organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S)-2-[(2S*,5R*,6R*)-5,6-Dimeth­­oxy-5,6-di­methyl-1,4-dioxan-2-yl]-1-[(S)-1,1-di­methyl­ethylsulfon­yl]aziridine

aSchool of Chemistry, University of Nottingham, Nottingham NG7 2RD, England, and bDepartment of Chemistry, University of South Alabama, Mobile, AL 36688-0002, USA
*Correspondence e-mail: dforbes@southalabama.edu

(Received 11 November 2010; accepted 22 November 2010; online 27 November 2010)

The reaction of a sulfur ylide with a chiral non-racemic sulfinyl imine afforded the desired aziridine in excellent yield and subsequent oxidation of the sulfinyl moiety dissolved in anhydrous dichloro­methane using a 75% aqueous solution of 3-chloro­per­oxy­benzoic acid afforded the title compound, C14H27NO6S. The configuration of the newly formed stereogenic center at the point of attachment of the 1,4-dioxane ring to the aziridine ring is S. The configurations of the pre-existing sites 2-, 5-, and 6-positions of the 1,4-dioxane ring prior to reaction of sulfinyl imine with the sulfur ylide are S, R, and R, respectively. The C—N bond lengths of the aziridine are 1.478 (2) and 1.486 (2) Å.

Related literature

For the first synthesis of the title compound, see: Forbes et al. (2009[Forbes, D. C., Bettigeri, S. V. & Pischek, S. C. (2009). Chem. Commun. pp. 1882-1884.]). For the use of sulfinyl imines in the preparation of aziridines, see: Forbes et al. (2009[Forbes, D. C., Bettigeri, S. V. & Pischek, S. C. (2009). Chem. Commun. pp. 1882-1884.]); Chigboh et al. (2008[Chigboh, K., Morton, D., Nadin, A. & Stockman, R. A. (2008). Tetrahedron Lett. 49, 4768-4770.]); Morton et al. (2006[Morton, D. & Stockman, R. A. (2006). Tetrahedron, 62, 8869-8905.]). For a review on the use sulfur ylide technologies in the preparation of three-membered rings, see: McGarrigle et al. (2007[McGarrigle, E. M., Myers, E. L., Illa, O., Shaw, M. A., Riches, S. L. & Aggarwal, V. K. (2007). Chem. Rev. 107, 5841-5883.]). For the use of tert-butyl sulfinyl groups as stereodiscriminating groups, see: Ellman et al. (2002[Ellman, J. A., Owens, T. D. & Tang, P. T. (2002). Acc. Chem. Res. 35, 984-995.]); Wakayama & Ellman (2009[Wakayama, M. & Ellman, J. A. (2009). J. Org. Chem. 74, 2646-2650.]). For the use of three-carbon building blocks in the assembly of systems of medicinal significance, specifically HIV protease inhibitors, see: Izawa & Onishi (2006[Izawa, K. & Onishi, T. (2006). Chem. Rev. 106, 2811-2827.]); Honda et al. (2004[Honda, Y., Katayama, S., Kojima, M., Suzuki, T., Kishibata, N. & Izawa, K. (2004). Org. Biomol. Chem. 2, 2061-2070.]).

[Scheme 1]

Experimental

Crystal data
  • C14H27NO6S

  • Mr = 337.43

  • Monoclinic, P 21

  • a = 8.31483 (9) Å

  • b = 10.31672 (10) Å

  • c = 10.33015 (11) Å

  • β = 91.0961 (10)°

  • V = 885.98 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.86 mm−1

  • T = 90 K

  • 0.95 × 0.67 × 0.15 mm

Data collection
  • Oxford Diffraction SuperNova, single source at offset, Atlas diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010)[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England]; analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.320, Tmax = 0.764

  • 48647 measured reflections

  • 3548 independent reflections

  • 3532 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.10

  • 3548 reflections

  • 206 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1653 Friedel pairs

  • Flack parameter: −0.009 (13)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chiral non-racemic three-carbon building blocks are common intermediates used in the assembly of many HIV protease inhibitors as demonstrated by Honda et al. (2004) and Izawa & Onishi (2006). Working with not epoxide but aziridine functionality offers the synthetic organic chemist a viable alternative approach toward the advancement of these materials of biological and medicinal importance as reported by Chigboh et al. (2008), Ellman et al. (2002), Morton et al. (2006), McGarrigle et al. (2007), and Wakayama & Ellman (2009). As terminal aziridines can be readily obtained using sulfur ylide technologies from the corresponding imines, both enantiomeric lines can be prepared when starting with D-mannitol and ascorbic acid and the properly juxtaposed chiral non-racemic sulfinyl imine. Proof of concept was first published by Forbes et al. (2009). That is, reaction of methylphenylsulfonium methylide with both enantiomeric lines of the butanediacetal-protected chiral non-racemic sulfinyl imines resulted in dastereomeric ratios of >95:5. The sulfur ylide methylphenylsulfonium methylide was generated in situ upon thermal decarboxylation of carboxylmethyl betaine functionality. Alternatively using trimethylsulfonium iodide in dimethylsulfoxide in the presence of base, the sulfur ylide generated by this route, dimethylsulfonium methylide, reacted as well with the sulfinyl imine [S(S), N(E)]-2-methyl-N-[((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxacyclohexyl)methylene]-2-propanesulfinamide to afford as major isomer the title compound upon oxidation of the sulfinyl aziridine. This was confirmed by NMR analysis of the products obtained using dimethylsulfonium methylide and methylphenylsulfonium methylide with both diastereomeric lines of sulfinyl imine ([S(S), N(E)]-2-methyl-N-[((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxacyclohexyl)methylene]-2-propanesulfinamide and [S(R), N(E)]-2-methyl-N-[((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxacyclohexyl)methylene]-2-propanesulfinamide). Missing is the configuration of the newly formed center of the aziridine upon methylene transfer at C2. While attempts to grow crystals suitable for X-ray analysis of the sulfinyl aziridine itself and derivatives such as the deprotected aziridine were unsuccessful, success was obtained upon oxidation of the sulfinyl aziridine using m-chloroperoxybenzoic acid. The title compound, C14H27NO6S, was isolated in excellent yield and offered definitive evidence of the newly formed aziridine center (C2) as S. The configurations of the preexisting sites C4, C6, and C7 prior to reaction of sulfinyl imine with sulfur ylide are S, R, and R, respectively. The configuration of The C—N bond lengths of the aziridine are 1.478 (2) and 1.486 (2) Å.

Related literature top

For the first synthesis of the title compound, see: Forbes et al. (2009). For the use of sulfinyl imines in the preparation of aziridines, see: Forbes et al. (2009); Chigboh et al. (2008); Morton et al. (2006). For a review on the use sulfur ylide technologies in the preparation of three-membered rings, see: McGarrigle et al. (2007). For the use of tert-butyl sulfinyl groups as stereodiscriminating groups, see: Ellman et al. (2002); Wakayama & Ellman (2009). For the use of three-carbon building blocks in the assembly of systems of medicinal significance, specifically HIV protease inhibitors, see: Izawa & Onishi (2006); Honda et al. (2004).

Experimental top

(2S)-1-[S(S*)-(1,1-dimethylethyl)sulfinyl]-2-[(2S*,5R*, 6R*)-2-(5,6-dimethoxy- 5,6-dimethyl-1,4-dioxacyclohexyl)]aziridine

To a 60% solution of sodium hydride (203 mg, 5.03 mmol) in anhydrous dimethylsulfoxide (6 ml) was added trimethylsulfonium iodide (1.025 g, 5.03 mmol). This was stirred until the cloudy mixture went clear. At this point a solution of ([S(S), N(E)]-2-methyl-N-[((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxacyclohexyl) methylene]-2-propanesulfinamide (515 mg, 0.167 mmol) in anhydrous dimethylsulfoxide (4 ml) was added dropwise to the mixture and the solution was stirred at room temperature for 30 minutes. Once complete, ice-cold brine (5 ml) was added, and the reaction stirred for 5 minutes. The resulting mixture was filtered through a pad of Celite, and the solution extracted with ethyl acetate (3x5 ml), and concentrated under reduced pressure. The residue was partitioned between 1:1 petroleum ether/ethyl acetate and water, and the organic fraction dried over anhydrous sodium sulfate. Purification by column chromatography over silica gel (eluting with 5:1 petroleum ether/ethyl acetate) afforded the title compound (108 mg, 20% yield). [α]D -94 (c 1/2, CHCl3); νmax (CHCl3)/cm-1 3010, 2835, 1521, 1475, 1425, 1377, 1192, 1142, 1078; δH (CDCl3, 300 MHz) 4.03 (1H, dt, J 11.2 and 3.2), 3.70 (1H, t, J 11.2), 3.48 (1H, dd, J 11.2 and 3.2), 3.24 (6H, s), 2.69 (1H, m), 2.17 (1H, d, J 4.2), 2.01 (1H, d, J 7.1), 1.27 (3H, s), 1.25 (3H, s), 1.24 (9H, s); δc (75 MHz, CDCl3) 99.2, 98.2, 65.2, 61.1, 56.8, 48.0, 29.9, 24.9, 22.6, 17.5; m/z (ESI+) 344 (M+23, 100%), 322 (M+1, 4); HRMS calculated for [C14H28NO5S]+ (M+Na+) 322.1683, found 322.1686.

(2S)-1-[S-(1,1-dimethylethyl)sulfonyl]-2-[(2S*,5R*,6R*)-2-(5,6-dimethoxy-5,6- dimethyl-1,4-dioxacyclohexyl)]aziridine

To a solution of(2S)-1-[S-(S*)-(1,1-dimethylethyl)sulfinyl]-2-[(2S*,5R*,6R*)-2-(5,6-dimethoxy -5,6-dimethyl-1,4-dioxacyclohexyl)]aziridine (47 mg, 0.146 mmol) in anhydrous dichloromethane (1.5 ml) was added a 75% solution of m-chloroperoxybenzoic acid in water (34 mg, 0.148 mmol) and the mixture was stirred for five minutes. A saturated aqueous solution of sodium bicarbonate (2 ml) was added and the product was extracted with dichloromethane (2 ml) and washed with brine (2 × 1 ml). The organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo to afford the title compound (47 mg, 95% yield). Recrystallization with ethyl ether/petroleum ether afforded the title compound as white crystals. m.p. = 90–95 °C; [α]D -136 (c 1/2, CHCl3); νmax (CHCl3)/cm-1 3011, 1522, 1477, 1424, 1193, 1034; δH (CDCl3, 300 MHz) 3.74–3.60 (2H, m), 3.47 (1H, d, J 9.5), 3.20 (3H, s), 3.18 (3H, s), 2.68 (1H, dd, J 6.9 and 4.4), 2.55 (1H, d, J 6.9), 2.20 (1H, d, J 4.4), 1.41 (9H, s), 1.21 (6H, s); δc (75 MHz, CDCl3) 99.2, 98.2, 67.4, 60.9, 59.6, 48.0, 36.7, 31.8, 24.1, 17.6; m/z (ESI+) 360 (M+23, 100%), 338 (M+1, 7); HRMS calculated for [C14H27NNaO6S]+ (M+Na+) 360.1451, found 360.1460.

Refinement top

All H atoms were placed in calculated positions and allowed to ride during subsequent refinement with Uiso(H) = 1.5Ueq(C) and C—H distances of 0.98 Å for the methyl H atoms, Uiso(H) = 1.2Ueq(C) and C—H distances of 0.99 Å for the methylene H atoms, and Uiso(H) = 1.2Ueq(C) and C—H distances of 1.00 Å for the methine H atoms.

Structure description top

Chiral non-racemic three-carbon building blocks are common intermediates used in the assembly of many HIV protease inhibitors as demonstrated by Honda et al. (2004) and Izawa & Onishi (2006). Working with not epoxide but aziridine functionality offers the synthetic organic chemist a viable alternative approach toward the advancement of these materials of biological and medicinal importance as reported by Chigboh et al. (2008), Ellman et al. (2002), Morton et al. (2006), McGarrigle et al. (2007), and Wakayama & Ellman (2009). As terminal aziridines can be readily obtained using sulfur ylide technologies from the corresponding imines, both enantiomeric lines can be prepared when starting with D-mannitol and ascorbic acid and the properly juxtaposed chiral non-racemic sulfinyl imine. Proof of concept was first published by Forbes et al. (2009). That is, reaction of methylphenylsulfonium methylide with both enantiomeric lines of the butanediacetal-protected chiral non-racemic sulfinyl imines resulted in dastereomeric ratios of >95:5. The sulfur ylide methylphenylsulfonium methylide was generated in situ upon thermal decarboxylation of carboxylmethyl betaine functionality. Alternatively using trimethylsulfonium iodide in dimethylsulfoxide in the presence of base, the sulfur ylide generated by this route, dimethylsulfonium methylide, reacted as well with the sulfinyl imine [S(S), N(E)]-2-methyl-N-[((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxacyclohexyl)methylene]-2-propanesulfinamide to afford as major isomer the title compound upon oxidation of the sulfinyl aziridine. This was confirmed by NMR analysis of the products obtained using dimethylsulfonium methylide and methylphenylsulfonium methylide with both diastereomeric lines of sulfinyl imine ([S(S), N(E)]-2-methyl-N-[((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxacyclohexyl)methylene]-2-propanesulfinamide and [S(R), N(E)]-2-methyl-N-[((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxacyclohexyl)methylene]-2-propanesulfinamide). Missing is the configuration of the newly formed center of the aziridine upon methylene transfer at C2. While attempts to grow crystals suitable for X-ray analysis of the sulfinyl aziridine itself and derivatives such as the deprotected aziridine were unsuccessful, success was obtained upon oxidation of the sulfinyl aziridine using m-chloroperoxybenzoic acid. The title compound, C14H27NO6S, was isolated in excellent yield and offered definitive evidence of the newly formed aziridine center (C2) as S. The configurations of the preexisting sites C4, C6, and C7 prior to reaction of sulfinyl imine with sulfur ylide are S, R, and R, respectively. The configuration of The C—N bond lengths of the aziridine are 1.478 (2) and 1.486 (2) Å.

For the first synthesis of the title compound, see: Forbes et al. (2009). For the use of sulfinyl imines in the preparation of aziridines, see: Forbes et al. (2009); Chigboh et al. (2008); Morton et al. (2006). For a review on the use sulfur ylide technologies in the preparation of three-membered rings, see: McGarrigle et al. (2007). For the use of tert-butyl sulfinyl groups as stereodiscriminating groups, see: Ellman et al. (2002); Wakayama & Ellman (2009). For the use of three-carbon building blocks in the assembly of systems of medicinal significance, specifically HIV protease inhibitors, see: Izawa & Onishi (2006); Honda et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1 showing 50% displacement ellipsoids.
(2S)-2-[(2S*,5R*,6R*)-5,6-Dimethoxy-5,6- dimethyl-1,4-dioxan-2-yl]-1-[(S)-1,1-dimethylethylsulfonyl]aziridine top
Crystal data top
C14H27NO6SF(000) = 364
Mr = 337.43Dx = 1.265 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ybCell parameters from 44949 reflections
a = 8.31483 (9) Åθ = 4.3–73.3°
b = 10.31672 (10) ŵ = 1.86 mm1
c = 10.33015 (11) ÅT = 90 K
β = 91.0961 (10)°Slab, colourless
V = 885.98 (2) Å30.95 × 0.67 × 0.15 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova, single source at offset, Atlas
diffractometer
3548 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3532 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.082
Detector resolution: 10.3613 pixels mm-1θmax = 73.4°, θmin = 4.3°
ω scansh = 1010
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995)]
k = 1212
Tmin = 0.320, Tmax = 0.764l = 1212
48647 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.1298P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3548 reflectionsΔρmax = 0.25 e Å3
206 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 1653 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (13)
Crystal data top
C14H27NO6SV = 885.98 (2) Å3
Mr = 337.43Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.31483 (9) ŵ = 1.86 mm1
b = 10.31672 (10) ÅT = 90 K
c = 10.33015 (11) Å0.95 × 0.67 × 0.15 mm
β = 91.0961 (10)°
Data collection top
Oxford Diffraction SuperNova, single source at offset, Atlas
diffractometer
3548 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995)]
3532 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.764Rint = 0.082
48647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.25 e Å3
S = 1.10Δρmin = 0.36 e Å3
3548 reflectionsAbsolute structure: Flack (1983), 1653 Friedel pairs
206 parametersAbsolute structure parameter: 0.009 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37564 (17)0.58231 (13)0.58518 (14)0.0196 (3)
C20.5315 (2)0.51956 (18)0.61615 (16)0.0205 (3)
H20.55880.44120.56390.025*
C30.5278 (2)0.6453 (2)0.54586 (19)0.0284 (4)
H3A0.56310.72380.59370.034*
H3B0.55390.64480.45280.034*
C40.56425 (18)0.51094 (17)0.75921 (15)0.0186 (3)
H40.53120.59350.80190.022*
O50.73405 (13)0.49225 (12)0.77640 (10)0.0181 (2)
C60.7813 (2)0.48353 (17)0.90943 (15)0.0190 (3)
C70.6875 (2)0.37256 (17)0.97603 (16)0.0199 (3)
O80.51910 (14)0.38873 (12)0.95304 (11)0.0205 (3)
C90.4763 (2)0.39781 (17)0.81885 (16)0.0198 (3)
H9A0.35870.41050.80870.024*
H9B0.50550.31650.77410.024*
O100.73723 (16)0.59700 (13)0.97601 (13)0.0243 (3)
C110.8058 (3)0.7144 (2)0.9290 (2)0.0368 (5)
H11B0.79770.71600.83420.055*
H11C0.91920.71920.95620.055*
H11A0.74760.78870.96430.055*
C120.9618 (2)0.46183 (19)0.90905 (17)0.0238 (4)
H12A1.00410.46230.99830.036*
H12C1.01310.53120.85980.036*
H12B0.98500.37800.86890.036*
O130.74372 (15)0.25843 (12)0.91606 (12)0.0219 (3)
C140.6670 (2)0.14069 (18)0.95495 (18)0.0261 (4)
H14C0.69120.07180.89300.039*
H14A0.55040.15410.95720.039*
H14B0.70680.11571.04130.039*
C150.7090 (2)0.3703 (2)1.12238 (17)0.0293 (4)
H15A0.67860.45471.15800.044*
H15C0.82190.35221.14490.044*
H15B0.64060.30261.15870.044*
S160.26511 (4)0.50297 (4)0.47432 (3)0.02020 (12)
O170.21224 (16)0.38671 (12)0.53743 (14)0.0278 (3)
O180.35073 (16)0.48822 (16)0.35537 (13)0.0323 (3)
C190.09768 (19)0.61192 (18)0.45030 (16)0.0205 (3)
C200.1621 (2)0.74360 (18)0.40680 (19)0.0267 (4)
H20A0.23010.78070.47590.040*
H20C0.07180.80210.38800.040*
H20B0.22560.73230.32870.040*
C210.0075 (2)0.62361 (19)0.57736 (18)0.0264 (4)
H21B0.03860.53930.59980.040*
H21C0.07900.68760.56730.040*
H21A0.08220.65150.64640.040*
C220.0086 (2)0.5508 (2)0.3442 (2)0.0338 (4)
H22B0.05120.54650.26340.051*
H22C0.10540.60370.33080.051*
H22A0.03950.46310.37040.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0192 (7)0.0145 (7)0.0251 (7)0.0006 (5)0.0015 (5)0.0016 (5)
C20.0174 (7)0.0205 (9)0.0239 (8)0.0015 (6)0.0039 (6)0.0021 (6)
C30.0226 (8)0.0290 (9)0.0335 (9)0.0073 (7)0.0004 (7)0.0119 (8)
C40.0168 (7)0.0169 (8)0.0221 (7)0.0004 (7)0.0040 (5)0.0012 (6)
O50.0171 (5)0.0175 (5)0.0199 (5)0.0001 (5)0.0038 (4)0.0014 (5)
C60.0200 (7)0.0165 (8)0.0207 (7)0.0008 (6)0.0033 (6)0.0021 (6)
C70.0217 (9)0.0182 (8)0.0200 (7)0.0015 (7)0.0041 (6)0.0003 (6)
O80.0210 (6)0.0214 (6)0.0192 (5)0.0015 (5)0.0055 (4)0.0001 (4)
C90.0194 (8)0.0183 (8)0.0219 (7)0.0021 (6)0.0022 (6)0.0006 (6)
O100.0259 (6)0.0176 (6)0.0297 (7)0.0045 (5)0.0081 (5)0.0067 (5)
C110.0378 (12)0.0178 (9)0.0553 (13)0.0092 (8)0.0160 (10)0.0113 (9)
C120.0195 (8)0.0272 (9)0.0248 (8)0.0014 (6)0.0018 (6)0.0020 (7)
O130.0252 (6)0.0164 (6)0.0244 (6)0.0008 (5)0.0077 (5)0.0020 (5)
C140.0285 (9)0.0189 (8)0.0312 (9)0.0007 (7)0.0089 (7)0.0066 (7)
C150.0326 (9)0.0358 (10)0.0196 (8)0.0043 (8)0.0031 (7)0.0015 (8)
S160.0213 (2)0.0156 (2)0.0238 (2)0.00156 (15)0.00127 (14)0.00083 (14)
O170.0297 (7)0.0131 (6)0.0404 (7)0.0024 (5)0.0035 (5)0.0021 (5)
O180.0329 (7)0.0361 (8)0.0281 (6)0.0092 (6)0.0054 (5)0.0064 (6)
C190.0188 (8)0.0192 (8)0.0235 (8)0.0012 (6)0.0024 (6)0.0046 (6)
C200.0278 (9)0.0205 (8)0.0321 (9)0.0031 (7)0.0087 (7)0.0081 (7)
C210.0237 (8)0.0248 (9)0.0310 (9)0.0049 (7)0.0093 (7)0.0073 (7)
C220.0289 (9)0.0398 (11)0.0323 (9)0.0014 (8)0.0068 (8)0.0023 (9)
Geometric parameters (Å, º) top
N1—C21.478 (2)C12—H12A0.9800
N1—C31.486 (2)C12—H12C0.9800
N1—S161.6690 (14)C12—H12B0.9800
C2—C31.487 (3)O13—C141.433 (2)
C2—C41.500 (2)C14—H14C0.9800
C2—H21.0000C14—H14A0.9800
C3—H3A0.9900C14—H14B0.9800
C3—H3B0.9900C15—H15A0.9800
C4—O51.4326 (18)C15—H15C0.9800
C4—C91.515 (2)C15—H15B0.9800
C4—H41.0000S16—O171.4380 (14)
O5—C61.4248 (18)S16—O181.4399 (14)
C6—O101.410 (2)S16—C191.8027 (17)
C6—C121.518 (2)C19—C211.529 (2)
C6—C71.553 (2)C19—C221.531 (3)
C7—O131.414 (2)C19—C201.531 (2)
C7—O81.425 (2)C20—H20A0.9800
C7—C151.519 (2)C20—H20C0.9800
O8—C91.428 (2)C20—H20B0.9800
C9—H9A0.9900C21—H21B0.9800
C9—H9B0.9900C21—H21C0.9800
O10—C111.428 (2)C21—H21A0.9800
C11—H11B0.9800C22—H22B0.9800
C11—H11C0.9800C22—H22C0.9800
C11—H11A0.9800C22—H22A0.9800
C2—N1—C360.21 (11)C6—C12—H12C109.5
C2—N1—S16113.74 (11)H12A—C12—H12C109.5
C3—N1—S16119.18 (12)C6—C12—H12B109.5
N1—C2—C360.17 (11)H12A—C12—H12B109.5
N1—C2—C4112.41 (14)H12C—C12—H12B109.5
C3—C2—C4122.30 (16)C7—O13—C14115.48 (12)
N1—C2—H2116.4O13—C14—H14C109.5
C3—C2—H2116.4O13—C14—H14A109.5
C4—C2—H2116.4H14C—C14—H14A109.5
N1—C3—C259.62 (11)O13—C14—H14B109.5
N1—C3—H3A117.8H14C—C14—H14B109.5
C2—C3—H3A117.8H14A—C14—H14B109.5
N1—C3—H3B117.8C7—C15—H15A109.5
C2—C3—H3B117.8C7—C15—H15C109.5
H3A—C3—H3B114.9H15A—C15—H15C109.5
O5—C4—C2106.87 (12)C7—C15—H15B109.5
O5—C4—C9109.16 (13)H15A—C15—H15B109.5
C2—C4—C9111.49 (13)H15C—C15—H15B109.5
O5—C4—H4109.8O17—S16—O18117.33 (9)
C2—C4—H4109.8O17—S16—N1105.49 (7)
C9—C4—H4109.8O18—S16—N1111.26 (8)
C6—O5—C4112.39 (11)O17—S16—C19109.91 (8)
O10—C6—O5110.41 (13)O18—S16—C19109.97 (8)
O10—C6—C12112.95 (14)N1—S16—C19101.67 (8)
O5—C6—C12105.14 (13)C21—C19—C22111.19 (15)
O10—C6—C7104.98 (13)C21—C19—C20111.23 (15)
O5—C6—C7110.01 (13)C22—C19—C20110.84 (15)
C12—C6—C7113.42 (14)C21—C19—S16108.74 (11)
O13—C7—O8110.88 (13)C22—C19—S16105.99 (14)
O13—C7—C15112.93 (15)C20—C19—S16108.67 (12)
O8—C7—C15105.33 (13)C19—C20—H20A109.5
O13—C7—C6104.27 (13)C19—C20—H20C109.5
O8—C7—C6109.87 (14)H20A—C20—H20C109.5
C15—C7—C6113.65 (15)C19—C20—H20B109.5
C7—O8—C9113.28 (12)H20A—C20—H20B109.5
O8—C9—C4109.40 (13)H20C—C20—H20B109.5
O8—C9—H9A109.8C19—C21—H21B109.5
C4—C9—H9A109.8C19—C21—H21C109.5
O8—C9—H9B109.8H21B—C21—H21C109.5
C4—C9—H9B109.8C19—C21—H21A109.5
H9A—C9—H9B108.2H21B—C21—H21A109.5
C6—O10—C11115.42 (13)H21C—C21—H21A109.5
O10—C11—H11B109.5C19—C22—H22B109.5
O10—C11—H11C109.5C19—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
O10—C11—H11A109.5C19—C22—H22A109.5
H11B—C11—H11A109.5H22B—C22—H22A109.5
H11C—C11—H11A109.5H22C—C22—H22A109.5
C6—C12—H12A109.5
S16—N1—C2—C3111.22 (14)C6—C7—O8—C955.06 (17)
C3—N1—C2—C4115.46 (17)C7—O8—C9—C458.42 (18)
S16—N1—C2—C4133.32 (13)O5—C4—C9—O858.54 (17)
S16—N1—C3—C2102.22 (14)C2—C4—C9—O8176.38 (13)
C4—C2—C3—N199.05 (17)O5—C6—O10—C1159.72 (19)
N1—C2—C4—O5160.31 (14)C12—C6—O10—C1157.7 (2)
C3—C2—C4—O592.39 (19)C7—C6—O10—C11178.25 (16)
N1—C2—C4—C980.49 (18)O8—C7—O13—C1457.86 (17)
C3—C2—C4—C9148.40 (16)C15—C7—O13—C1460.08 (19)
C2—C4—O5—C6179.52 (14)C6—C7—O13—C14176.06 (14)
C9—C4—O5—C659.78 (17)C2—N1—S16—O1770.35 (13)
C4—O5—C6—O1058.81 (16)C3—N1—S16—O17138.26 (13)
C4—O5—C6—C12179.07 (14)C2—N1—S16—O1857.90 (14)
C4—O5—C6—C756.60 (17)C3—N1—S16—O1810.01 (16)
O10—C6—C7—O13174.97 (12)C2—N1—S16—C19174.94 (12)
O5—C6—C7—O1366.24 (15)C3—N1—S16—C19107.03 (14)
C12—C6—C7—O1351.20 (17)O17—S16—C19—C2148.33 (14)
O10—C6—C7—O866.15 (16)O18—S16—C19—C21178.96 (13)
O5—C6—C7—O852.65 (17)N1—S16—C19—C2163.07 (13)
C12—C6—C7—O8170.08 (13)O17—S16—C19—C2271.29 (14)
O10—C6—C7—C1551.58 (18)O18—S16—C19—C2259.34 (14)
O5—C6—C7—C15170.38 (14)N1—S16—C19—C22177.31 (12)
C12—C6—C7—C1572.19 (19)O17—S16—C19—C20169.54 (12)
O13—C7—O8—C959.68 (17)O18—S16—C19—C2059.83 (14)
C15—C7—O8—C9177.84 (14)N1—S16—C19—C2058.14 (13)

Experimental details

Crystal data
Chemical formulaC14H27NO6S
Mr337.43
Crystal system, space groupMonoclinic, P21
Temperature (K)90
a, b, c (Å)8.31483 (9), 10.31672 (10), 10.33015 (11)
β (°) 91.0961 (10)
V3)885.98 (2)
Z2
Radiation typeCu Kα
µ (mm1)1.86
Crystal size (mm)0.95 × 0.67 × 0.15
Data collection
DiffractometerOxford Diffraction SuperNova, single source at offset, Atlas
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2010); analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995)]
Tmin, Tmax0.320, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
48647, 3548, 3532
Rint0.082
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.10
No. of reflections3548
No. of parameters206
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.36
Absolute structureFlack (1983), 1653 Friedel pairs
Absolute structure parameter0.009 (13)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported in part by the NIGMS (NIH NIGMS 1R15GM085936), the NSF (CHE 0957482), and the Camille and Henry Dreyfus Foundation (TH-06–008). The authors are grateful for the assistance and input of Dr Richard Sykora (University of South Alabama).

References

First citationChigboh, K., Morton, D., Nadin, A. & Stockman, R. A. (2008). Tetrahedron Lett. 49, 4768–4770.  Web of Science CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllman, J. A., Owens, T. D. & Tang, P. T. (2002). Acc. Chem. Res. 35, 984–995.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForbes, D. C., Bettigeri, S. V. & Pischek, S. C. (2009). Chem. Commun. pp. 1882–1884.  Web of Science CrossRef Google Scholar
First citationHonda, Y., Katayama, S., Kojima, M., Suzuki, T., Kishibata, N. & Izawa, K. (2004). Org. Biomol. Chem. 2, 2061–2070.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzawa, K. & Onishi, T. (2006). Chem. Rev. 106, 2811–2827.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcGarrigle, E. M., Myers, E. L., Illa, O., Shaw, M. A., Riches, S. L. & Aggarwal, V. K. (2007). Chem. Rev. 107, 5841–5883.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorton, D. & Stockman, R. A. (2006). Tetrahedron, 62, 8869–8905.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakayama, M. & Ellman, J. A. (2009). J. Org. Chem. 74, 2646–2650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds