organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,4-Di­chloro­benzyl­­idene)-4-hy­dr­oxy­benzohydrazide

aCollege of Chemistry and Biology Engineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: huanghongwei_ycu@126.com

(Received 4 November 2010; accepted 5 November 2010; online 13 November 2010)

The title hydrazone compound, C14H10Cl2N2O2, was synthesized by the reaction of 2,4-dichloro­benzaldehyde and 4-hy­droxy­benzohydrazide. The mol­ecule adopts an E geometry with respect to the azomethine group and the dihedral angle between the aromatic rings is 7.0 (2)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯Cl and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the structures and properties of hydrazones, see: Carvalho et al. (2010[Carvalho, S. A., Silva, E. F. da, Fraga, C. A. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2410-o2411.]); Liu (2010[Liu, H. (2010). Acta Cryst. E66, o1582.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907-o1908.]); Wang et al. (2010[Wang, P., Li, C. & Su, Y.-Q. (2010). Acta Cryst. E66, o542.]); Singh et al. (2009[Singh, A. K., Kumari, S., Kumar, K. R., Sridhar, B., Wrzecion, M., Mrozinski, J. & Rao, T. R. (2009). Polyhedron, 28, 2599-2604.]); Zhu et al. (2009[Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2009). Pol. J. Chem. 83, 1233-1240.]); Vijayakumar et al. (2009[Vijayakumar, S., Adhikari, A., Kalluraya, B. & Chandrasekharan, K. (2009). Opt. Mater. 31, 1564-1569.]); Tameem et al. (2010[Tameem, A. A., Saad, B., Makahleh, A., Salhin, A. & Saleh, M. I. (2010). Talanta, 82, 1385-1391.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2N2O2

  • Mr = 309.14

  • Monoclinic, P 21 /c

  • a = 7.6687 (11) Å

  • b = 11.9591 (17) Å

  • c = 15.043 (2) Å

  • β = 103.200 (2)°

  • V = 1343.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.940

  • 6784 measured reflections

  • 2838 independent reflections

  • 2385 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.05

  • 2838 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl2i 0.89 (1) 2.85 (1) 3.7228 (16) 167 (2)
O2—H2A⋯O1ii 0.82 1.97 2.7624 (19) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The hydrazone compounds bearing –CH=N—NH—C(O)- groups have been received much attention for their structures (Carvalho et al., 2010; Liu, 2010; Fun et al., 2008; Wang et al., 2010) and properties (Singh et al., 2009; Zhu et al., 2009; Vijayakumar et al., 2009; Tameem et al., 2010). In this paper, the title new hydrazone compound is reported.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts an E geometry with respect to the azomethine group. The dihedral angle between the two aromatic rings C1—C6 and C9—C14 is 7.0 (2)°. In the crystal structure, molecules are linked through intermolecular N–H···Cl and O–H···O hydrogen bonds to form a three-dimensional network (Table 1, Fig. 2).

Related literature top

For the structures and properties of hydrazones, see: Carvalho et al. (2010); Liu (2010); Fun et al. (2008); Wang et al. (2010); Singh et al. (2009); Zhu et al. (2009); Vijayakumar et al. (2009); Tameem et al. (2010).

Experimental top

Equimolar quantities (0.1 mmol each) of 2,4-dichlorobenzaldehyde and 4-hydroxybenzohydrazide were mixed and stirred in methanol for 30 min at reflux. After keeping the filtrate in air for a few days, colorless blocks of the title compound were formed.

Refinement top

H2 attached to N2 was located from a difference Fourier map, and refined with N–H distance restrained to 0.90 (1) Å, and with Uiso restrained to 0.08 Å2. The remaining H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å, O—H distance of 0.85 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

The hydrazone compounds bearing –CH=N—NH—C(O)- groups have been received much attention for their structures (Carvalho et al., 2010; Liu, 2010; Fun et al., 2008; Wang et al., 2010) and properties (Singh et al., 2009; Zhu et al., 2009; Vijayakumar et al., 2009; Tameem et al., 2010). In this paper, the title new hydrazone compound is reported.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts an E geometry with respect to the azomethine group. The dihedral angle between the two aromatic rings C1—C6 and C9—C14 is 7.0 (2)°. In the crystal structure, molecules are linked through intermolecular N–H···Cl and O–H···O hydrogen bonds to form a three-dimensional network (Table 1, Fig. 2).

For the structures and properties of hydrazones, see: Carvalho et al. (2010); Liu (2010); Fun et al. (2008); Wang et al. (2010); Singh et al. (2009); Zhu et al. (2009); Vijayakumar et al. (2009); Tameem et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with 30% ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are drawn as thin dashed lines.
N'-(2,4-Dichlorobenzylidene)-4-hydroxybenzohydrazide top
Crystal data top
C14H10Cl2N2O2F(000) = 632
Mr = 309.14Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3439 reflections
a = 7.6687 (11) Åθ = 2.2–28.1°
b = 11.9591 (17) ŵ = 0.49 mm1
c = 15.043 (2) ÅT = 298 K
β = 103.200 (2)°Block, colorless
V = 1343.2 (3) Å30.17 × 0.13 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2838 independent reflections
Radiation source: fine-focus sealed tube2385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.922, Tmax = 0.940k = 715
6784 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.4165P]
where P = (Fo2 + 2Fc2)/3
2838 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.58 e Å3
Crystal data top
C14H10Cl2N2O2V = 1343.2 (3) Å3
Mr = 309.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6687 (11) ŵ = 0.49 mm1
b = 11.9591 (17) ÅT = 298 K
c = 15.043 (2) Å0.17 × 0.13 × 0.13 mm
β = 103.200 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2838 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2385 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.940Rint = 0.019
6784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.37 e Å3
2838 reflectionsΔρmin = 0.58 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05089 (9)0.19236 (5)0.07396 (3)0.0590 (2)
Cl20.99147 (8)0.02938 (5)0.26115 (4)0.05604 (19)
N10.7367 (2)0.47578 (12)0.05039 (10)0.0350 (3)
N20.7130 (2)0.55434 (12)0.01223 (10)0.0363 (3)
O10.5166 (2)0.65200 (12)0.09421 (8)0.0476 (4)
O20.5103 (2)0.96168 (11)0.24525 (9)0.0472 (4)
H2A0.53290.93600.29710.071*
C10.8721 (2)0.30387 (14)0.07778 (12)0.0322 (4)
C20.9708 (2)0.20915 (15)0.04294 (12)0.0360 (4)
C31.0075 (2)0.12484 (15)0.09862 (12)0.0388 (4)
H31.07450.06280.07410.047*
C40.9423 (2)0.13500 (15)0.19144 (12)0.0372 (4)
C50.8419 (2)0.22625 (15)0.22950 (12)0.0385 (4)
H50.79840.23130.29240.046*
C60.8074 (2)0.30948 (15)0.17268 (12)0.0351 (4)
H60.73950.37090.19790.042*
C70.8350 (2)0.39312 (15)0.01809 (12)0.0365 (4)
H70.88400.38920.04440.044*
C80.5992 (2)0.64163 (14)0.01442 (11)0.0325 (4)
C90.5824 (2)0.72236 (13)0.05731 (11)0.0307 (4)
C100.6378 (2)0.70117 (15)0.15075 (12)0.0358 (4)
H100.69070.63290.17040.043*
C110.6154 (2)0.77948 (15)0.21432 (11)0.0375 (4)
H110.65300.76370.27630.045*
C120.5367 (2)0.88225 (14)0.18611 (11)0.0338 (4)
C130.4802 (3)0.90445 (15)0.09322 (12)0.0391 (4)
H130.42760.97290.07360.047*
C140.5020 (3)0.82533 (14)0.03025 (11)0.0370 (4)
H140.46230.84080.03170.044*
H20.767 (3)0.542 (2)0.0707 (8)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0820 (4)0.0559 (3)0.0333 (3)0.0123 (3)0.0010 (2)0.0002 (2)
Cl20.0620 (3)0.0532 (3)0.0521 (3)0.0072 (2)0.0113 (2)0.0228 (2)
N10.0433 (8)0.0303 (7)0.0336 (7)0.0054 (6)0.0135 (6)0.0062 (6)
N20.0461 (8)0.0315 (7)0.0307 (7)0.0008 (6)0.0074 (6)0.0064 (6)
O10.0696 (10)0.0455 (8)0.0266 (6)0.0091 (7)0.0087 (6)0.0004 (5)
O20.0715 (9)0.0374 (7)0.0341 (7)0.0030 (6)0.0149 (7)0.0066 (5)
C10.0344 (9)0.0301 (8)0.0339 (8)0.0059 (6)0.0117 (7)0.0039 (7)
C20.0391 (9)0.0356 (9)0.0327 (8)0.0034 (7)0.0071 (7)0.0019 (7)
C30.0398 (10)0.0332 (9)0.0426 (10)0.0007 (7)0.0077 (8)0.0033 (7)
C40.0367 (9)0.0364 (9)0.0406 (9)0.0051 (7)0.0132 (7)0.0114 (7)
C50.0429 (10)0.0425 (10)0.0308 (8)0.0025 (8)0.0098 (7)0.0034 (7)
C60.0377 (9)0.0326 (9)0.0360 (9)0.0027 (7)0.0106 (7)0.0006 (7)
C70.0433 (10)0.0348 (9)0.0321 (8)0.0041 (7)0.0097 (7)0.0045 (7)
C80.0410 (9)0.0302 (8)0.0279 (8)0.0062 (7)0.0111 (7)0.0000 (6)
C90.0356 (9)0.0285 (8)0.0291 (8)0.0048 (6)0.0098 (6)0.0003 (6)
C100.0418 (10)0.0357 (9)0.0299 (8)0.0070 (7)0.0082 (7)0.0037 (7)
C110.0443 (10)0.0422 (10)0.0251 (8)0.0050 (8)0.0060 (7)0.0015 (7)
C120.0416 (9)0.0304 (8)0.0314 (8)0.0062 (7)0.0124 (7)0.0032 (7)
C130.0576 (11)0.0261 (8)0.0342 (9)0.0001 (8)0.0117 (8)0.0045 (7)
C140.0528 (11)0.0319 (9)0.0259 (8)0.0026 (7)0.0082 (7)0.0037 (6)
Geometric parameters (Å, º) top
Cl1—C21.7369 (18)C5—C61.377 (2)
Cl2—C41.7372 (18)C5—H50.9300
N1—C71.270 (2)C6—H60.9300
N1—N21.372 (2)C7—H70.9300
N2—C81.361 (2)C8—C91.475 (2)
N2—H20.894 (10)C9—C101.396 (2)
O1—C81.229 (2)C9—C141.396 (2)
O2—C121.348 (2)C10—C111.377 (2)
O2—H2A0.8200C10—H100.9300
C1—C21.396 (2)C11—C121.392 (2)
C1—C61.402 (2)C11—H110.9300
C1—C71.464 (2)C12—C131.391 (2)
C2—C31.380 (2)C13—C141.376 (2)
C3—C41.377 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.382 (3)
C7—N1—N2115.49 (14)N1—C7—H7119.5
C8—N2—N1119.98 (14)C1—C7—H7119.5
C8—N2—H2122.6 (18)O1—C8—N2121.20 (16)
N1—N2—H2117.1 (18)O1—C8—C9122.47 (16)
C12—O2—H2A109.5N2—C8—C9116.33 (14)
C2—C1—C6117.17 (16)C10—C9—C14117.80 (15)
C2—C1—C7121.73 (15)C10—C9—C8124.10 (15)
C6—C1—C7121.09 (16)C14—C9—C8118.08 (14)
C3—C2—C1122.21 (16)C11—C10—C9121.24 (16)
C3—C2—Cl1117.13 (14)C11—C10—H10119.4
C1—C2—Cl1120.66 (14)C9—C10—H10119.4
C4—C3—C2118.28 (17)C10—C11—C12120.19 (15)
C4—C3—H3120.9C10—C11—H11119.9
C2—C3—H3120.9C12—C11—H11119.9
C3—C4—C5121.92 (16)O2—C12—C13117.99 (16)
C3—C4—Cl2117.99 (14)O2—C12—C11122.74 (15)
C5—C4—Cl2120.08 (14)C13—C12—C11119.26 (16)
C6—C5—C4118.79 (16)C14—C13—C12120.10 (16)
C6—C5—H5120.6C14—C13—H13120.0
C4—C5—H5120.6C12—C13—H13120.0
C5—C6—C1121.61 (17)C13—C14—C9121.41 (15)
C5—C6—H6119.2C13—C14—H14119.3
C1—C6—H6119.2C9—C14—H14119.3
N1—C7—C1120.95 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl2i0.89 (1)2.85 (1)3.7228 (16)167 (2)
O2—H2A···O1ii0.821.972.7624 (19)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10Cl2N2O2
Mr309.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.6687 (11), 11.9591 (17), 15.043 (2)
β (°) 103.200 (2)
V3)1343.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.17 × 0.13 × 0.13
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
6784, 2838, 2385
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.05
No. of reflections2838
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.58

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl2i0.894 (10)2.847 (12)3.7228 (16)167 (2)
O2—H2A···O1ii0.821.972.7624 (19)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by Yichun University.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho, S. A., Silva, E. F. da, Fraga, C. A. M., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2410–o2411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, H. (2010). Acta Cryst. E66, o1582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K., Kumari, S., Kumar, K. R., Sridhar, B., Wrzecion, M., Mrozinski, J. & Rao, T. R. (2009). Polyhedron, 28, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar
First citationTameem, A. A., Saad, B., Makahleh, A., Salhin, A. & Saleh, M. I. (2010). Talanta, 82, 1385–1391.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVijayakumar, S., Adhikari, A., Kalluraya, B. & Chandrasekharan, K. (2009). Opt. Mater. 31, 1564–1569.  Web of Science CrossRef CAS Google Scholar
First citationWang, P., Li, C. & Su, Y.-Q. (2010). Acta Cryst. E66, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2009). Pol. J. Chem. 83, 1233–1240.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds