec, I., Císařová, I., Němec, P. & Vaněk, P. (2010). J. Mol. Struct. 966, 23-32.]). For the SQUEEZE method used to solve the structure, see: van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N5+·C4H5O4·CH4O

  • Mr = 327.35

  • Monoclinic, P 21 /c

  • a = 10.3280 (3) Å

  • b = 6.4590 (1) Å

  • c = 24.6770 (6) Å

  • β = 94.0480 (13)°

  • V = 1642.06 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.45 × 0.4 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 18123 measured reflections

  • 3568 independent reflections

  • 2613 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.174

  • S = 1.07

  • 3568 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroidof the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.93 2.18 3.021 (2) 149
N1—H1⋯O4i 0.93 2.64 3.5217 (17) 158
N2—H2A⋯O3i 0.87 2.09 2.8855 (17) 152
N2—H2B⋯O4ii 0.92 2.14 3.0248 (19) 162
N4—H4A⋯O1iii 0.93 2.13 3.0273 (18) 161
N4—H4B⋯O2iv 0.96 1.90 2.8605 (16) 180
N5—H5B⋯O1iv 0.90 2.15 3.0440 (17) 170
O2—H2⋯O4ii 1.20 1.25 2.4500 (16) 173
C6—H6⋯Cg1v 0.93 3.10 3.676 (2) 122
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) -x, -y, -z+2; (iv) -x, -y-1, -z+2; [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; software used to prepare material for publication: SHELXL97[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

Biguanides are strong σ- and π-donating ligands, which form stable complexes (Marchi et al., 1999; Ray, 1961) with transition metal ions in high or unusual oxidation states. Biguanide complexes of boron have also been investigated as potential compounds for wood conservation (Anderson et al., 1995).

Another application of biguanides lies in the field of medicine (Sirtori & Pasik, 1994; Clement & Girreser, 1999). N-dimethylbiguanide and N-phenylethylbiguanide are used for the treatment of diabetes mellitus (Thompson et al., 1999; Ross et al., 2004; Woo et al., 1999), therapeutic treatment of pain, anxiety, memory disorders (Morain et al., 1994). Biguanide and its derivatives are also produced as antimalarial drugs (Watkins et al., 1987) and drugs with hypoglycaemic activity (Marchi et al., 1999; Sirtori & Pasik, 1994; Shapiro et al., 1959a,b).

We have prepared and discussed N-phenylbiguanide compounds within our project of searching for new materials with nonlinear optical properties (Matulková et al., 2010; Matulková et al., 2008), where N-phenylbiguanidinium(1+) cations can act as an polarizable compound with delocalized π-electron. The molecular conformation of title compound, (I), is illustrated in Fig. 1.

The hydrogen-bonding geometries in title compound are listed in list of hydrogen bonds and illustrated in Fig. 2. A number of intra- and intermolecular hydrogen bonds stabilize the molecular conformation. The crystal structure is built up chains (along the axis b) of hydrogen succinate anions with the shared hydrogen atoms with occupancy 0.5 (hydrogen bond O2 - H2···O4 with D···A distances of 2.451 (2) Å). These chains are interconnected by 2-phenylbiguanidium cations to form a three-dimensional network. A residue electron density of disordered molecules of methanol was found on the diferential Fourier map and the crystal structure was solved by a SQUEEZE method (van der Sluis & Spek, 1990). Free cavities of maximum on the Fourier map are indicated by blue spheres and are located in the 30% of crystal structure. The cavities can be filled by spheres of two types with the radii 2.247 Å and 2.076 Å (see Fig. 3). The unit cell contains two spheres of each size.

Related literature top

Biguanides forms stable complexes, see: Marchi et al. (1999); Ray (1961); Anderson et al. (1995) and also have applications in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson et al. (1999); Ross et al. (2004); Woo et al. (1999); Watkins et al. (1987); Morain et al. (1994); Shapiro et al. (1959a,b). Ionic crystal structures containing biguanide cations are formed by relatively strong hydrogen bonds, see: Martin et al. (1996); Martin & Pinkerton (1996); Pinkerton et al. (1978); Matulková et al. (2008, 2010). For the SQUEEZE method used to solve the structure, see: van der Sluis & Spek (1990).

Experimental top

The crystals of the title compound, were obtained from solution of 0.2 g of N-phenylbiguanide (98%, Aldrich) and 0.14 g of succinic acid (p.a., Lachema) in 10 ml of water. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in vacuum desiccator over KOH. The melting point ranges 410–412 K.

The infrared spectra were recorded at room temperature using DRIFTS and the nujol or fluorolube mull techniques on a Nicolet Magna 760 FTIR spectrometer with 2 cm-1 resolution (4 cm-1 resolution in FAR IR region) and Happ-Genzel apodization in the 85–4000 cm-1 region.

FTIR spectrum (cm-1): 3451 m; 3350 m; 3296 m; 3184 m; 2938 w; 2725 mb; 2660 mb; 2550 mb; 1712 m; 1674 m; 1640 vs; 1605 m; 1583 m; 1538 vs; 1497 s; 1455 m; 1429 m; 1419 m; 1334 w; 1310 w; 1294 w; 1256 m; 1198 m; 1176 m; 1074 w; 1054 wb; 1031 w; 957 mb; 842 w; 818 w; 804 w; 772 w; 747 m; 722 w; 698 m; 638 m; 579 m; 549 mb; 528 sh; 498 vw; 485 vw; 446 w; 414 vw; 367 wb; 261 mb; 221 w; 179 w; 143 w.

The Raman spectra of polycrystalline samples were recorded at room temperature on a Nicolet Magna 760 FTIR spectrometer equipped with the Nicolet Nexus FT Raman module (2 cm-1 resolution, Happ–Genzel apodization, 1064 nm Nd:YVO4 laser excitation, 450 mW power at the sample) in the 100–3700 cm-1 region.

FT Raman spectrum (cm-1): 3452 vw; 3335 vwb; 3200 vw; 3079 sh; 3066 m; 2966 m; 2953 m; 2918 m; 1668 w; 1639 w; 1604 vs; 1591 m; 1563 m; 1546 m; 1499 m; 1450 w; 1437 w; 1428 w; 1418 m; 1408 m; 1379 vw; 1341 vw; 1327 vw; 1295 s; 1255 s; 1178 m; 1156 m; 1095 w; 1079 w; 1054 w; 1030 m; 1002 vs; 952 w; 937 w; 923 m; 909 vw; 844 m; 767 w; 748 w; 722 w; 681 w; 633 w; 615 m; 572 vw; 538 w; 502 w; 488 w; 414 wb; 387 w; 374 w; 340 w; 283 w; 265 m; 220 m; 188 m; 141 vs; 124 m.

Refinement top

H atoms attached to C and N atoms were calculated in geometrically idealized positions, with Csp3 - H = 0.97 Å and Csp2 - H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(C). The positions of H atoms attached to O and N atoms were localized in difference Fourier maps, and refined isotropically.

Structure description top

Biguanides are strong σ- and π-donating ligands, which form stable complexes (Marchi et al., 1999; Ray, 1961) with transition metal ions in high or unusual oxidation states. Biguanide complexes of boron have also been investigated as potential compounds for wood conservation (Anderson et al., 1995).

Another application of biguanides lies in the field of medicine (Sirtori & Pasik, 1994; Clement & Girreser, 1999). N-dimethylbiguanide and N-phenylethylbiguanide are used for the treatment of diabetes mellitus (Thompson et al., 1999; Ross et al., 2004; Woo et al., 1999), therapeutic treatment of pain, anxiety, memory disorders (Morain et al., 1994). Biguanide and its derivatives are also produced as antimalarial drugs (Watkins et al., 1987) and drugs with hypoglycaemic activity (Marchi et al., 1999; Sirtori & Pasik, 1994; Shapiro et al., 1959a,b).

We have prepared and discussed N-phenylbiguanide compounds within our project of searching for new materials with nonlinear optical properties (Matulková et al., 2010; Matulková et al., 2008), where N-phenylbiguanidinium(1+) cations can act as an polarizable compound with delocalized π-electron. The molecular conformation of title compound, (I), is illustrated in Fig. 1.

The hydrogen-bonding geometries in title compound are listed in list of hydrogen bonds and illustrated in Fig. 2. A number of intra- and intermolecular hydrogen bonds stabilize the molecular conformation. The crystal structure is built up chains (along the axis b) of hydrogen succinate anions with the shared hydrogen atoms with occupancy 0.5 (hydrogen bond O2 - H2···O4 with D···A distances of 2.451 (2) Å). These chains are interconnected by 2-phenylbiguanidium cations to form a three-dimensional network. A residue electron density of disordered molecules of methanol was found on the diferential Fourier map and the crystal structure was solved by a SQUEEZE method (van der Sluis & Spek, 1990). Free cavities of maximum on the Fourier map are indicated by blue spheres and are located in the 30% of crystal structure. The cavities can be filled by spheres of two types with the radii 2.247 Å and 2.076 Å (see Fig. 3). The unit cell contains two spheres of each size.

Biguanides forms stable complexes, see: Marchi et al. (1999); Ray (1961); Anderson et al. (1995) and also have applications in medicine, see: Sirtori & Pasik (1994); Clement & Girreser (1999); Thompson et al. (1999); Ross et al. (2004); Woo et al. (1999); Watkins et al. (1987); Morain et al. (1994); Shapiro et al. (1959a,b). Ionic crystal structures containing biguanide cations are formed by relatively strong hydrogen bonds, see: Martin et al. (1996); Martin & Pinkerton (1996); Pinkerton et al. (1978); Matulková et al. (2008, 2010). For the SQUEEZE method used to solve the structure, see: van der Sluis & Spek (1990).

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing formation of cation layers along [010].
[Figure 3] Fig. 3. Part of the crystal structure of (I) with blue sphere filling the cavity.
[Figure 4] Fig. 4. FTIR (compiled from nujol and fluorolube mulls) and FT Raman spectra of (I).
2-Phenylbiguanidinium hydrogen succinate methanol monosolvate top
Crystal data top
C8H12N5+·C4H5O4·CH4OF(000) = 696
Mr = 327.35Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3693 reflections
a = 10.3280 (3) Åθ = 1–27.1°
b = 6.4590 (1) ŵ = 0.10 mm1
c = 24.6770 (6) ÅT = 293 K
β = 94.0480 (13)°Plate, colourless
V = 1642.06 (7) Å30.45 × 0.4 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2613 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Horizontally mounted graphite crystal monochromatorθmax = 27.1°, θmin = 1.7°
Detector resolution: 9.091 pixels mm-1h = 1313
ω and π scans to fill the Ewald spherek = 88
18123 measured reflectionsl = 3131
3568 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.1087P)2 + 0.1338P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3568 reflectionsΔρmax = 0.25 e Å3
191 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.055 (7)
Crystal data top
C8H12N5+·C4H5O4·CH4OV = 1642.06 (7) Å3
Mr = 327.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3280 (3) ŵ = 0.10 mm1
b = 6.4590 (1) ÅT = 293 K
c = 24.6770 (6) Å0.45 × 0.4 × 0.18 mm
β = 94.0480 (13)°
Data collection top
Nonius KappaCCD
diffractometer
2613 reflections with I > 2σ(I)
18123 measured reflectionsRint = 0.030
3568 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3568 reflectionsΔρmin = 0.23 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20697 (15)0.1226 (2)0.77926 (5)0.0515 (4)
H10.17570.14680.74350.062*
N20.07708 (16)0.3948 (2)0.79668 (5)0.0570 (4)
H2A0.05990.41060.76200.068*
H2B0.02800.46300.82080.068*
N30.18707 (15)0.2116 (2)0.86872 (5)0.0514 (4)
N40.16449 (16)0.2862 (2)0.95713 (5)0.0537 (4)
H4A0.15240.14530.96250.064*
H4B0.16380.37850.98740.064*
N50.18754 (16)0.5585 (2)0.90047 (5)0.0575 (4)
H5A0.20050.60750.87020.069*
H5B0.19090.64670.92880.069*
C10.15804 (17)0.2481 (2)0.81647 (6)0.0464 (4)
C20.17836 (16)0.3547 (2)0.90737 (6)0.0448 (4)
O10.16551 (14)0.15632 (17)1.00242 (4)0.0577 (4)
O20.16362 (15)0.43722 (16)0.95237 (5)0.0616 (4)
H20.15230.49610.90680.074*
O30.10001 (17)0.1366 (2)0.81889 (5)0.0738 (5)
O40.13315 (14)0.42420 (17)0.86173 (4)0.0598 (4)
C30.29311 (18)0.0463 (2)0.78891 (6)0.0519 (4)
C40.3920 (2)0.0464 (3)0.82884 (8)0.0687 (6)
H40.40440.06630.85210.082*
C50.4738 (3)0.2177 (5)0.83414 (11)0.0929 (9)
H50.54070.21910.86140.112*
C60.4578 (3)0.3832 (4)0.80008 (14)0.0964 (10)
H60.51300.49670.80420.116*
C70.3612 (3)0.3805 (4)0.76041 (14)0.0911 (9)
H70.35080.49280.73690.109*
C80.2768 (2)0.2135 (3)0.75394 (9)0.0694 (6)
H80.21030.21390.72650.083*
C90.16134 (17)0.2385 (2)0.95785 (6)0.0464 (4)
C100.15527 (19)0.1185 (2)0.90552 (6)0.0488 (4)
H10A0.08300.17010.88640.059*
H10B0.23410.14470.88280.059*
C110.13977 (19)0.1122 (2)0.91303 (6)0.0462 (4)
H11A0.21550.16630.92930.055*
H11B0.06470.13870.93790.055*
C120.12325 (17)0.2254 (2)0.86057 (6)0.0462 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0785 (10)0.0498 (8)0.0273 (6)0.0067 (6)0.0109 (6)0.0028 (5)
N20.0825 (11)0.0601 (9)0.0291 (7)0.0165 (7)0.0088 (6)0.0007 (6)
N30.0828 (10)0.0438 (7)0.0288 (7)0.0077 (7)0.0109 (6)0.0018 (5)
N40.0905 (11)0.0458 (8)0.0258 (6)0.0013 (7)0.0104 (6)0.0035 (5)
N50.0926 (12)0.0439 (8)0.0368 (7)0.0057 (7)0.0099 (7)0.0031 (6)
C10.0672 (10)0.0430 (8)0.0302 (7)0.0002 (7)0.0121 (7)0.0014 (6)
C20.0593 (10)0.0457 (8)0.0300 (7)0.0025 (7)0.0065 (6)0.0021 (6)
O10.1019 (10)0.0397 (6)0.0324 (6)0.0008 (6)0.0104 (6)0.0029 (4)
O20.1145 (11)0.0315 (6)0.0402 (6)0.0014 (6)0.0168 (6)0.0058 (4)
O30.1439 (14)0.0514 (7)0.0279 (6)0.0011 (7)0.0179 (7)0.0000 (5)
O40.1054 (10)0.0345 (6)0.0410 (6)0.0023 (6)0.0155 (6)0.0084 (4)
C30.0733 (11)0.0461 (9)0.0391 (8)0.0031 (8)0.0240 (8)0.0013 (6)
C40.0815 (14)0.0792 (14)0.0468 (10)0.0154 (10)0.0140 (10)0.0015 (9)
C50.0854 (16)0.119 (2)0.0775 (16)0.0400 (15)0.0293 (13)0.0254 (15)
C60.105 (2)0.0770 (16)0.114 (2)0.0389 (14)0.0597 (19)0.0213 (15)
C70.110 (2)0.0545 (12)0.116 (2)0.0070 (12)0.0548 (19)0.0143 (13)
C80.0849 (14)0.0561 (11)0.0711 (13)0.0021 (9)0.0319 (11)0.0170 (9)
C90.0715 (11)0.0329 (7)0.0357 (8)0.0001 (7)0.0097 (7)0.0041 (6)
C100.0817 (12)0.0329 (8)0.0325 (7)0.0001 (7)0.0086 (7)0.0027 (5)
C110.0779 (11)0.0335 (7)0.0281 (7)0.0031 (7)0.0087 (7)0.0026 (5)
C120.0741 (11)0.0366 (8)0.0281 (7)0.0040 (7)0.0050 (7)0.0029 (5)
Geometric parameters (Å, º) top
N1—C11.3495 (19)C3—C41.368 (3)
N1—C31.417 (2)C3—C81.385 (2)
N1—H10.9313C4—C51.393 (3)
N2—C11.333 (2)C4—H40.9300
N2—H2A0.8679C5—C61.363 (4)
N2—H2B0.9206C5—H50.9300
N3—C11.3242 (19)C6—C71.348 (5)
N3—C21.3358 (19)C6—H60.9300
N4—C21.3223 (18)C7—C81.389 (4)
N4—H4A0.9291C7—H70.9300
N4—H4B0.9561C8—H80.9300
N5—C21.331 (2)C9—C101.511 (2)
N5—H5A0.8301C10—C111.509 (2)
N5—H5B0.9016C10—H10A0.9700
O1—C91.2245 (18)C10—H10B0.9700
O2—C91.2909 (19)C11—C121.5069 (19)
O2—H21.2016C11—H11A0.9700
O3—C121.2164 (18)C11—H11B0.9700
O4—C121.2884 (19)
C1—N1—C3127.49 (14)C4—C5—H5119.4
C1—N1—H1115.0C7—C6—C5119.3 (2)
C3—N1—H1117.4C7—C6—H6120.3
C1—N2—H2A121.6C5—C6—H6120.3
C1—N2—H2B117.6C6—C7—C8121.3 (2)
H2A—N2—H2B119.8C6—C7—H7119.4
C1—N3—C2123.36 (14)C8—C7—H7119.4
C2—N4—H4A119.0C3—C8—C7119.1 (2)
C2—N4—H4B121.6C3—C8—H8120.4
H4A—N4—H4B119.4C7—C8—H8120.4
C2—N5—H5A120.7O1—C9—O2121.57 (13)
C2—N5—H5B121.7O1—C9—C10123.48 (13)
H5A—N5—H5B117.2O2—C9—C10114.95 (13)
N3—C1—N2125.19 (14)C11—C10—C9114.32 (12)
N3—C1—N1119.06 (15)C11—C10—H10A108.7
N2—C1—N1115.64 (14)C9—C10—H10A108.7
N4—C2—N5117.58 (14)C11—C10—H10B108.7
N4—C2—N3116.65 (14)C9—C10—H10B108.7
N5—C2—N3125.71 (13)H10A—C10—H10B107.6
C9—O2—H2114.2C12—C11—C10113.04 (12)
C4—C3—C8119.99 (19)C12—C11—H11A109.0
C4—C3—N1123.32 (16)C10—C11—H11A109.0
C8—C3—N1116.63 (18)C12—C11—H11B109.0
C3—C4—C5119.0 (2)C10—C11—H11B109.0
C3—C4—H4120.5H11A—C11—H11B107.8
C5—C4—H4120.5O3—C12—O4120.62 (13)
C6—C5—C4121.2 (3)O3—C12—C11122.59 (14)
C6—C5—H5119.4O4—C12—C11116.78 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroidof the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.932.183.021 (2)149
N1—H1···O4i0.932.643.5217 (17)158
N2—H2A···O3i0.872.092.8855 (17)152
N2—H2B···O4ii0.922.143.0248 (19)162
N4—H4A···O1iii0.932.133.0273 (18)161
N4—H4B···O2iv0.961.902.8605 (16)180
N5—H5B···O1iv0.902.153.0440 (17)170
O2—H2···O4ii1.201.252.4500 (16)173
C6—H6···Cg1v0.933.103.676 (2)122
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y, z+2; (iv) x, y1, z+2; (v) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H12N5+·C4H5O4·CH4O
Mr327.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.3280 (3), 6.4590 (1), 24.6770 (6)
β (°) 94.0480 (13)
V3)1642.06 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.4 × 0.18
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18123, 3568, 2613
Rint0.030
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.174, 1.07
No. of reflections3568
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroidof the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.932.183.021 (2)149
N1—H1···O4i0.932.643.5217 (17)158
N2—H2A···O3i0.872.092.8855 (17)152
N2—H2B···O4ii0.922.143.0248 (19)162
N4—H4A···O1iii0.932.133.0273 (18)161
N4—H4B···O2iv0.961.902.8605 (16)180
N5—H5B···O1iv0.902.153.0440 (17)170
O2—H2···O4ii1.201.252.4500 (16)173
C6—H6···Cg1v0.933.103.676 (2)122
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y, z+2; (iv) x, y1, z+2; (v) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of the Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnderson, K. B., Franich, R. A., Kroese, H. W. & Meder, R. (1995). Polyhedron, 14, 1149–1153.  CSD CrossRef CAS Web of Science Google Scholar
First citationClement, B. & Girreser, U. (1999). Magn. Reson. Chem. 37, 662–666.  CrossRef CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMarchi, A., Marvelli, L., Cattabriga, M., Rossi, R., Neves, M., Bertolasi, V. & Ferretti, V. (1999). J. Chem. Soc. Dalton Trans. pp. 1937–1943.  Web of Science CSD CrossRef Google Scholar
First citationMartin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048–1052.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966–970.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 886, 103–120.  Google Scholar
First citationMatulková, I., Němec, I., Císařová, I., Němec, P. & Vaněk, P. (2010). J. Mol. Struct. 966, 23–32.  Google Scholar
First citationMorain, P., Abraham, C., Portevin, B. & De Nanteuil, G. (1994). Mol. Pharmacol. 46, 732–742.  CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton. Trans. pp. 989–996.  CSD CrossRef Web of Science Google Scholar
First citationRay, P. (1961). Chem. Rev. 61, 313–359.  CrossRef CAS Web of Science Google Scholar
First citationRoss, S. A., Gulve, E. A. & Wang, M. (2004). Chem. Rev. 104, 1255–1282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShapiro, S. L., Parrino, V. A. & Freedman, L. (1959a). J. Am. Chem. Soc. 81, 2220–2225.  CrossRef CAS Web of Science Google Scholar
First citationShapiro, S. L., Parrino, V. A., Rogow, E. & Freedman, L. (1959b). J. Am. Chem. Soc. 81, 3725–3728.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirtori, C. R. & Pasik, C. (1994). Pharmacol. Res. 30, 187–228.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkins, W. M., Chulay, J. D., Sixsmith, D. G., Spencer, H. C. & Howells, R. E. (1987). J. Pharm. Pharmacol. 39, 261–265.  CrossRef CAS PubMed Google Scholar
First citationWoo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). J. Inorg. Biochem. 76, 251–257.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds