metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodido(2,3,5,6-tetrapyridin-2-yl­pyrazine-κ3N2,N1,N6)zinc(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: myousefi50@yahoo.com

(Received 11 November 2010; accepted 12 November 2010; online 20 November 2010)

In the title compound, [ZnI2(C24H16N6)], the ZnII ion is five-coordinated in a distorted trigonal-bipyramidal geometry by an N,N,N-tridentate 2,3,5,6-tetra-2-pyridinylpyrazine ligand and two iodide ions. The I ions both occupy equatorial sites. Within the ligand, the dihedral angles between the central pyrazine ring and the two chelating pyridine (py) rings are 14.74 (17) and 26.72 (18)°. The equivalent angles for the non-coordinating py rings are 28.63 (16) and 42.19 (17)°. There is no aromatic ππ stacking in the crystal.

Related literature

For the synthesis of the ligand, see: Goodwin & Lyons (1959[Goodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc. 81, 6415-6422.]). For the structure of the free ligand, see: Bock et al. (1992[Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299-301.]); Greaves & Stoeckli-Evans (1992[Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269-2271.]). For related structures, see: Ahmadi et al. (2010[Ahmadi, R., Kalateh, K. & Amani, V. (2010). Acta Cryst. E66, m959-m960.]); Alizadeh et al. (2009[Alizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439-m1440.]); Carranza et al. (2004[Carranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997-4005.]); Graf et al. (1993[Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239-246.], 1997[Graf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta, 257, 89-97.]); Hadadzadeh et al. (2006[Hadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002-m2004.]); Laine et al. (1995[Laine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156-5165.]); Morsali & Ramazani (2005[Morsali, A. & Ramazani, A. (2005). Z. Anorg. Allg. Chem. 631, 1759-1760.]); Sakai & Kurashima (2003[Sakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411-m413.]); Seyed Sadjadi et al. (2008[Seyed Sadjadi, M., Ebadi, A., Zare, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1050-m1051.]); Yamada et al. (2000[Yamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843-1844.]); Zhang et al. (2005[Zhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760-m1761.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C24H16N6)]

  • Mr = 707.60

  • Triclinic, [P \overline 1]

  • a = 10.659 (2) Å

  • b = 10.770 (2) Å

  • c = 12.277 (3) Å

  • α = 64.31 (3)°

  • β = 82.41 (3)°

  • γ = 77.71 (3)°

  • V = 1239.7 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.50 mm−1

  • T = 120 K

  • 0.49 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.240, Tmax = 0.352

  • 14023 measured reflections

  • 6625 independent reflections

  • 6259 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.11

  • 6625 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 2.47 e Å−3

  • Δρmin = −2.65 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.207 (3)
Zn1—N3 2.137 (2)
Zn1—N5 2.184 (3)
Zn1—I2 2.5691 (8)
Zn1—I1 2.5888 (10)
N3—Zn1—N5 74.10 (10)
N3—Zn1—N1 73.73 (10)
N5—Zn1—N1 147.80 (9)
N3—Zn1—I2 125.51 (7)
N5—Zn1—I2 102.61 (8)
N1—Zn1—I2 97.18 (8)
N3—Zn1—I1 119.54 (8)
N5—Zn1—I1 96.46 (8)
N1—Zn1—I1 97.92 (8)
I2—Zn1—I1 114.90 (3)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Goodwin & Lyons (1959) were reported the synthesis of 2,3,5,6-tetra-2-pyridinyl-pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) were determined the structure of tppz by single-crystal X-ray diffraction methods. tppz is a good bis-tridentate bridging ligand, and numerous complexes with tppz have been prepared, such as that of ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yadama et al., 2000), cadmium (Seyed Sadjadi et al., 2008) and Lead (Morsali & Ramazani, 2005). For further investigation of 2,3,5,6-tetra-2-pyridinyl-pyrazine, we synthesis the title complex, and report herein in crystal structure.

In the title compound, (Fig. 1), the ZnII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by three N atoms from one 2,3,5,6-tetra-2-pyridinyl-pyrazine and two terminal I. The Zn—N and Zn—I bond lengths and angles (Table 1) are within normal range of [ZnCl2(tppz)], (Graf et al., 1993), [ZnBr2(tppz)], (Ahmadi et al., 2010) and [ZnI2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

Related literature top

For the synthesis of the ligand, see: Goodwin & Lyons (1959). For the structure of the free ligand, see: Bock et al. (1992); Greaves & Stoeckli-Evans (1992). For related structures, see: Ahmadi et al. (2010); Alizadeh et al. (2009); Carranza et al. (2004); Graf et al. (1993, 1997); Hadadzadeh et al. (2006); Laine et al. (1995); Morsali & Ramazani (2005); Sakai & Kurashima (2003); Seyed Sadjadi et al. (2008); Yamada et al. (2000); Zhang et al. (2005).

Experimental top

For the preparation of the title compound, a solution of 2,3,5,6-tetra-2-pyridinyl-pyrazine (0.60 g, 1.5 mmol) in HCCl3 (25 ml) was added to a solution of ZnI2 (0.48 g, 1.50 mmol) in methanol (25 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Yellow blocks were isolated after one week (yield; 0.81 g, 76.3%).

Refinement top

All H atoms were positioned geometrically, with C—H=0.93Å for aromatics H and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq.

Structure description top

Goodwin & Lyons (1959) were reported the synthesis of 2,3,5,6-tetra-2-pyridinyl-pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) were determined the structure of tppz by single-crystal X-ray diffraction methods. tppz is a good bis-tridentate bridging ligand, and numerous complexes with tppz have been prepared, such as that of ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yadama et al., 2000), cadmium (Seyed Sadjadi et al., 2008) and Lead (Morsali & Ramazani, 2005). For further investigation of 2,3,5,6-tetra-2-pyridinyl-pyrazine, we synthesis the title complex, and report herein in crystal structure.

In the title compound, (Fig. 1), the ZnII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by three N atoms from one 2,3,5,6-tetra-2-pyridinyl-pyrazine and two terminal I. The Zn—N and Zn—I bond lengths and angles (Table 1) are within normal range of [ZnCl2(tppz)], (Graf et al., 1993), [ZnBr2(tppz)], (Ahmadi et al., 2010) and [ZnI2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

For the synthesis of the ligand, see: Goodwin & Lyons (1959). For the structure of the free ligand, see: Bock et al. (1992); Greaves & Stoeckli-Evans (1992). For related structures, see: Ahmadi et al. (2010); Alizadeh et al. (2009); Carranza et al. (2004); Graf et al. (1993, 1997); Hadadzadeh et al. (2006); Laine et al. (1995); Morsali & Ramazani (2005); Sakai & Kurashima (2003); Seyed Sadjadi et al. (2008); Yamada et al. (2000); Zhang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The unit-cell of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The unit-cell packing diagram for the title molecule.
Diiodido(2,3,5,6-tetrapyridin-2-ylpyrazine- κ3N2,N1,N6)zinc(II) top
Crystal data top
[ZnI2(C24H16N6)]Z = 2
Mr = 707.60F(000) = 676
Triclinic, P1Dx = 1.895 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.659 (2) ÅCell parameters from 14023 reflections
b = 10.770 (2) Åθ = 2.2–29.2°
c = 12.277 (3) ŵ = 3.50 mm1
α = 64.31 (3)°T = 120 K
β = 82.41 (3)°Block, yellow
γ = 77.71 (3)°0.49 × 0.35 × 0.30 mm
V = 1239.7 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
6625 independent reflections
Radiation source: fine-focus sealed tube6259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1414
Tmin = 0.240, Tmax = 0.352k = 1413
14023 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0526P)2 + 2.2743P]
where P = (Fo2 + 2Fc2)/3
6625 reflections(Δ/σ)max = 0.018
298 parametersΔρmax = 2.47 e Å3
0 restraintsΔρmin = 2.65 e Å3
Crystal data top
[ZnI2(C24H16N6)]γ = 77.71 (3)°
Mr = 707.60V = 1239.7 (6) Å3
Triclinic, P1Z = 2
a = 10.659 (2) ÅMo Kα radiation
b = 10.770 (2) ŵ = 3.50 mm1
c = 12.277 (3) ÅT = 120 K
α = 64.31 (3)°0.49 × 0.35 × 0.30 mm
β = 82.41 (3)°
Data collection top
Bruker SMART CCD
diffractometer
6625 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
6259 reflections with I > 2σ(I)
Tmin = 0.240, Tmax = 0.352Rint = 0.048
14023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.11Δρmax = 2.47 e Å3
6625 reflectionsΔρmin = 2.65 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3744 (3)0.1483 (4)0.0215 (3)0.0246 (6)
H10.45590.10990.05210.029*
C20.3592 (3)0.1816 (4)0.0992 (3)0.0256 (6)
H20.42780.16270.14810.031*
C30.2382 (3)0.2439 (3)0.1441 (3)0.0207 (6)
H30.22490.26880.22490.025*
C40.1365 (3)0.2695 (3)0.0691 (3)0.0182 (5)
H40.05560.31450.09910.022*
C50.1587 (3)0.2263 (3)0.0522 (3)0.0147 (5)
C60.0586 (3)0.2431 (3)0.1435 (3)0.0141 (5)
C70.0751 (3)0.2860 (3)0.1297 (3)0.0154 (5)
C80.1455 (3)0.2681 (3)0.0417 (3)0.0168 (5)
C90.2477 (3)0.3674 (4)0.0189 (4)0.0291 (7)
H90.27440.44900.00730.035*
C100.3089 (4)0.3413 (5)0.0977 (4)0.0403 (10)
H100.37750.40580.14080.048*
C110.2661 (4)0.2169 (5)0.1112 (4)0.0355 (9)
H110.30560.19700.16350.043*
C120.1640 (3)0.1237 (4)0.0453 (3)0.0231 (6)
H120.13630.04030.05390.028*
C130.2711 (3)0.0708 (4)0.5572 (3)0.0222 (6)
H130.35980.04210.55540.027*
C140.2053 (3)0.0432 (4)0.6687 (3)0.0243 (6)
H140.24930.00190.74000.029*
C150.0730 (3)0.0842 (4)0.6715 (3)0.0231 (6)
H150.02670.06500.74500.028*
C160.0100 (3)0.1546 (3)0.5628 (3)0.0193 (5)
H160.07860.18350.56240.023*
C170.0834 (3)0.1805 (3)0.4550 (3)0.0152 (5)
C180.0266 (3)0.2466 (3)0.3346 (3)0.0143 (5)
C190.0955 (3)0.3294 (3)0.3007 (3)0.0150 (5)
C200.1726 (3)0.4133 (3)0.3629 (3)0.0146 (5)
C210.3050 (3)0.4520 (3)0.3513 (3)0.0161 (5)
H210.34720.42110.30850.019*
C220.3724 (3)0.5377 (3)0.4050 (3)0.0180 (5)
H220.46070.56720.39720.022*
C230.3068 (3)0.5785 (3)0.4703 (3)0.0200 (6)
H230.35040.63450.50840.024*
C240.1741 (3)0.5343 (3)0.4782 (3)0.0216 (6)
H240.13050.56110.52300.026*
N10.2767 (2)0.1693 (3)0.0955 (2)0.0184 (5)
N20.1032 (2)0.1480 (3)0.0301 (2)0.0172 (5)
N30.1029 (2)0.2183 (3)0.2492 (2)0.0140 (4)
N40.1457 (2)0.3385 (3)0.2030 (2)0.0158 (4)
N50.2114 (2)0.1371 (3)0.4525 (2)0.0172 (5)
N60.1068 (2)0.4546 (3)0.4237 (3)0.0187 (5)
Zn10.30085 (3)0.13103 (3)0.28390 (3)0.01425 (8)
I10.373663 (19)0.137621 (19)0.369751 (17)0.01892 (7)
I20.48284 (2)0.27145 (2)0.23922 (2)0.02865 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0166 (14)0.0320 (17)0.0233 (15)0.0029 (12)0.0006 (11)0.0136 (13)
C20.0217 (15)0.0316 (17)0.0224 (15)0.0029 (13)0.0067 (12)0.0133 (13)
C30.0238 (15)0.0206 (13)0.0167 (13)0.0053 (11)0.0002 (11)0.0065 (11)
C40.0173 (13)0.0208 (13)0.0147 (12)0.0013 (10)0.0012 (10)0.0066 (10)
C50.0115 (11)0.0157 (12)0.0170 (12)0.0004 (9)0.0001 (9)0.0079 (10)
C60.0125 (12)0.0164 (12)0.0153 (12)0.0006 (9)0.0029 (9)0.0092 (10)
C70.0121 (12)0.0170 (12)0.0189 (13)0.0017 (9)0.0045 (10)0.0101 (10)
C80.0129 (12)0.0209 (13)0.0177 (13)0.0024 (10)0.0052 (10)0.0103 (11)
C90.0224 (15)0.0323 (17)0.0384 (19)0.0111 (13)0.0165 (14)0.0231 (15)
C100.0318 (19)0.048 (2)0.051 (2)0.0170 (17)0.0308 (19)0.033 (2)
C110.038 (2)0.044 (2)0.037 (2)0.0005 (17)0.0191 (17)0.0266 (18)
C120.0244 (15)0.0249 (15)0.0244 (15)0.0054 (12)0.0013 (12)0.0141 (12)
C130.0166 (13)0.0302 (16)0.0211 (14)0.0069 (11)0.0084 (11)0.0148 (12)
C140.0257 (16)0.0253 (15)0.0206 (14)0.0048 (12)0.0095 (12)0.0101 (12)
C150.0252 (15)0.0259 (15)0.0160 (13)0.0011 (12)0.0007 (11)0.0092 (12)
C160.0150 (12)0.0229 (14)0.0200 (14)0.0003 (11)0.0001 (10)0.0106 (11)
C170.0128 (12)0.0173 (12)0.0177 (13)0.0024 (9)0.0031 (10)0.0107 (10)
C180.0104 (11)0.0168 (12)0.0183 (13)0.0003 (9)0.0016 (9)0.0104 (10)
C190.0101 (11)0.0186 (12)0.0190 (13)0.0018 (9)0.0027 (9)0.0119 (10)
C200.0116 (11)0.0167 (12)0.0155 (12)0.0025 (9)0.0028 (9)0.0082 (10)
C210.0095 (11)0.0190 (12)0.0196 (13)0.0000 (10)0.0021 (9)0.0088 (11)
C220.0103 (11)0.0191 (13)0.0224 (13)0.0003 (10)0.0021 (10)0.0085 (11)
C230.0206 (14)0.0201 (13)0.0210 (14)0.0005 (11)0.0016 (11)0.0127 (11)
C240.0174 (14)0.0262 (15)0.0272 (15)0.0033 (11)0.0054 (11)0.0186 (13)
N10.0124 (11)0.0227 (12)0.0179 (11)0.0028 (9)0.0029 (9)0.0087 (10)
N20.0171 (11)0.0189 (11)0.0179 (11)0.0017 (9)0.0026 (9)0.0100 (9)
N30.0077 (9)0.0180 (11)0.0169 (11)0.0026 (8)0.0019 (8)0.0098 (9)
N40.0119 (10)0.0169 (11)0.0208 (12)0.0015 (8)0.0042 (9)0.0108 (9)
N50.0136 (11)0.0214 (11)0.0179 (11)0.0033 (9)0.0045 (9)0.0113 (10)
N60.0127 (11)0.0233 (12)0.0245 (13)0.0018 (9)0.0044 (9)0.0154 (10)
Zn10.00936 (14)0.01684 (15)0.01719 (16)0.00192 (11)0.00304 (11)0.00892 (12)
I10.02016 (11)0.01584 (10)0.02007 (10)0.00168 (7)0.00295 (7)0.00848 (7)
I20.02559 (12)0.02774 (12)0.03527 (13)0.01186 (9)0.00476 (9)0.01144 (10)
Geometric parameters (Å, º) top
C1—N11.337 (4)C14—C151.385 (5)
C1—C21.389 (5)C14—H140.9300
C1—H10.9300C15—C161.396 (4)
C2—C31.384 (5)C15—H150.9300
C2—H20.9300C16—C171.393 (4)
C3—C41.389 (4)C16—H160.9300
C3—H30.9300C17—N51.346 (4)
C4—C51.391 (4)C17—C181.483 (4)
C4—H40.9300C18—N31.341 (4)
C5—N11.344 (4)C18—C191.411 (4)
C5—C61.485 (4)C19—N41.334 (4)
C6—N31.336 (4)C19—C201.481 (4)
C6—C71.410 (4)C20—N61.345 (4)
C7—N41.332 (4)C20—C211.391 (4)
C7—C81.492 (4)C21—C221.387 (4)
C8—N21.339 (4)C21—H210.9300
C8—C91.383 (4)C22—C231.382 (4)
C9—C101.386 (5)C22—H220.9300
C9—H90.9300C23—C241.395 (4)
C10—C111.394 (6)C23—H230.9300
C10—H100.9300C24—N61.344 (4)
C11—C121.382 (5)C24—H240.9300
C11—H110.9300Zn1—N12.207 (3)
C12—N21.337 (4)Zn1—N32.137 (2)
C12—H120.9300Zn1—N52.184 (3)
C13—N51.339 (4)Zn1—I22.5691 (8)
C13—C141.392 (5)Zn1—I12.5888 (10)
C13—H130.9300
N1—C1—C2122.7 (3)C15—C16—H16120.8
N1—C1—H1118.7N5—C17—C16122.3 (3)
C2—C1—H1118.7N5—C17—C18114.3 (3)
C3—C2—C1117.7 (3)C16—C17—C18123.2 (3)
C3—C2—H2121.1N3—C18—C19117.3 (3)
C1—C2—H2121.1N3—C18—C17113.7 (2)
C2—C3—C4120.2 (3)C19—C18—C17128.9 (3)
C2—C3—H3119.9N4—C19—C18118.9 (3)
C4—C3—H3119.9N4—C19—C20116.1 (2)
C3—C4—C5118.3 (3)C18—C19—C20124.9 (3)
C3—C4—H4120.8N6—C20—C21123.3 (3)
C5—C4—H4120.8N6—C20—C19116.3 (2)
N1—C5—C4121.6 (3)C21—C20—C19120.3 (3)
N1—C5—C6114.1 (3)C22—C21—C20118.4 (3)
C4—C5—C6124.3 (3)C22—C21—H21120.8
N3—C6—C7117.3 (3)C20—C21—H21120.8
N3—C6—C5115.1 (2)C23—C22—C21119.1 (3)
C7—C6—C5127.6 (3)C23—C22—H22120.4
N4—C7—C6119.4 (3)C21—C22—H22120.4
N4—C7—C8116.8 (2)C22—C23—C24118.9 (3)
C6—C7—C8123.7 (3)C22—C23—H23120.6
N2—C8—C9124.2 (3)C24—C23—H23120.6
N2—C8—C7114.2 (2)N6—C24—C23122.7 (3)
C9—C8—C7121.6 (3)N6—C24—H24118.6
C8—C9—C10117.7 (3)C23—C24—H24118.6
C8—C9—H9121.1C1—N1—C5119.3 (3)
C10—C9—H9121.1C1—N1—Zn1123.3 (2)
C9—C10—C11119.0 (3)C5—N1—Zn1117.2 (2)
C9—C10—H10120.5C12—N2—C8117.4 (3)
C11—C10—H10120.5C6—N3—C18122.0 (2)
C12—C11—C10118.8 (3)C6—N3—Zn1119.27 (19)
C12—C11—H11120.6C18—N3—Zn1118.77 (19)
C10—C11—H11120.6C7—N4—C19120.4 (2)
N2—C12—C11122.9 (3)C13—N5—C17118.9 (3)
N2—C12—H12118.5C13—N5—Zn1122.5 (2)
C11—C12—H12118.5C17—N5—Zn1116.77 (19)
N5—C13—C14122.4 (3)C24—N6—C20117.5 (3)
N5—C13—H13118.8N3—Zn1—N574.10 (10)
C14—C13—H13118.8N3—Zn1—N173.73 (10)
C15—C14—C13118.8 (3)N5—Zn1—N1147.80 (9)
C15—C14—H14120.6N3—Zn1—I2125.51 (7)
C13—C14—H14120.6N5—Zn1—I2102.61 (8)
C14—C15—C16119.3 (3)N1—Zn1—I297.18 (8)
C14—C15—H15120.4N3—Zn1—I1119.54 (8)
C16—C15—H15120.4N5—Zn1—I196.46 (8)
C17—C16—C15118.3 (3)N1—Zn1—I197.92 (8)
C17—C16—H16120.8I2—Zn1—I1114.90 (3)
N1—C1—C2—C32.6 (5)C6—C5—N1—Zn15.3 (3)
C1—C2—C3—C40.9 (5)C11—C12—N2—C80.6 (5)
C2—C3—C4—C52.4 (5)C9—C8—N2—C120.2 (5)
C3—C4—C5—N14.3 (5)C7—C8—N2—C12178.5 (3)
C3—C4—C5—C6178.3 (3)C7—C6—N3—C186.9 (4)
N1—C5—C6—N39.1 (4)C5—C6—N3—C18171.2 (3)
C4—C5—C6—N3168.5 (3)C7—C6—N3—Zn1173.1 (2)
N1—C5—C6—C7173.1 (3)C5—C6—N3—Zn18.8 (3)
C4—C5—C6—C79.3 (5)C19—C18—N3—C612.5 (4)
N3—C6—C7—N419.3 (4)C17—C18—N3—C6165.6 (3)
C5—C6—C7—N4158.5 (3)C19—C18—N3—Zn1167.5 (2)
N3—C6—C7—C8156.8 (3)C17—C18—N3—Zn114.4 (3)
C5—C6—C7—C825.5 (5)C6—C7—N4—C1911.1 (4)
N4—C7—C8—N2138.0 (3)C8—C7—N4—C19165.1 (3)
C6—C7—C8—N238.1 (4)C18—C19—N4—C78.9 (4)
N4—C7—C8—C940.4 (5)C20—C19—N4—C7168.9 (3)
C6—C7—C8—C9143.5 (3)C14—C13—N5—C171.0 (5)
N2—C8—C9—C100.8 (6)C14—C13—N5—Zn1162.8 (3)
C7—C8—C9—C10179.0 (4)C16—C17—N5—C132.4 (5)
C8—C9—C10—C110.6 (7)C18—C17—N5—C13177.3 (3)
C9—C10—C11—C120.1 (7)C16—C17—N5—Zn1162.4 (2)
C10—C11—C12—N20.7 (7)C18—C17—N5—Zn112.6 (3)
N5—C13—C14—C150.9 (5)C23—C24—N6—C202.2 (5)
C13—C14—C15—C161.5 (5)C21—C20—N6—C241.8 (5)
C14—C15—C16—C170.2 (5)C19—C20—N6—C24178.2 (3)
C15—C16—C17—N51.7 (5)C6—N3—Zn1—N5173.8 (2)
C15—C16—C17—C18176.2 (3)C18—N3—Zn1—N56.2 (2)
N5—C17—C18—N317.4 (4)C6—N3—Zn1—N14.6 (2)
C16—C17—C18—N3157.4 (3)C18—N3—Zn1—N1175.4 (2)
N5—C17—C18—C19164.7 (3)C6—N3—Zn1—I291.9 (2)
C16—C17—C18—C1920.4 (5)C18—N3—Zn1—I288.2 (2)
N3—C18—C19—N420.8 (4)C6—N3—Zn1—I185.4 (2)
C17—C18—C19—N4156.9 (3)C18—N3—Zn1—I194.6 (2)
N3—C18—C19—C20156.7 (3)C13—N5—Zn1—N3168.2 (3)
C17—C18—C19—C2025.5 (5)C17—N5—Zn1—N34.1 (2)
N4—C19—C20—N6152.2 (3)C13—N5—Zn1—N1165.4 (2)
C18—C19—C20—N625.4 (4)C17—N5—Zn1—N11.3 (3)
N4—C19—C20—C2124.3 (4)C13—N5—Zn1—I268.1 (3)
C18—C19—C20—C21158.1 (3)C17—N5—Zn1—I2127.8 (2)
N6—C20—C21—C220.1 (5)C13—N5—Zn1—I149.3 (3)
C19—C20—C21—C22176.1 (3)C17—N5—Zn1—I1114.8 (2)
C20—C21—C22—C231.6 (4)C1—N1—Zn1—N3175.7 (3)
C21—C22—C23—C241.2 (5)C5—N1—Zn1—N30.7 (2)
C22—C23—C24—N60.8 (5)C1—N1—Zn1—N5178.5 (2)
C2—C1—N1—C50.8 (5)C5—N1—Zn1—N53.6 (3)
C2—C1—N1—Zn1175.6 (3)C1—N1—Zn1—I250.7 (3)
C4—C5—N1—C12.7 (5)C5—N1—Zn1—I2124.2 (2)
C6—C5—N1—C1179.6 (3)C1—N1—Zn1—I165.8 (3)
C4—C5—N1—Zn1172.4 (2)C5—N1—Zn1—I1119.3 (2)

Experimental details

Crystal data
Chemical formula[ZnI2(C24H16N6)]
Mr707.60
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.659 (2), 10.770 (2), 12.277 (3)
α, β, γ (°)64.31 (3), 82.41 (3), 77.71 (3)
V3)1239.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.50
Crystal size (mm)0.49 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.240, 0.352
No. of measured, independent and
observed [I > 2σ(I)] reflections
14023, 6625, 6259
Rint0.048
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.11
No. of reflections6625
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.47, 2.65

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—N12.207 (3)Zn1—I22.5691 (8)
Zn1—N32.137 (2)Zn1—I12.5888 (10)
Zn1—N52.184 (3)
N3—Zn1—N574.10 (10)N1—Zn1—I297.18 (8)
N3—Zn1—N173.73 (10)N3—Zn1—I1119.54 (8)
N5—Zn1—N1147.80 (9)N5—Zn1—I196.46 (8)
N3—Zn1—I2125.51 (7)N1—Zn1—I197.92 (8)
N5—Zn1—I2102.61 (8)I2—Zn1—I1114.90 (3)
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Kalateh, K. & Amani, V. (2010). Acta Cryst. E66, m959–m960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439–m1440.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299–301.  CSD CrossRef Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationCarranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997–4005.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc. 81, 6415–6422.  CrossRef CAS Web of Science Google Scholar
First citationGraf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239–246.  CSD CrossRef CAS Web of Science Google Scholar
First citationGraf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta, 257, 89–97.  CSD CrossRef CAS Web of Science Google Scholar
First citationGreaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269–2271.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002–m2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLaine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156–5165.  CrossRef CAS Web of Science Google Scholar
First citationMorsali, A. & Ramazani, A. (2005). Z. Anorg. Allg. Chem. 631, 1759–1760.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411–m413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeyed Sadjadi, M., Ebadi, A., Zare, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1050–m1051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843–1844.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760–m1761.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds