metal-organic compounds
Poly[[triaqua(μ3-4-oxidopyridine-2,6-dicarboxylato)europium(III)] monohydrate]
aKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and bSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China
*Correspondence e-mail: lvdy@lzu.edu.cn
In the title coordination polymer, {[Eu(C7H2NO5)(H2O)3]·H2O}n, the EuIII atom is eight-coordinated by a tridentate 4-oxidopyridine-2,6-dicarboxylate (hpc) trianion, two monodentate hpc anions and three water molecules, forming a distorted bicapped trigonal–prismatic coordination geometry. The hpc ligands bridge adjacent EuIII ions, forming infinite double chains. Adjacent chains are further connected by hpc ligands into sheets. O—H⋯O hydrogen bonds then generate a three-dimensional supramolecular framework.
Related literature
For the structures and properties of lanthanide coordination compounds, see: He et al. (2010); Kustaryono et al. (2010); Zhu, Sun et al. (2009); Wong et al. (2006). For the use of multi-carboxylate and heterocyclic acids in coordination chemistry, see: Li et al. (2008); Luo et al. (2008) and for the dicarboxylate ligand H3CAM (H3CAM is 4-hydroxy-pyridine-2,6-dicarboxylic acid), see: Gao et al. (2006, 2008). For the isotypic structure {[Dy(CAM)(H2O)3]·H2O}n, see: Gao et al. (2006). For bond lengths and angles in other complexes with eight-coordinate EuIII, see: Li et al. (2008); Zhu, Ikarashi et al. (2009)
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810048518/hb5735sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810048518/hb5735Isup2.hkl
To a solution of europium nitrate hexahydrate (0.134 g, 0.3 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.060 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution yielded colourless blocks in ca 60% yield. Anal. Calcd for C7H10EuNO9: C, 20.80; H, 2.49; N, 3.47. Found: C, 20.51; H, 2.77; N, 3.12.
The coordinated water H atoms were located in a different Fourier map and refined with distance constraints of O–H = 0.83 (3) Å. The free water H atoms attached to oxygen atoms were placed at calculated positions and refined with the riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C).
The design and synthesis of lanthanide coordination polymers have achieved great progress over the past decades(He et al., 2010; Kustaryono et al., 2010). These coordination polymers have shown not only their versatile architectures but also their desirable properties luminescent, magnetic, catalytic, and gas absorption and separation properties (Zhu et al., 2009; Wong et al., 2006). Many multi-carboxylate or heterocylic
are used for this purpose (Li et al., 2008; Luo et al., 2008). In the designed synthesis of the lanthanide coordination polymers, 4-hydroxy-pyridine-2,6-dicarboxylic acid (H3CAM) is an excellent pyridine dicarboxylate ligand (Gao et al., 2006; Gao et al., 2008),which can afford at most one nitrogen atom and five O coordination sites. In order to extend the investigation in this field, we designed and synthesized one lanthanidecoordination polymer [Eu(CAM)(H2O)3]n.nH2O, and report its structure here.The title compound is located on a twofold helical axis of symmetry, which is isomorphous with {[Dy(CAM)(H2O)3].H2O}n (Gao et al., 2006). As shown in Fig.1, the asymmetrical unit of the cell contains one Eu (III) ion, one CAM liangd, three coordinated water molecules, and one guest water molecule. Eu atom is eight-coordinated with seven oxygen atoms from three individual CAM ligands and three coordinated water molecules and one nitrogen atom from the CAM ligand, forming a distorted bicapped square-prismatic coordination geometry.
Important bond distances and angles are presented in Table 1. The Eu–O bond distances [2.327 (2) to 2.445 (3) Å]are shorter than the Eu–N bond distance [2.498 (3) Å], which are in good with those observed in other Eu (III) complexes (Li et al., 2008; Zhu et al., 2009). The CAM ligands adopt a µ3-pentadentate coordination mode, as shown in Fig.1. The CAM ligands bridge the adjacent EuIII ions to form infinite double chains (Fig.2). The adjacent chains are further connected by the coordination of the CAMligands and EuIII ions to form two-dimensional sheet (Fig.3), which are further extended into three-dimensional supramolecular frameworks through H-bond interactions (Table 4).
For the structures and properties of lanthanide coordination compounds, see: He et al. (2010); Kustaryono et al. (2010); Zhu, Sun et al. (2009); Wong et al. (2006). For the use of multi-carboxylate and heterocyclic acids in coordination chemistry, see: Li et al. (2008); Luo et al. (2008) and for the dicarboxylate ligand H3CAM (H3CAM is 4-hydroxy-pyridine-2,6-dicarboxylic acid), see: Gao et al. (2006, 2008). For the isotypic structure {[Dy(CAM)(H2O)3].H2O}n, see: Gao et al. (2006). For bond distances and angles in other eight-coordinated Eu IIIcomplexes, see: Li et al. (2008); Zhu, Ikarashi et al. (2009).
Data collection: APEX2 (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A drawing of the asymmetric unit in the structure of (I), showing displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. A view along the b axis, showing a one-dimensional double chain of [Eu(CAM)(H2O)3]. | |
Fig. 3. A view along the a axis, showing a two-dimensional sheet of [Eu(CAM)(H2O)3]. |
[Eu(C7H2NO5)(H2O)3]·H2O | F(000) = 776 |
Mr = 404.12 | Dx = 2.370 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3455 reflections |
a = 10.0041 (15) Å | θ = 2.8–28.3° |
b = 7.5456 (11) Å | µ = 5.58 mm−1 |
c = 15.528 (2) Å | T = 296 K |
β = 104.890 (1)° | Block, colorless |
V = 1132.8 (3) Å3 | 0.35 × 0.32 × 0.31 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2023 independent reflections |
Radiation source: fine-focus sealed tube | 1856 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
φ and ω scans | θmax = 25.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −11→12 |
Tmin = 0.246, Tmax = 0.277 | k = −9→7 |
4884 measured reflections | l = −14→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + 0.5803P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2023 reflections | Δρmax = 0.82 e Å−3 |
196 parameters | Δρmin = −1.69 e Å−3 |
12 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0273 (8) |
[Eu(C7H2NO5)(H2O)3]·H2O | V = 1132.8 (3) Å3 |
Mr = 404.12 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.0041 (15) Å | µ = 5.58 mm−1 |
b = 7.5456 (11) Å | T = 296 K |
c = 15.528 (2) Å | 0.35 × 0.32 × 0.31 mm |
β = 104.890 (1)° |
Bruker APEXII CCD diffractometer | 2023 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 1856 reflections with I > 2σ(I) |
Tmin = 0.246, Tmax = 0.277 | Rint = 0.074 |
4884 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 12 restraints |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.82 e Å−3 |
2023 reflections | Δρmin = −1.69 e Å−3 |
196 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.500412 (13) | 0.82415 (2) | 0.746168 (10) | 0.01204 (13) | |
C1 | 0.7849 (3) | 0.5972 (4) | 0.8389 (2) | 0.0179 (7) | |
C2 | 0.7266 (3) | 0.6188 (4) | 0.9168 (2) | 0.0159 (7) | |
C3 | 0.7942 (3) | 0.5648 (4) | 1.0015 (2) | 0.0168 (7) | |
H3 | 0.8789 | 0.5069 | 1.0112 | 0.020* | |
H5 | 0.5632 | 0.7067 | 1.0980 | 0.020* | |
C4 | 0.7362 (3) | 0.5967 (4) | 1.0731 (2) | 0.0153 (7) | |
C5 | 0.6069 (3) | 0.6829 (4) | 1.0528 (2) | 0.0164 (8) | |
C6 | 0.5456 (3) | 0.7327 (4) | 0.9664 (2) | 0.0142 (7) | |
C7 | 0.4087 (3) | 0.8280 (4) | 0.9380 (2) | 0.0163 (8) | |
H1W | 0.492 (5) | 0.543 (3) | 0.609 (3) | 0.073 (17)* | |
H2W | 0.536 (5) | 0.692 (5) | 0.567 (3) | 0.060 (17)* | |
H3W | 0.327 (5) | 0.552 (7) | 0.785 (2) | 0.08 (2)* | |
H4W | 0.315 (4) | 0.511 (6) | 0.6919 (18) | 0.071 (17)* | |
H5W | 0.660 (4) | 1.125 (6) | 0.802 (2) | 0.069 (17)* | |
H6W | 0.623 (4) | 1.093 (6) | 0.8862 (12) | 0.047 (13)* | |
H7W | 0.034 (5) | 0.735 (6) | 0.899 (4) | 0.11 (2)* | |
H8W | 0.155 (2) | 0.835 (6) | 0.949 (4) | 0.078 (19)* | |
N1 | 0.6033 (3) | 0.7025 (3) | 0.89845 (18) | 0.0151 (6) | |
O1 | 0.7227 (3) | 0.6764 (3) | 0.76842 (16) | 0.0270 (7) | |
O2 | 0.8922 (2) | 0.5058 (3) | 0.84687 (15) | 0.0234 (6) | |
O3 | 0.3689 (2) | 0.8704 (3) | 0.85661 (15) | 0.0211 (5) | |
O4 | 0.3426 (2) | 0.8572 (3) | 0.99465 (16) | 0.0245 (6) | |
O5 | 0.8011 (2) | 0.5511 (3) | 1.15508 (14) | 0.0202 (5) | |
O6 | 0.5004 (3) | 0.6614 (3) | 0.61007 (18) | 0.0275 (6) | |
O7 | 0.3631 (3) | 0.5587 (4) | 0.73985 (19) | 0.0323 (7) | |
O8 | 0.6026 (3) | 1.0809 (4) | 0.82870 (18) | 0.0319 (7) | |
O9 | 0.0664 (3) | 0.8216 (3) | 0.9349 (2) | 0.0367 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.01379 (17) | 0.01728 (17) | 0.00543 (16) | 0.00006 (5) | 0.00313 (11) | 0.00080 (5) |
C1 | 0.0194 (16) | 0.0240 (17) | 0.0107 (17) | 0.0022 (14) | 0.0047 (14) | −0.0012 (14) |
C2 | 0.0192 (16) | 0.0166 (16) | 0.0130 (17) | 0.0000 (13) | 0.0060 (14) | 0.0001 (14) |
C3 | 0.0189 (16) | 0.0193 (16) | 0.0119 (16) | 0.0030 (13) | 0.0031 (14) | 0.0014 (13) |
C4 | 0.0194 (15) | 0.0171 (16) | 0.0079 (16) | −0.0042 (13) | 0.0010 (13) | 0.0026 (13) |
C5 | 0.0186 (17) | 0.0243 (18) | 0.0094 (17) | −0.0032 (12) | 0.0092 (14) | −0.0015 (13) |
C6 | 0.0195 (17) | 0.0153 (15) | 0.0094 (16) | −0.0007 (13) | 0.0068 (14) | −0.0007 (13) |
C7 | 0.0180 (17) | 0.0193 (17) | 0.0109 (18) | −0.0021 (13) | 0.0028 (15) | −0.0021 (13) |
N1 | 0.0175 (14) | 0.0206 (13) | 0.0071 (14) | 0.0027 (11) | 0.0033 (12) | 0.0021 (11) |
O1 | 0.0276 (14) | 0.0468 (17) | 0.0090 (13) | 0.0166 (11) | 0.0092 (11) | 0.0085 (11) |
O2 | 0.0241 (13) | 0.0330 (14) | 0.0128 (12) | 0.0135 (11) | 0.0043 (10) | −0.0014 (11) |
O3 | 0.0201 (11) | 0.0338 (13) | 0.0094 (12) | 0.0077 (11) | 0.0041 (10) | 0.0031 (11) |
O4 | 0.0236 (12) | 0.0419 (15) | 0.0110 (13) | 0.0061 (11) | 0.0097 (11) | −0.0009 (11) |
O5 | 0.0206 (11) | 0.0305 (13) | 0.0087 (12) | −0.0030 (10) | 0.0021 (10) | 0.0042 (10) |
O6 | 0.0423 (17) | 0.0266 (15) | 0.0169 (15) | −0.0036 (12) | 0.0135 (14) | −0.0033 (11) |
O7 | 0.0413 (16) | 0.0376 (16) | 0.0212 (15) | −0.0181 (13) | 0.0141 (14) | −0.0058 (13) |
O8 | 0.0451 (16) | 0.0393 (16) | 0.0164 (14) | −0.0194 (14) | 0.0172 (13) | −0.0085 (12) |
O9 | 0.0278 (16) | 0.0311 (16) | 0.049 (2) | 0.0034 (12) | 0.0062 (15) | 0.0025 (13) |
Eu1—O5i | 2.327 (2) | C5—C6 | 1.377 (4) |
Eu1—O8 | 2.401 (3) | C5—H5 | 0.9344 |
Eu1—O7 | 2.416 (3) | C6—N1 | 1.345 (4) |
Eu1—O1 | 2.432 (2) | C6—C7 | 1.509 (4) |
Eu1—O2ii | 2.433 (2) | C7—O4 | 1.249 (4) |
Eu1—O3 | 2.440 (2) | C7—O3 | 1.264 (4) |
Eu1—O6 | 2.445 (3) | O2—Eu1iii | 2.433 (2) |
Eu1—N1 | 2.498 (3) | O5—Eu1iv | 2.327 (2) |
C1—O2 | 1.255 (4) | O6—H1W | 0.895 (19) |
C1—O1 | 1.262 (4) | O6—H2W | 0.867 (19) |
C1—C2 | 1.481 (5) | O7—H3W | 0.871 (19) |
C2—N1 | 1.350 (4) | O7—H4W | 0.856 (19) |
C2—C3 | 1.376 (4) | O8—H5W | 0.855 (19) |
C3—C4 | 1.402 (5) | O8—H6W | 0.868 (18) |
C3—H3 | 0.9300 | O9—H7W | 0.861 (19) |
C4—O5 | 1.317 (3) | O9—H8W | 0.861 (19) |
C4—C5 | 1.410 (4) | ||
O5i—Eu1—O8 | 100.29 (9) | O2—C1—C2 | 119.1 (3) |
O5i—Eu1—O7 | 85.49 (9) | O1—C1—C2 | 116.5 (3) |
O8—Eu1—O7 | 148.21 (10) | N1—C2—C3 | 122.6 (3) |
O5i—Eu1—O1 | 151.83 (8) | N1—C2—C1 | 114.1 (3) |
O8—Eu1—O1 | 92.61 (9) | C3—C2—C1 | 123.2 (3) |
O7—Eu1—O1 | 96.63 (9) | C2—C3—C4 | 120.4 (3) |
O5i—Eu1—O2ii | 81.44 (8) | C2—C3—H3 | 119.8 |
O8—Eu1—O2ii | 70.73 (9) | C4—C3—H3 | 119.8 |
O7—Eu1—O2ii | 140.91 (9) | O5—C4—C3 | 121.4 (3) |
O1—Eu1—O2ii | 79.36 (8) | O5—C4—C5 | 122.2 (3) |
O5i—Eu1—O3 | 80.61 (8) | C3—C4—C5 | 116.4 (3) |
O8—Eu1—O3 | 75.04 (9) | C6—C5—C4 | 119.8 (3) |
O7—Eu1—O3 | 75.15 (9) | C6—C5—H5 | 120.2 |
O1—Eu1—O3 | 127.18 (8) | C4—C5—H5 | 120.0 |
O2ii—Eu1—O3 | 137.46 (8) | N1—C6—C5 | 123.0 (3) |
O5i—Eu1—O6 | 82.43 (9) | N1—C6—C7 | 113.1 (3) |
O8—Eu1—O6 | 140.55 (10) | C5—C6—C7 | 123.9 (3) |
O7—Eu1—O6 | 71.01 (10) | O4—C7—O3 | 124.9 (3) |
O1—Eu1—O6 | 71.90 (9) | O4—C7—C6 | 118.9 (3) |
O2ii—Eu1—O6 | 70.83 (9) | O3—C7—C6 | 116.2 (3) |
O3—Eu1—O6 | 143.08 (9) | C6—N1—C2 | 117.8 (3) |
O5i—Eu1—N1 | 143.53 (9) | C6—N1—Eu1 | 121.6 (2) |
O8—Eu1—N1 | 77.05 (9) | C2—N1—Eu1 | 120.3 (2) |
O7—Eu1—N1 | 79.95 (9) | C1—O1—Eu1 | 124.7 (2) |
O1—Eu1—N1 | 63.77 (9) | C1—O2—Eu1iii | 138.4 (2) |
O2ii—Eu1—N1 | 129.18 (9) | C7—O3—Eu1 | 125.3 (2) |
O3—Eu1—N1 | 63.42 (8) | C4—O5—Eu1iv | 127.88 (19) |
O6—Eu1—N1 | 122.83 (9) | Eu1—O6—H1W | 119 (3) |
O5i—Eu1—H5W | 101.3 (10) | Eu1—O6—H2W | 129 (3) |
O8—Eu1—H5W | 17.0 (6) | H1W—O6—H2W | 108 (3) |
O7—Eu1—H5W | 164.4 (6) | Eu1—O7—H3W | 111 (3) |
O1—Eu1—H5W | 84.1 (10) | Eu1—O7—H4W | 125 (3) |
O2ii—Eu1—H5W | 54.6 (6) | H3W—O7—H4W | 115 (3) |
O3—Eu1—H5W | 91.9 (6) | Eu1—O8—H5W | 108 (3) |
O6—Eu1—H5W | 123.6 (6) | Eu1—O8—H6W | 126 (3) |
N1—Eu1—H5W | 86.4 (8) | H5W—O8—H6W | 116 (3) |
O2—C1—O1 | 124.4 (3) | H7W—O9—H8W | 116 (3) |
O2—C1—C2—N1 | −173.0 (3) | O6—Eu1—N1—C6 | −143.3 (2) |
O1—C1—C2—N1 | 8.2 (4) | O5i—Eu1—N1—C2 | 170.8 (2) |
O2—C1—C2—C3 | 9.4 (5) | O8—Eu1—N1—C2 | −99.4 (2) |
O1—C1—C2—C3 | −169.3 (3) | O7—Eu1—N1—C2 | 102.7 (2) |
N1—C2—C3—C4 | −0.4 (5) | O1—Eu1—N1—C2 | 0.1 (2) |
C1—C2—C3—C4 | 177.0 (3) | O2ii—Eu1—N1—C2 | −48.0 (3) |
C2—C3—C4—O5 | −177.9 (3) | O3—Eu1—N1—C2 | −178.9 (3) |
C2—C3—C4—C5 | 0.9 (5) | O6—Eu1—N1—C2 | 43.2 (3) |
O5—C4—C5—C6 | 178.0 (3) | O2—C1—O1—Eu1 | 172.3 (2) |
C3—C4—C5—C6 | −0.8 (4) | C2—C1—O1—Eu1 | −9.0 (4) |
C4—C5—C6—N1 | 0.2 (5) | O5i—Eu1—O1—C1 | −163.2 (2) |
C4—C5—C6—C7 | −179.0 (3) | O8—Eu1—O1—C1 | 79.2 (3) |
N1—C6—C7—O4 | 177.2 (3) | O7—Eu1—O1—C1 | −70.3 (3) |
C5—C6—C7—O4 | −3.5 (5) | O2ii—Eu1—O1—C1 | 149.0 (3) |
N1—C6—C7—O3 | −1.8 (4) | O3—Eu1—O1—C1 | 6.0 (3) |
C5—C6—C7—O3 | 177.4 (3) | O6—Eu1—O1—C1 | −137.8 (3) |
C5—C6—N1—C2 | 0.3 (5) | N1—Eu1—O1—C1 | 5.0 (3) |
C7—C6—N1—C2 | 179.6 (3) | O1—C1—O2—Eu1iii | −29.7 (5) |
C5—C6—N1—Eu1 | −173.3 (2) | C2—C1—O2—Eu1iii | 151.6 (2) |
C7—C6—N1—Eu1 | 6.0 (4) | O4—C7—O3—Eu1 | 177.6 (2) |
C3—C2—N1—C6 | −0.2 (5) | C6—C7—O3—Eu1 | −3.4 (4) |
C1—C2—N1—C6 | −177.8 (3) | O5i—Eu1—O3—C7 | 178.4 (3) |
C3—C2—N1—Eu1 | 173.5 (2) | O8—Eu1—O3—C7 | −78.2 (3) |
C1—C2—N1—Eu1 | −4.1 (4) | O7—Eu1—O3—C7 | 90.6 (3) |
O5i—Eu1—N1—C6 | −15.8 (3) | O1—Eu1—O3—C7 | 3.6 (3) |
O8—Eu1—N1—C6 | 74.1 (2) | O2ii—Eu1—O3—C7 | −115.4 (2) |
O7—Eu1—N1—C6 | −83.8 (2) | O6—Eu1—O3—C7 | 114.7 (2) |
O1—Eu1—N1—C6 | 173.6 (3) | N1—Eu1—O3—C7 | 4.6 (2) |
O2ii—Eu1—N1—C6 | 125.5 (2) | C3—C4—O5—Eu1iv | 69.8 (4) |
O3—Eu1—N1—C6 | −5.5 (2) | C5—C4—O5—Eu1iv | −108.9 (3) |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x+1/2, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H1W···O9v | 0.90 (2) | 1.85 (3) | 2.696 (3) | 158 (4) |
O6—H2W···O9vi | 0.87 (2) | 2.15 (3) | 2.962 (4) | 156 (4) |
O7—H4W···O3v | 0.86 (2) | 2.09 (3) | 2.805 (3) | 141 (4) |
O8—H5W···O1ii | 0.86 (2) | 1.84 (2) | 2.684 (4) | 168 (4) |
O8—H6W···O4vii | 0.87 (2) | 1.83 (2) | 2.696 (4) | 173 (4) |
O9—H7W···O2viii | 0.86 (2) | 2.26 (3) | 3.059 (4) | 155 (5) |
O9—H8W···O4 | 0.86 (2) | 1.84 (2) | 2.692 (4) | 172 (6) |
Symmetry codes: (ii) −x+3/2, y+1/2, −z+3/2; (v) −x+1/2, y−1/2, −z+3/2; (vi) x+1/2, −y+3/2, z−1/2; (vii) −x+1, −y+2, −z+2; (viii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Eu(C7H2NO5)(H2O)3]·H2O |
Mr | 404.12 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 10.0041 (15), 7.5456 (11), 15.528 (2) |
β (°) | 104.890 (1) |
V (Å3) | 1132.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.58 |
Crystal size (mm) | 0.35 × 0.32 × 0.31 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.246, 0.277 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4884, 2023, 1856 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.065, 1.06 |
No. of reflections | 2023 |
No. of parameters | 196 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.82, −1.69 |
Computer programs: APEX2 (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Eu1—O5i | 2.327 (2) | Eu1—O2ii | 2.433 (2) |
Eu1—O8 | 2.401 (3) | Eu1—O3 | 2.440 (2) |
Eu1—O7 | 2.416 (3) | Eu1—O6 | 2.445 (3) |
Eu1—O1 | 2.432 (2) | Eu1—N1 | 2.498 (3) |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+3/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H1W···O9iii | 0.895 (19) | 1.85 (3) | 2.696 (3) | 158 (4) |
O6—H2W···O9iv | 0.867 (19) | 2.15 (3) | 2.962 (4) | 156 (4) |
O7—H4W···O3iii | 0.856 (19) | 2.09 (3) | 2.805 (3) | 141 (4) |
O8—H5W···O1ii | 0.855 (19) | 1.84 (2) | 2.684 (4) | 168 (4) |
O8—H6W···O4v | 0.868 (18) | 1.833 (19) | 2.696 (4) | 173 (4) |
O9—H7W···O2vi | 0.861 (19) | 2.26 (3) | 3.059 (4) | 155 (5) |
O9—H8W···O4 | 0.861 (19) | 1.84 (2) | 2.692 (4) | 172 (6) |
Symmetry codes: (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x+1/2, −y+3/2, z−1/2; (v) −x+1, −y+2, −z+2; (vi) x−1, y, z. |
References
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & &Yan, S. P. (2006). Inorg. Chem. 45, 5980–5988. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gao, H. L., Zhao, B., Zhao, X. Q., Zhao, X. Q., Song, Y., Cheng, P., Liao, D. Z. & &Yan, S. P. (2008). Inorg. Chem. 47, 11057–11061. Web of Science CSD CrossRef PubMed CAS Google Scholar
He, H. Y., Yuan, D. Q., Ma, H. Q., Sun, D. F., Zhang, G. Q. & Zhou, H. C. (2010). Inorg. Chem. 49, 7605–7607. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781. Web of Science CSD CrossRef CAS Google Scholar
Li, X., Zhang, Y. B., Shi, W. & &Li, P. Z. (2008). Inorg. Chem. Commun. 11, 869–872. Web of Science CSD CrossRef CAS Google Scholar
Luo, F., Che, Y. X. & Zheng, J. M. (2008). Cryst. Growth Des. 8, 2006–2010. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wong, K. L., Law, G. L., Yang, Y. Y. & Wong, W. T. (2006). Adv. Mater. 18, 1051–1054. Web of Science CSD CrossRef CAS Google Scholar
Zhu, T. Y., Ikarashi, K., Ishigaki, T., Uematsu, K., Toda, K., Okawa, H. & Sato, M. (2009). Inorg. Chim. Acta, 362, 3407–3414. Web of Science CSD CrossRef CAS Google Scholar
Zhu, Y. Y., Sun, Z. G., Chen, H., Zhang, J., Zhao, Y., Zhang, N., Liu, L., Lu, X., Wang, W. N., Tong, F. & Zhang, L. C. (2009). Cryst. Growth Des. 9, 3228–3234. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of lanthanide coordination polymers have achieved great progress over the past decades(He et al., 2010; Kustaryono et al., 2010). These coordination polymers have shown not only their versatile architectures but also their desirable properties luminescent, magnetic, catalytic, and gas absorption and separation properties (Zhu et al., 2009; Wong et al., 2006). Many multi-carboxylate or heterocylic carboxylic acids are used for this purpose (Li et al., 2008; Luo et al., 2008). In the designed synthesis of the lanthanide coordination polymers, 4-hydroxy-pyridine-2,6-dicarboxylic acid (H3CAM) is an excellent pyridine dicarboxylate ligand (Gao et al., 2006; Gao et al., 2008),which can afford at most one nitrogen atom and five O coordination sites. In order to extend the investigation in this field, we designed and synthesized one lanthanidecoordination polymer [Eu(CAM)(H2O)3]n.nH2O, and report its structure here.
The title compound is located on a twofold helical axis of symmetry, which is isomorphous with {[Dy(CAM)(H2O)3].H2O}n (Gao et al., 2006). As shown in Fig.1, the asymmetrical unit of the cell contains one Eu (III) ion, one CAM liangd, three coordinated water molecules, and one guest water molecule. Eu atom is eight-coordinated with seven oxygen atoms from three individual CAM ligands and three coordinated water molecules and one nitrogen atom from the CAM ligand, forming a distorted bicapped square-prismatic coordination geometry.
Important bond distances and angles are presented in Table 1. The Eu–O bond distances [2.327 (2) to 2.445 (3) Å]are shorter than the Eu–N bond distance [2.498 (3) Å], which are in good with those observed in other Eu (III) complexes (Li et al., 2008; Zhu et al., 2009). The CAM ligands adopt a µ3-pentadentate coordination mode, as shown in Fig.1. The CAM ligands bridge the adjacent EuIII ions to form infinite double chains (Fig.2). The adjacent chains are further connected by the coordination of the CAMligands and EuIII ions to form two-dimensional sheet (Fig.3), which are further extended into three-dimensional supramolecular frameworks through H-bond interactions (Table 4).