organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 5-acetamido-3-methyl­thio­phene-2,4-di­carboxyl­ate

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 November 2010; accepted 7 November 2010; online 13 November 2010)

The title compound, C13H17NO5S, is approximately planar (r.m.s. deviation for the non-H atoms = 0.055 Å). Its conformation is stabilized by N—H⋯O and C—H⋯O hydrogen bonds, which both generate S(6) rings. The crystal packing only features van der Waals contacts.

Related literature

For a related crystal structure and background, see: Mukhtar et al. (2010[Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010). Acta Cryst. E66, o2652.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int.Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO5S

  • Mr = 299.34

  • Monoclinic, P 21 /n

  • a = 15.933 (3) Å

  • b = 4.6028 (6) Å

  • c = 20.152 (3) Å

  • β = 106.005 (7)°

  • V = 1420.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.25 × 0.10 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 10222 measured reflections

  • 2518 independent reflections

  • 1311 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.172

  • S = 1.02

  • 2518 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.99 2.652 (5) 133
C10—H10B⋯O4 0.96 2.24 2.995 (6) 135

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the synthesis and crystal structure of (II) i.e., Ethyl 2-benzamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (Mukhtar et al., 2010). The title compound (I, Fig. 1) is being reported here in continuation to synthesize various thiophene derivatives.

The title compound essentially consists of monomers. In (I), the methylthiophene group A (C1—C4/S1/C10), acetamide group B (N1/C5/C6/O1), ethylester groups C (O2/C7/O3/C8/C9) and D (O4/C11/O5/C12/C13) are planar with r. m. s. deviation of 0.0049, 0.0033, 0.0224 and 0.0082 Å, respectively. The dihedral angle between A/B, A/C, A/D, B/C, B/D and C/D is 5.55 (29), 7.30 (32), 6.24 (25), 10.40 (36), 10.51 (29) and 12.08 (32)°, respectively. In the title compound two S(6) ring motifs (Bernstein et al., 1995) are formed due to intramolecular H-bondings of C—H···O and N—H···O types (Table 1, Fig. 1). There does not exist any appreciable π interaction.

Related literature top

For a related crystal structure and background, see: Mukhtar et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of (0.3 g, 1 mmol) diethyl 2-amino-4-methylthiophene- 3,5-dicarboxylate, dissolved in chloroform and 0.1 ml of acetyl chloride was heated at 330 K for 10 h. The solvent of resultant product was removed and the residue was recrystallized from ethanol to give orange needles of the title compound. m.p. 394 K; yield: 0.25 g; 85%.

Refinement top

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.96–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

We have reported the synthesis and crystal structure of (II) i.e., Ethyl 2-benzamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (Mukhtar et al., 2010). The title compound (I, Fig. 1) is being reported here in continuation to synthesize various thiophene derivatives.

The title compound essentially consists of monomers. In (I), the methylthiophene group A (C1—C4/S1/C10), acetamide group B (N1/C5/C6/O1), ethylester groups C (O2/C7/O3/C8/C9) and D (O4/C11/O5/C12/C13) are planar with r. m. s. deviation of 0.0049, 0.0033, 0.0224 and 0.0082 Å, respectively. The dihedral angle between A/B, A/C, A/D, B/C, B/D and C/D is 5.55 (29), 7.30 (32), 6.24 (25), 10.40 (36), 10.51 (29) and 12.08 (32)°, respectively. In the title compound two S(6) ring motifs (Bernstein et al., 1995) are formed due to intramolecular H-bondings of C—H···O and N—H···O types (Table 1, Fig. 1). There does not exist any appreciable π interaction.

For a related crystal structure and background, see: Mukhtar et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted lines represents the intramolecular H-bondings.
Diethyl 5-acetamido-3-methylthiophene-2,4-dicarboxylate top
Crystal data top
C13H17NO5SF(000) = 632
Mr = 299.34Dx = 1.400 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1311 reflections
a = 15.933 (3) Åθ = 2.1–25.1°
b = 4.6028 (6) ŵ = 0.25 mm1
c = 20.152 (3) ÅT = 296 K
β = 106.005 (7)°Needle, orange
V = 1420.6 (4) Å30.25 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2518 independent reflections
Radiation source: fine-focus sealed tube1311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
Detector resolution: 8.20 pixels mm-1θmax = 25.1°, θmin = 2.1°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 55
Tmin = 0.972, Tmax = 0.983l = 2024
10222 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.3244P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2518 reflectionsΔρmax = 0.25 e Å3
186 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C13H17NO5SV = 1420.6 (4) Å3
Mr = 299.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.933 (3) ŵ = 0.25 mm1
b = 4.6028 (6) ÅT = 296 K
c = 20.152 (3) Å0.25 × 0.10 × 0.08 mm
β = 106.005 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2518 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1311 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.094
10222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
2518 reflectionsΔρmin = 0.23 e Å3
186 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31949 (8)0.0384 (2)0.49921 (6)0.0506 (5)
O10.2674 (2)0.0997 (7)0.35864 (17)0.0745 (17)
O20.1065 (2)0.7124 (7)0.48056 (18)0.0619 (12)
O30.1245 (2)0.6438 (6)0.59347 (17)0.0568 (12)
O40.4142 (3)0.1121 (7)0.6963 (2)0.0805 (17)
O50.4407 (2)0.2748 (6)0.59982 (16)0.0583 (11)
N10.1981 (2)0.3879 (7)0.4170 (2)0.0505 (16)
C10.2371 (3)0.2886 (8)0.4826 (3)0.0431 (16)
C20.2152 (3)0.3811 (9)0.5411 (2)0.0441 (17)
C30.2680 (3)0.2433 (9)0.6015 (2)0.0448 (16)
C40.3277 (3)0.0560 (9)0.5869 (2)0.0470 (17)
C50.2156 (3)0.2958 (10)0.3575 (3)0.058 (2)
C60.1661 (3)0.4472 (11)0.2930 (3)0.072 (2)
C70.1450 (3)0.5918 (9)0.5342 (3)0.0504 (19)
C80.0519 (3)0.8434 (10)0.5883 (3)0.0568 (19)
C90.0353 (4)0.8550 (11)0.6579 (3)0.081 (2)
C100.2625 (3)0.2958 (10)0.6742 (2)0.0622 (19)
C110.3963 (3)0.1159 (10)0.6338 (3)0.0559 (19)
C120.5140 (3)0.4391 (10)0.6418 (3)0.067 (2)
C130.5539 (3)0.6035 (10)0.5932 (3)0.0692 (19)
H10.159020.520600.412850.0604*
H6A0.186420.381220.254960.1074*
H6B0.174960.653040.298520.1074*
H6C0.104960.404580.284010.1074*
H8A0.000310.775090.553960.0687*
H8B0.066551.035160.574950.0687*
H9A0.085480.934270.690890.1219*
H9B0.024300.662370.671770.1219*
H9C0.014570.975650.655610.1219*
H10A0.274470.496560.686030.0934*
H10B0.304620.176220.705760.0934*
H10C0.204970.248020.677130.0934*
H12A0.494280.573460.671460.0802*
H12B0.556700.309050.670640.0802*
H13A0.573240.468350.564190.1038*
H13B0.511080.731560.565000.1038*
H13C0.602770.714980.619360.1038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0497 (8)0.0563 (7)0.0508 (9)0.0004 (6)0.0222 (6)0.0001 (6)
O10.081 (3)0.088 (3)0.057 (3)0.026 (2)0.023 (2)0.0013 (19)
O20.063 (2)0.076 (2)0.052 (2)0.0152 (18)0.025 (2)0.0064 (18)
O30.056 (2)0.068 (2)0.054 (2)0.0086 (16)0.0279 (18)0.0036 (16)
O40.095 (3)0.094 (3)0.050 (3)0.029 (2)0.016 (2)0.005 (2)
O50.055 (2)0.0638 (19)0.057 (2)0.0108 (16)0.0172 (18)0.0064 (16)
N10.054 (3)0.059 (2)0.044 (3)0.0083 (18)0.023 (2)0.003 (2)
C10.041 (3)0.047 (2)0.046 (3)0.005 (2)0.020 (2)0.002 (2)
C20.042 (3)0.049 (3)0.045 (3)0.004 (2)0.018 (2)0.005 (2)
C30.041 (3)0.050 (2)0.047 (3)0.009 (2)0.018 (3)0.000 (2)
C40.046 (3)0.054 (3)0.046 (3)0.006 (2)0.021 (2)0.002 (2)
C50.061 (4)0.067 (3)0.052 (4)0.007 (3)0.025 (3)0.001 (3)
C60.078 (4)0.094 (4)0.050 (4)0.005 (3)0.029 (3)0.005 (3)
C70.051 (3)0.051 (3)0.056 (4)0.012 (2)0.026 (3)0.004 (3)
C80.046 (3)0.065 (3)0.063 (4)0.009 (2)0.021 (3)0.002 (3)
C90.075 (4)0.114 (4)0.070 (4)0.016 (3)0.046 (3)0.001 (3)
C100.065 (4)0.078 (3)0.047 (3)0.005 (3)0.021 (3)0.000 (3)
C110.053 (3)0.057 (3)0.058 (4)0.002 (2)0.016 (3)0.000 (3)
C120.058 (4)0.070 (3)0.068 (4)0.010 (3)0.010 (3)0.010 (3)
C130.054 (3)0.076 (3)0.083 (4)0.016 (3)0.028 (3)0.008 (3)
Geometric parameters (Å, º) top
S1—C11.709 (5)C8—C91.498 (8)
S1—C41.738 (4)C12—C131.510 (7)
O1—C51.219 (6)C6—H6A0.9600
O2—C71.220 (6)C6—H6B0.9600
O3—C71.344 (6)C6—H6C0.9600
O3—C81.458 (6)C8—H8A0.9700
O4—C111.212 (7)C8—H8B0.9700
O5—C111.331 (6)C9—H9A0.9600
O5—C121.452 (6)C9—H9B0.9600
N1—C11.375 (7)C9—H9C0.9600
N1—C51.371 (7)C10—H10A0.9600
N1—H10.8600C10—H10B0.9600
C1—C21.386 (7)C10—H10C0.9600
C2—C31.424 (6)C12—H12A0.9700
C2—C71.458 (7)C12—H12B0.9700
C3—C101.511 (6)C13—H13A0.9600
C3—C41.374 (6)C13—H13B0.9600
C4—C111.464 (7)C13—H13C0.9600
C5—C61.494 (8)
C1—S1—C490.4 (3)H6A—C6—H6B109.00
C7—O3—C8115.5 (4)H6A—C6—H6C109.00
C11—O5—C12116.3 (4)H6B—C6—H6C109.00
C1—N1—C5126.3 (4)O3—C8—H8A110.00
C1—N1—H1117.00O3—C8—H8B110.00
C5—N1—H1117.00C9—C8—H8A110.00
S1—C1—N1122.1 (4)C9—C8—H8B110.00
N1—C1—C2124.3 (4)H8A—C8—H8B109.00
S1—C1—C2113.6 (4)C8—C9—H9A109.00
C1—C2—C7119.3 (4)C8—C9—H9B109.00
C1—C2—C3111.3 (4)C8—C9—H9C109.00
C3—C2—C7129.4 (4)H9A—C9—H9B109.00
C2—C3—C10125.4 (4)H9A—C9—H9C109.00
C2—C3—C4112.2 (4)H9B—C9—H9C109.00
C4—C3—C10122.4 (4)C3—C10—H10A110.00
C3—C4—C11129.7 (4)C3—C10—H10B109.00
S1—C4—C11117.7 (4)C3—C10—H10C110.00
S1—C4—C3112.6 (3)H10A—C10—H10B109.00
O1—C5—N1120.8 (5)H10A—C10—H10C109.00
O1—C5—C6123.7 (5)H10B—C10—H10C109.00
N1—C5—C6115.5 (4)O5—C12—H12A110.00
O2—C7—O3121.4 (4)O5—C12—H12B110.00
O3—C7—C2113.7 (4)C13—C12—H12A110.00
O2—C7—C2124.9 (5)C13—C12—H12B110.00
O3—C8—C9107.3 (4)H12A—C12—H12B108.00
O4—C11—O5122.4 (5)C12—C13—H13A109.00
O4—C11—C4125.6 (5)C12—C13—H13B110.00
O5—C11—C4111.9 (4)C12—C13—H13C110.00
O5—C12—C13107.3 (4)H13A—C13—H13B109.00
C5—C6—H6A110.00H13A—C13—H13C109.00
C5—C6—H6B110.00H13B—C13—H13C109.00
C5—C6—H6C109.00
C4—S1—C1—N1178.4 (4)N1—C1—C2—C71.7 (7)
C4—S1—C1—C20.8 (4)C1—C2—C3—C40.6 (6)
C1—S1—C4—C31.1 (4)C1—C2—C3—C10179.3 (4)
C1—S1—C4—C11177.0 (4)C7—C2—C3—C4179.9 (5)
C8—O3—C7—O22.2 (6)C7—C2—C3—C101.4 (8)
C8—O3—C7—C2177.3 (4)C1—C2—C7—O25.3 (7)
C7—O3—C8—C9175.9 (4)C1—C2—C7—O3174.1 (4)
C12—O5—C11—O41.7 (7)C3—C2—C7—O2175.3 (5)
C12—O5—C11—C4176.1 (4)C3—C2—C7—O35.2 (7)
C11—O5—C12—C13179.5 (4)C2—C3—C4—S11.1 (5)
C5—N1—C1—S13.2 (6)C2—C3—C4—C11176.7 (5)
C5—N1—C1—C2177.7 (4)C10—C3—C4—S1179.9 (3)
C1—N1—C5—O13.2 (7)C10—C3—C4—C112.1 (8)
C1—N1—C5—C6177.9 (4)S1—C4—C11—O4174.8 (4)
S1—C1—C2—C30.3 (5)S1—C4—C11—O52.9 (5)
S1—C1—C2—C7179.2 (3)C3—C4—C11—O42.9 (8)
N1—C1—C2—C3178.9 (4)C3—C4—C11—O5179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.992.652 (5)133
C10—H10B···O40.962.242.995 (6)135

Experimental details

Crystal data
Chemical formulaC13H17NO5S
Mr299.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.933 (3), 4.6028 (6), 20.152 (3)
β (°) 106.005 (7)
V3)1420.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.10 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10222, 2518, 1311
Rint0.094
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.172, 1.02
No. of reflections2518
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.992.652 (5)133
C10—H10B···O40.962.242.995 (6)135
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr. Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int.Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010). Acta Cryst. E66, o2652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds