organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-1-(4-chloro­phen­yl)-3-(5-nitro-2-fur­yl)propan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 November 2010; accepted 12 November 2010; online 20 November 2010)

In the title compound, C13H8Br2ClNO4, the linking –CHBr–CHBr– fragment is disordered over two orientations with refined site occupancies of 0.512 (11) and 0.488 (11). The dihedral angle between the furan ring and the phenyl ring is 21.86 (16)°. In the crystal, the mol­ecules are linked into [011] chains by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For applications of nitro­furan derivatives, see: Holla et al. (1986[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73-76.], 1987[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236-238.], 1992[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159-1164.]). For the synthesis, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Br2ClNO4

  • Mr = 437.47

  • Triclinic, [P \overline 1]

  • a = 8.4932 (11) Å

  • b = 9.4501 (12) Å

  • c = 10.5665 (14) Å

  • α = 92.731 (2)°

  • β = 107.000 (2)°

  • γ = 114.299 (2)°

  • V = 725.32 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.79 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.297, Tmax = 0.587

  • 13696 measured reflections

  • 3856 independent reflections

  • 3398 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.20

  • 3856 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9A—H9AA⋯O1i 0.98 2.26 3.199 (6) 160
C4—H4A⋯O3ii 0.93 2.46 3.184 (4) 135
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrofurans are class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in position-5 of the molecule conferred antibacterial activity (Holla et al., 1986). A large number of nitrofurans have attained commercial utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activity (Holla et al., 1987, 1992). The dibromopropanones were obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with nitrofural diacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones called chalcones (Rai et al., 2008).

The dibromopropanone of the title compound is disordered over two positions with refined site occupancies of 0.512 (11) and 0.488 (11) (Fig. 1). The furan ring and the phenyl ring make dihedral angle of 21.86 (16)°. In the crystal structure, the molecules are linked into chains approximately along the [0 1 1] by intermolecular C9A—H9AA···O1 and C4—H4A···O3 hydrogen bonds (Fig. 2, Table 1).

Related literature top

For applications of nitrofuran derivatives, see: Holla et al. (1986, 1987, 1992). For the synthesis, see: Rai et al. (2008). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

1-(4-Chlorophenyl)-3-(5-nitro-2-furyl)-2-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% w/v) was added to it with constant stirring till the yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanones which separated out were collected by filtration and washed with ethanol and dried. It was then recrystallized from glacial acetic acid. Colourless blocks were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.98 Å] and refined using a riding model [Uiso(H) = 1.2Ueq].

Structure description top

Nitrofurans are class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in position-5 of the molecule conferred antibacterial activity (Holla et al., 1986). A large number of nitrofurans have attained commercial utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activity (Holla et al., 1987, 1992). The dibromopropanones were obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with nitrofural diacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones called chalcones (Rai et al., 2008).

The dibromopropanone of the title compound is disordered over two positions with refined site occupancies of 0.512 (11) and 0.488 (11) (Fig. 1). The furan ring and the phenyl ring make dihedral angle of 21.86 (16)°. In the crystal structure, the molecules are linked into chains approximately along the [0 1 1] by intermolecular C9A—H9AA···O1 and C4—H4A···O3 hydrogen bonds (Fig. 2, Table 1).

For applications of nitrofuran derivatives, see: Holla et al. (1986, 1987, 1992). For the synthesis, see: Rai et al. (2008). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. Open bonds indicate the minor component.
[Figure 2] Fig. 2. The crystal packing of title compound, showing the molecules are linked into a chain approximately along [011]. Intermolecular hydrogen bonds are shown as dashed lines. Only major disorder component is shown.
2,3-Dibromo-1-(4-chlorophenyl)-3-(5-nitro-2-furyl)propan-1-one top
Crystal data top
C13H8Br2ClNO4Z = 2
Mr = 437.47F(000) = 424
Triclinic, P1Dx = 2.003 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4932 (11) ÅCell parameters from 6344 reflections
b = 9.4501 (12) Åθ = 2.8–30.1°
c = 10.5665 (14) ŵ = 5.79 mm1
α = 92.731 (2)°T = 100 K
β = 107.000 (2)°Block, colourless
γ = 114.299 (2)°0.28 × 0.18 × 0.10 mm
V = 725.32 (16) Å3
Data collection top
Bruker APEXII DUO CCD
diffractometer
3856 independent reflections
Radiation source: fine-focus sealed tube3398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 29.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.297, Tmax = 0.587k = 1212
13696 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.P)2 + 0.7632P]
where P = (Fo2 + 2Fc2)/3
3856 reflections(Δ/σ)max = 0.002
227 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C13H8Br2ClNO4γ = 114.299 (2)°
Mr = 437.47V = 725.32 (16) Å3
Triclinic, P1Z = 2
a = 8.4932 (11) ÅMo Kα radiation
b = 9.4501 (12) ŵ = 5.79 mm1
c = 10.5665 (14) ÅT = 100 K
α = 92.731 (2)°0.28 × 0.18 × 0.10 mm
β = 107.000 (2)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
3856 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3398 reflections with I > 2σ(I)
Tmin = 0.297, Tmax = 0.587Rint = 0.032
13696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.20Δρmax = 0.36 e Å3
3856 reflectionsΔρmin = 0.41 e Å3
227 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.6289 (7)0.5168 (5)0.7250 (5)0.0356 (5)0.512 (11)
Br2A0.3194 (8)0.1148 (6)0.9250 (8)0.0268 (7)0.512 (11)
Br1B0.3164 (8)0.1124 (6)0.9164 (8)0.0282 (9)0.488 (11)
Br2B0.5885 (6)0.5025 (6)0.7004 (5)0.0321 (5)0.488 (11)
Cl10.35654 (9)0.23719 (8)0.24802 (6)0.02977 (14)
O10.2656 (3)0.4225 (2)0.86289 (18)0.0295 (4)
O20.6347 (3)0.1530 (2)0.76863 (18)0.0345 (5)
O30.8567 (3)0.0787 (3)0.7618 (2)0.0470 (6)
O40.6542 (3)0.0476 (3)0.5983 (2)0.0393 (5)
N10.7574 (3)0.0148 (3)0.7148 (2)0.0300 (5)
C10.0395 (3)0.3544 (3)0.6339 (2)0.0249 (5)
H1A0.03530.40080.71510.030*
C20.1827 (3)0.3272 (3)0.5175 (2)0.0245 (5)
H2A0.27710.35200.52010.029*
C30.1840 (3)0.2625 (3)0.3966 (2)0.0239 (5)
C40.0475 (4)0.2207 (3)0.3908 (3)0.0331 (6)
H4A0.05070.17680.30890.040*
C50.0930 (4)0.2451 (4)0.5083 (3)0.0370 (7)
H5A0.18440.21610.50560.044*
C60.0998 (3)0.3129 (3)0.6312 (3)0.0282 (5)
C70.2512 (4)0.3473 (3)0.7606 (3)0.0350 (6)
C8A0.4124 (8)0.3173 (8)0.7467 (6)0.0243 (15)0.512 (11)
H8AA0.36860.22610.67530.029*0.512 (11)
C8B0.3687 (8)0.2509 (8)0.7864 (6)0.0206 (14)0.488 (11)
H8BA0.34500.18750.70080.025*0.488 (11)
C9A0.5118 (8)0.2949 (8)0.8801 (5)0.0231 (16)0.512 (11)
H9AA0.55740.39050.94730.028*0.512 (11)
C9B0.5707 (8)0.3651 (8)0.8459 (6)0.0217 (15)0.488 (11)
H9BA0.59340.42940.93060.026*0.488 (11)
C100.6760 (4)0.2677 (4)0.8747 (3)0.0405 (7)
C110.8308 (4)0.2911 (3)0.9747 (3)0.0291 (5)
H11A0.88630.36281.05610.035*
C120.8923 (3)0.1848 (3)0.9317 (3)0.0276 (5)
H12A0.99580.17240.97800.033*
C130.7676 (3)0.1059 (3)0.8086 (3)0.0255 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0434 (14)0.0312 (8)0.0500 (15)0.0229 (10)0.0299 (11)0.0179 (9)
Br2A0.0255 (13)0.0341 (15)0.0279 (8)0.0156 (11)0.0148 (8)0.0104 (8)
Br1B0.0261 (13)0.0214 (13)0.0353 (17)0.0091 (9)0.0099 (8)0.0066 (8)
Br2B0.0354 (11)0.0366 (8)0.0392 (11)0.0216 (9)0.0234 (8)0.0171 (7)
Cl10.0302 (3)0.0323 (3)0.0260 (3)0.0153 (3)0.0070 (2)0.0031 (2)
O10.0310 (9)0.0303 (10)0.0275 (9)0.0170 (8)0.0066 (8)0.0019 (7)
O20.0341 (10)0.0431 (11)0.0270 (9)0.0272 (9)0.0004 (8)0.0104 (8)
O30.0382 (12)0.0446 (13)0.0647 (15)0.0293 (11)0.0128 (11)0.0026 (11)
O40.0475 (12)0.0398 (12)0.0333 (11)0.0217 (10)0.0156 (10)0.0021 (9)
N10.0277 (11)0.0272 (11)0.0409 (13)0.0138 (9)0.0180 (10)0.0027 (10)
C10.0273 (12)0.0260 (12)0.0254 (12)0.0142 (10)0.0118 (10)0.0017 (10)
C20.0235 (12)0.0278 (13)0.0265 (12)0.0141 (10)0.0105 (10)0.0043 (10)
C30.0196 (11)0.0223 (12)0.0260 (12)0.0073 (9)0.0062 (9)0.0012 (9)
C40.0289 (13)0.0387 (15)0.0301 (13)0.0174 (12)0.0067 (11)0.0082 (11)
C50.0260 (13)0.0458 (17)0.0363 (14)0.0202 (13)0.0041 (11)0.0143 (13)
C60.0231 (12)0.0288 (13)0.0298 (13)0.0128 (10)0.0052 (10)0.0066 (10)
C70.0273 (13)0.0362 (15)0.0372 (14)0.0185 (12)0.0017 (11)0.0118 (12)
C8A0.026 (3)0.025 (3)0.023 (3)0.014 (2)0.008 (2)0.001 (2)
C8B0.028 (3)0.020 (3)0.017 (2)0.012 (2)0.009 (2)0.003 (2)
C9A0.022 (3)0.025 (3)0.023 (2)0.012 (2)0.007 (2)0.001 (2)
C9B0.024 (3)0.023 (3)0.025 (3)0.012 (2)0.015 (2)0.007 (2)
C100.0381 (16)0.0500 (18)0.0316 (14)0.0307 (15)0.0030 (12)0.0162 (13)
C110.0253 (12)0.0356 (14)0.0253 (12)0.0147 (11)0.0065 (10)0.0004 (10)
C120.0227 (12)0.0318 (14)0.0314 (13)0.0133 (11)0.0114 (10)0.0083 (11)
C130.0248 (12)0.0267 (12)0.0323 (13)0.0153 (10)0.0141 (10)0.0064 (10)
Geometric parameters (Å, º) top
Br1A—C8A2.102 (8)C5—C61.395 (3)
Br2A—C9A2.008 (9)C5—H5A0.9300
Br1B—C8B1.962 (11)C6—C71.488 (4)
Br2B—C9B2.059 (8)C7—C8A1.553 (5)
Cl1—C31.732 (3)C7—C8B1.586 (6)
O1—C71.211 (3)C8A—C9A1.492 (9)
O2—C131.343 (3)C8A—H8AA0.9800
O2—C101.377 (3)C8B—C9B1.511 (9)
O3—N11.235 (3)C8B—H8BA0.9800
O4—N11.220 (3)C9A—C101.534 (5)
N1—C131.433 (3)C9A—H9AA0.9800
C1—C21.377 (3)C9B—C101.511 (6)
C1—C61.398 (3)C9B—H9BA0.9800
C1—H1A0.9300C10—C111.349 (4)
C2—C31.385 (3)C11—C121.420 (3)
C2—H2A0.9300C11—H11A0.9300
C3—C41.385 (3)C12—C131.349 (4)
C4—C51.378 (4)C12—H12A0.9300
C4—H4A0.9300
C13—O2—C10104.5 (2)C9B—C8B—C7109.4 (5)
O4—N1—O3125.4 (2)C9B—C8B—Br1B106.2 (5)
O4—N1—C13119.5 (2)C7—C8B—Br1B112.8 (4)
O3—N1—C13115.2 (2)C9B—C8B—H8BA109.5
C2—C1—C6120.7 (2)C7—C8B—H8BA109.5
C2—C1—H1A119.6Br1B—C8B—H8BA109.5
C6—C1—H1A119.6C8A—C9A—C10110.9 (5)
C1—C2—C3119.0 (2)C8A—C9A—Br2A105.0 (5)
C1—C2—H2A120.5C10—C9A—Br2A114.6 (4)
C3—C2—H2A120.5C8A—C9A—H9AA108.7
C2—C3—C4121.5 (2)C10—C9A—H9AA108.7
C2—C3—Cl1119.61 (18)Br2A—C9A—H9AA108.7
C4—C3—Cl1118.85 (19)C10—C9B—C8B107.3 (5)
C5—C4—C3119.0 (2)C10—C9B—Br2B122.0 (4)
C5—C4—H4A120.5C8B—C9B—Br2B99.1 (4)
C3—C4—H4A120.5C10—C9B—H9BA109.2
C4—C5—C6120.7 (2)C8B—C9B—H9BA109.2
C4—C5—H5A119.7Br2B—C9B—H9BA109.2
C6—C5—H5A119.7C11—C10—O2110.9 (2)
C5—C6—C1119.0 (2)C11—C10—C9B131.8 (3)
C5—C6—C7123.3 (2)O2—C10—C9B115.6 (3)
C1—C6—C7117.7 (2)C11—C10—C9A130.1 (3)
O1—C7—C6122.1 (2)O2—C10—C9A114.4 (3)
O1—C7—C8A121.7 (3)C9B—C10—C9A31.3 (2)
C6—C7—C8A114.6 (3)C10—C11—C12106.6 (2)
O1—C7—C8B113.5 (3)C10—C11—H11A126.7
C6—C7—C8B122.3 (3)C12—C11—H11A126.7
C8A—C7—C8B29.3 (2)C13—C12—C11104.8 (2)
C9A—C8A—C7108.0 (5)C13—C12—H12A127.6
C9A—C8A—Br1A99.1 (4)C11—C12—H12A127.6
C7—C8A—Br1A114.4 (4)O2—C13—C12113.2 (2)
C9A—C8A—H8AA111.6O2—C13—N1116.0 (2)
C7—C8A—H8AA111.6C12—C13—N1130.8 (2)
Br1A—C8A—H8AA111.6
C6—C1—C2—C32.0 (4)C7—C8B—C9B—C10177.3 (3)
C1—C2—C3—C41.8 (4)Br1B—C8B—C9B—C1055.3 (5)
C1—C2—C3—Cl1176.6 (2)C7—C8B—C9B—Br2B54.9 (5)
C2—C3—C4—C50.4 (4)Br1B—C8B—C9B—Br2B176.9 (3)
Cl1—C3—C4—C5178.1 (2)C13—O2—C10—C111.0 (4)
C3—C4—C5—C60.9 (5)C13—O2—C10—C9B168.0 (4)
C4—C5—C6—C10.7 (5)C13—O2—C10—C9A157.4 (4)
C4—C5—C6—C7177.8 (3)C8B—C9B—C10—C11144.5 (5)
C2—C1—C6—C50.8 (4)Br2B—C9B—C10—C11102.5 (5)
C2—C1—C6—C7179.4 (3)C8B—C9B—C10—O251.9 (6)
C5—C6—C7—O1171.3 (3)Br2B—C9B—C10—O261.1 (6)
C1—C6—C7—O17.3 (5)C8B—C9B—C10—C9A43.5 (6)
C5—C6—C7—C8A5.8 (5)Br2B—C9B—C10—C9A156.5 (8)
C1—C6—C7—C8A172.8 (4)C8A—C9A—C10—C11156.7 (5)
C5—C6—C7—C8B26.5 (6)Br2A—C9A—C10—C1184.6 (5)
C1—C6—C7—C8B154.9 (4)C8A—C9A—C10—O250.1 (7)
O1—C7—C8A—C9A36.2 (7)Br2A—C9A—C10—O268.6 (5)
C6—C7—C8A—C9A158.2 (4)C8A—C9A—C10—C9B49.6 (6)
C8B—C7—C8A—C9A45.6 (6)Br2A—C9A—C10—C9B168.2 (7)
O1—C7—C8A—Br1A73.0 (6)O2—C10—C11—C120.5 (4)
C6—C7—C8A—Br1A92.5 (4)C9B—C10—C11—C12164.7 (5)
C8B—C7—C8A—Br1A154.8 (7)C9A—C10—C11—C12153.5 (5)
O1—C7—C8B—C9B63.8 (6)C10—C11—C12—C130.2 (3)
C6—C7—C8B—C9B132.7 (4)C10—O2—C13—C121.1 (3)
C8A—C7—C8B—C9B49.6 (6)C10—O2—C13—N1179.8 (3)
O1—C7—C8B—Br1B54.2 (5)C11—C12—C13—O20.9 (3)
C6—C7—C8B—Br1B109.4 (4)C11—C12—C13—N1179.3 (3)
C8A—C7—C8B—Br1B167.5 (7)O4—N1—C13—O213.2 (4)
C7—C8A—C9A—C10178.9 (4)O3—N1—C13—O2166.3 (2)
Br1A—C8A—C9A—C1059.4 (5)O4—N1—C13—C12165.2 (3)
C7—C8A—C9A—Br2A56.7 (5)O3—N1—C13—C1215.3 (4)
Br1A—C8A—C9A—Br2A176.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9AA···O1i0.982.263.199 (6)160
C4—H4A···O3ii0.932.463.184 (4)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H8Br2ClNO4
Mr437.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.4932 (11), 9.4501 (12), 10.5665 (14)
α, β, γ (°)92.731 (2), 107.000 (2), 114.299 (2)
V3)725.32 (16)
Z2
Radiation typeMo Kα
µ (mm1)5.79
Crystal size (mm)0.28 × 0.18 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.297, 0.587
No. of measured, independent and
observed [I > 2σ(I)] reflections
13696, 3856, 3398
Rint0.032
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.20
No. of reflections3856
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9AA···O1i0.982.263.199 (6)160
C4—H4A···O3ii0.932.463.184 (4)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73–76.  CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236–238.  CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159–1164.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds