organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[4-(Hex­yl­oxy)phen­yl]-3-(3-hy­dr­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 16 November 2010; accepted 17 November 2010; online 24 November 2010)

There are two mol­ecules in the asymmetric unit of the title compound, C21H24O3, in which the dihedral angles between the aromatic rings are 6.4 (1) and 7.0 (1)°. The enone moiety of both mol­ecules adopts an scis configuration. In the crystal, inter­molecular O—H⋯O and C—H⋯O inter­actions to the same acceptor O atom generate R21(6) ring motifs and further C—H⋯O inter­actions generate R22(8) ring motifs. Topologically, the R21(6) and R22(8) ring motifs are arranged alternately, forming [001] chains of mol­ecules. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For general background to the biological properties of chalcone derivatives, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883-889.]); Zhao et al. (2005[Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027-5029.]); Yayli et al. (2006[Yayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem. 30, 505-514.]). For related structures, see: Razak, Fun, Ngaini, Rahman et al. (2009[Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092-o1093.]); Razak, Fun, Ngaini, Fadzillah et al. (2009a[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881-o882.],b[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133-o1134.]); Ngaini, Fadzillah et al. (2009[Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879-o880.]); Ngaini, Rahman et al. (2009[Ngaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889-o890.]); Razak et al. (2009a[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881-o882.],b[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133-o1134.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C21H24O3

  • Mr = 324.40

  • Triclinic, [P \overline 1]

  • a = 7.6053 (3) Å

  • b = 13.7328 (5) Å

  • c = 17.3769 (7) Å

  • α = 105.226 (2)°

  • β = 93.740 (2)°

  • γ = 93.038 (2)°

  • V = 1742.80 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.77 × 0.44 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.990

  • 36519 measured reflections

  • 10044 independent reflections

  • 6371 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.188

  • S = 1.04

  • 10044 reflections

  • 443 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1OB⋯O2Ai 0.86 (3) 1.92 (3) 2.773 (2) 171 (2)
C1B—H1BA⋯O2Ai 0.93 2.50 3.196 (2) 132
O1A—H1OA⋯O2Bii 0.92 (3) 1.85 (3) 2.763 (2) 175 (3)
C1A—H1AA⋯O2Bii 0.93 2.50 3.214 (2) 133
C12B—H12B⋯O3Aiii 0.93 2.56 3.483 (2) 175
C12A—H12A⋯O3Biv 0.93 2.56 3.487 (2) 174
C16A—H16ACg1v 0.97 2.80 3.653 (2) 147
C16B—H16CCg3vi 0.97 2.73 3.595 (2) 149
C17B—H17CCg3vii 0.97 2.74 3.640 (2) 154
Symmetry codes: (i) x+1, y+1, z-1; (ii) x-1, y-1, z+1; (iii) x, y+1, z; (iv) x, y-1, z; (v) -x+1, -y, -z+1; (vi) -x+2, -y+2, -z; (vii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Biological properties of chalcone derivatives such as anticancer (Bhat et al., 2005), antimalarial (Xue et al., 2004), antioxidant and antimicrobial (Yayli et al., 2006), antiplatelet (Zhao et al., 2005) as well as antihyperglycemic (Satyanarayana et al., 2004) activities have been widely reported. We have synthesized in our lab chalcone derivatives possessing alkyl chains which were tested against E. coli ATCC 8739 for their antibacterial activities. In this paper, we report one of these chalcone derivatives, the title compound (I).

There are two crystallographically independent molecules (A and B) in the asymmetric unit (Fig. 1). The bond lengths of (I) have normal values (Allen et al., 1987). In molecule A, the mean plane through the enone moiety (O2/C7/C8/C9) makes a dihedral angle of 4.5 (1)° with the C1—C6 benzene ring whereas the angle is 4.4 (1)° with C10—C15 benzene ring; the corresponding angles are 8.7 (1) and 3.3 (1)°, respectively, for molecule B. The two benzene rings make a dihedral angle of 6.4 (1)° in molecule A and 7.0 (1)° in molecule B. In both molecules, the enone moiety adopts s-cis configuration with C7—C8—C9—O2 torsion angle being 3.7 (2)° in molecule A and 2.2 (2)° in molecule B.

The alkoxyl tail in both molecules are roughly coplanar with the attached benzene ring with C16—O3—C13—C14 torsion angles of 5.5 (2)° and 6.2 (2)° for molecules A and B, respectively. These chains initially maintained its planarity with the largest torsion angle deviation from the ideal 180° being 1.3 (1)° and 2.2 (1)° for O3—C16—C17—C18 in molecules A and B, respectively. However, the deviation of the alkoxyl tail from planarity starts in the aliphatic chain. The twist about the C18—C19 bond can be shown from the C17—C18—C19—C20 torsion angle of -165.1 (2)° in molecule A and -167.1 (2)° in molecule B. The twist about the C19—C20 bond are indicated by C18—C19—C20—C21 torsion angles of -67.1 (2)° for molecule A and -64.9 (2)° for molecule B.

In molecule A, the widening of C5—C6—C7 and C6—C7—C8 angles to 123.2 (2)° and 128.0 (2)°, respectively, may be the outcome of the short H5AA···H8AA (2.28 Å) contact. Similarly, strain induced through short H8AA···H11A (2.10 Å) and H14A···H16A (2.35 Å) contacts resulted in the widening of C9—C10—C11 (123.0 (2)°) and O3—C13—C14 (124.8 (2)°) angles, respectively. The distortion of the angles which is relative to what is anticipated in terms of hybridization rules can also be observed in molecule B. The opening of C5—C6—C7 (123.2 (2)°) and C6—C7—C8 (127.8 (2)°) angles is the consequence of the close interatomic contact of H5BA···H8BA (2.30 Å) while the effect of short H8BA···H11B (2.11 Å) contact resulted in the widening of C9—C10—C11 (123.2 (2)°). Likewise, the enlargement of O3—C13—C14 angle to 125.0 (2)° is due to the strain induced by short H14B···H16C (2.35 Å) contact. Similar features can also be found in related structures previously reported (Razak, Fun, Ngaini, Rahman et al., 2009; Razak, Fun, Ngaini, Fadzillah et al., 2009a,b; Ngaini, Fadzillah et al., 2009; Ngaini, Rahman et al., 2009).

In the crystal structure, bifurcated acceptor bond is formed by O2A atom in molecule A through O1B—H1OB···O2Ai and C1B—H1BA···O2Ai while similar acceptor bonds involving O2B in molecule B is formed through O1A—H1OA···O2Bii and C1A—H1AA···O2Bii intermolecular interactions (Table 1). These bifurcated acceptor bonds generate R21(6) ring motifs (Bernstein et al., 1995) while intermolecular C12B—H12B···O3Aiii and C12A—H12A···O3Biv interactions involving both molecules generate an R22(8) ring motifs. The R21(6) and R22(8) ring motifs are arranged alternately throughout the structure forming chains down on the c-axis (Fig. 2). The crystal structure is further stabilized by C—H···π interactions.

Related literature top

For general background to the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Satyanarayana et al. (2004); Zhao et al. (2005); Yayli et al. (2006). For related structures, see: Razak, Fun, Ngaini, Rahman et al. (2009); Razak, Fun, Ngaini, Fadzillah et al. (2009a,b); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009); Razak et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 3-hydroxybenzaldehyde (1.22 g, 10 mmol) and 4-hexyloxyacetophenone (2.20 ml, 10 mmol) and KOH (2.02 g, 36 mmol) in 30 ml of methanol was heated at reflux for 24 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After a few days of slow evaporation, colourless plates of (I) were collected.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The Uiso values were constrained to be -1.5Ueq (methyl H atoms) and -1.2Ueq (other H atoms). The rotating model group was considered for the methyl group. In the case of O1A and O1B, the hydrogen atoms were located from a difference Fourier map and refined isotropically.

Structure description top

Biological properties of chalcone derivatives such as anticancer (Bhat et al., 2005), antimalarial (Xue et al., 2004), antioxidant and antimicrobial (Yayli et al., 2006), antiplatelet (Zhao et al., 2005) as well as antihyperglycemic (Satyanarayana et al., 2004) activities have been widely reported. We have synthesized in our lab chalcone derivatives possessing alkyl chains which were tested against E. coli ATCC 8739 for their antibacterial activities. In this paper, we report one of these chalcone derivatives, the title compound (I).

There are two crystallographically independent molecules (A and B) in the asymmetric unit (Fig. 1). The bond lengths of (I) have normal values (Allen et al., 1987). In molecule A, the mean plane through the enone moiety (O2/C7/C8/C9) makes a dihedral angle of 4.5 (1)° with the C1—C6 benzene ring whereas the angle is 4.4 (1)° with C10—C15 benzene ring; the corresponding angles are 8.7 (1) and 3.3 (1)°, respectively, for molecule B. The two benzene rings make a dihedral angle of 6.4 (1)° in molecule A and 7.0 (1)° in molecule B. In both molecules, the enone moiety adopts s-cis configuration with C7—C8—C9—O2 torsion angle being 3.7 (2)° in molecule A and 2.2 (2)° in molecule B.

The alkoxyl tail in both molecules are roughly coplanar with the attached benzene ring with C16—O3—C13—C14 torsion angles of 5.5 (2)° and 6.2 (2)° for molecules A and B, respectively. These chains initially maintained its planarity with the largest torsion angle deviation from the ideal 180° being 1.3 (1)° and 2.2 (1)° for O3—C16—C17—C18 in molecules A and B, respectively. However, the deviation of the alkoxyl tail from planarity starts in the aliphatic chain. The twist about the C18—C19 bond can be shown from the C17—C18—C19—C20 torsion angle of -165.1 (2)° in molecule A and -167.1 (2)° in molecule B. The twist about the C19—C20 bond are indicated by C18—C19—C20—C21 torsion angles of -67.1 (2)° for molecule A and -64.9 (2)° for molecule B.

In molecule A, the widening of C5—C6—C7 and C6—C7—C8 angles to 123.2 (2)° and 128.0 (2)°, respectively, may be the outcome of the short H5AA···H8AA (2.28 Å) contact. Similarly, strain induced through short H8AA···H11A (2.10 Å) and H14A···H16A (2.35 Å) contacts resulted in the widening of C9—C10—C11 (123.0 (2)°) and O3—C13—C14 (124.8 (2)°) angles, respectively. The distortion of the angles which is relative to what is anticipated in terms of hybridization rules can also be observed in molecule B. The opening of C5—C6—C7 (123.2 (2)°) and C6—C7—C8 (127.8 (2)°) angles is the consequence of the close interatomic contact of H5BA···H8BA (2.30 Å) while the effect of short H8BA···H11B (2.11 Å) contact resulted in the widening of C9—C10—C11 (123.2 (2)°). Likewise, the enlargement of O3—C13—C14 angle to 125.0 (2)° is due to the strain induced by short H14B···H16C (2.35 Å) contact. Similar features can also be found in related structures previously reported (Razak, Fun, Ngaini, Rahman et al., 2009; Razak, Fun, Ngaini, Fadzillah et al., 2009a,b; Ngaini, Fadzillah et al., 2009; Ngaini, Rahman et al., 2009).

In the crystal structure, bifurcated acceptor bond is formed by O2A atom in molecule A through O1B—H1OB···O2Ai and C1B—H1BA···O2Ai while similar acceptor bonds involving O2B in molecule B is formed through O1A—H1OA···O2Bii and C1A—H1AA···O2Bii intermolecular interactions (Table 1). These bifurcated acceptor bonds generate R21(6) ring motifs (Bernstein et al., 1995) while intermolecular C12B—H12B···O3Aiii and C12A—H12A···O3Biv interactions involving both molecules generate an R22(8) ring motifs. The R21(6) and R22(8) ring motifs are arranged alternately throughout the structure forming chains down on the c-axis (Fig. 2). The crystal structure is further stabilized by C—H···π interactions.

For general background to the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Satyanarayana et al. (2004); Zhao et al. (2005); Yayli et al. (2006). For related structures, see: Razak, Fun, Ngaini, Rahman et al. (2009); Razak, Fun, Ngaini, Fadzillah et al. (2009a,b); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009); Razak et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal packing of (I) showing R21(6) and R22(8) ring motifs generated by intermolecular interactions. The symmetry codes are given in Table 1.
(E)-1-[4-(Hexyloxy)phenyl]-3-(3-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C21H24O3Z = 4
Mr = 324.40F(000) = 696
Triclinic, P1Dx = 1.236 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6053 (3) ÅCell parameters from 9989 reflections
b = 13.7328 (5) Åθ = 2.7–31.5°
c = 17.3769 (7) ŵ = 0.08 mm1
α = 105.226 (2)°T = 100 K
β = 93.740 (2)°Plate, colourless
γ = 93.038 (2)°0.77 × 0.44 × 0.12 mm
V = 1742.80 (12) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
10044 independent reflections
Radiation source: sealed tube6371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
π and ω scansθmax = 30.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.940, Tmax = 0.990k = 1919
36519 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0965P)2 + 0.6952P]
where P = (Fo2 + 2Fc2)/3
10044 reflections(Δ/σ)max < 0.001
443 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H24O3γ = 93.038 (2)°
Mr = 324.40V = 1742.80 (12) Å3
Triclinic, P1Z = 4
a = 7.6053 (3) ÅMo Kα radiation
b = 13.7328 (5) ŵ = 0.08 mm1
c = 17.3769 (7) ÅT = 100 K
α = 105.226 (2)°0.77 × 0.44 × 0.12 mm
β = 93.740 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
10044 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6371 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.990Rint = 0.036
36519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.66 e Å3
10044 reflectionsΔρmin = 0.28 e Å3
443 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.04558 (17)0.32446 (10)0.74767 (8)0.0222 (3)
O2A0.17874 (17)0.08611 (9)0.57096 (7)0.0229 (3)
O3A0.49336 (16)0.12151 (8)0.24926 (7)0.0193 (3)
C1A0.0626 (2)0.22051 (13)0.66575 (10)0.0177 (3)
H1AA0.03440.16230.70270.021*
C2A0.0299 (2)0.31450 (13)0.68046 (10)0.0181 (3)
C3A0.0749 (2)0.40150 (13)0.62610 (11)0.0214 (4)
H3AA0.05510.46440.63600.026*
C4A0.1498 (2)0.39383 (13)0.55681 (11)0.0226 (4)
H4AA0.18000.45210.52040.027*
C5A0.1801 (2)0.30062 (13)0.54114 (11)0.0204 (4)
H5AA0.22860.29670.49420.025*
C6A0.1373 (2)0.21258 (12)0.59617 (10)0.0173 (3)
C7A0.1628 (2)0.11143 (13)0.58357 (10)0.0185 (3)
H7AA0.13800.05770.62570.022*
C8A0.2170 (2)0.08706 (12)0.51938 (11)0.0177 (3)
H8AA0.24810.13760.47630.021*
C9A0.2285 (2)0.01929 (12)0.51567 (10)0.0161 (3)
C10A0.2985 (2)0.04561 (12)0.44537 (10)0.0157 (3)
C11A0.3666 (2)0.02568 (12)0.38269 (10)0.0170 (3)
H11A0.36920.09260.38470.020*
C12A0.4293 (2)0.00219 (12)0.31843 (10)0.0178 (3)
H12A0.47330.04590.27730.021*
C13A0.4270 (2)0.10263 (12)0.31485 (10)0.0160 (3)
C14A0.3598 (2)0.17511 (12)0.37613 (10)0.0174 (3)
H14A0.35760.24200.37390.021*
C15A0.2965 (2)0.14575 (12)0.44015 (10)0.0177 (3)
H15A0.25130.19380.48090.021*
C16A0.5117 (2)0.22438 (12)0.24321 (11)0.0180 (3)
H16A0.57710.26800.29060.022*
H16B0.39670.25000.23700.022*
C17A0.6112 (2)0.21984 (12)0.17017 (10)0.0176 (3)
H17A0.54230.17600.12390.021*
H17B0.72150.18930.17650.021*
C18A0.6523 (2)0.32204 (13)0.15368 (11)0.0205 (4)
H18A0.71720.36770.20030.025*
H18B0.54290.35140.14330.025*
C19A0.7623 (2)0.30938 (13)0.08122 (11)0.0212 (4)
H19A0.85310.26370.08550.025*
H19B0.68620.27800.03310.025*
C20A0.8507 (3)0.40815 (13)0.07228 (12)0.0250 (4)
H20A0.92010.44230.12180.030*
H20B0.93080.39240.03020.030*
C21A0.7195 (3)0.47918 (15)0.05250 (15)0.0370 (5)
H21A0.78210.53880.04630.056*
H21B0.64320.49780.09510.056*
H21C0.65000.44590.00360.056*
O1B1.03690 (18)1.26874 (10)0.36389 (8)0.0221 (3)
O2B0.92123 (17)0.87058 (9)0.16144 (8)0.0234 (3)
O3B0.58649 (17)0.83300 (9)0.15508 (7)0.0211 (3)
C1B0.9824 (2)1.17003 (12)0.27030 (10)0.0167 (3)
H1BA1.01481.11190.30610.020*
C2B0.9882 (2)1.26135 (12)0.29143 (10)0.0167 (3)
C3B0.9418 (2)1.34888 (12)0.23752 (11)0.0183 (3)
H3BA0.94501.41010.25110.022*
C4B0.8907 (2)1.34372 (13)0.16302 (11)0.0192 (4)
H4BA0.86121.40220.12680.023*
C5B0.8830 (2)1.25322 (13)0.14194 (10)0.0182 (3)
H5BA0.84771.25110.09210.022*
C6B0.9286 (2)1.16495 (12)0.19592 (10)0.0164 (3)
C7B0.9226 (2)1.06597 (12)0.17862 (10)0.0182 (3)
H7BA0.97281.01460.21480.022*
C8B0.8539 (2)1.04076 (12)0.11739 (10)0.0175 (3)
H8BA0.80281.08930.07920.021*
C9B0.8582 (2)0.93598 (12)0.10954 (10)0.0165 (3)
C10B0.7870 (2)0.90971 (12)0.03963 (10)0.0156 (3)
C11B0.7199 (2)0.98105 (12)0.02337 (11)0.0176 (3)
H11B0.72021.04830.02210.021*
C12B0.6538 (2)0.95274 (12)0.08697 (11)0.0184 (3)
H12B0.61021.00080.12820.022*
C13B0.6525 (2)0.85191 (12)0.08946 (10)0.0168 (3)
C14B0.7172 (2)0.77927 (12)0.02725 (10)0.0169 (3)
H14B0.71550.71190.02840.020*
C15B0.7835 (2)0.80879 (12)0.03580 (10)0.0170 (3)
H15B0.82700.76050.07690.020*
C16B0.5958 (2)0.73389 (12)0.16826 (10)0.0171 (3)
H16C0.71500.71230.16380.020*
H16D0.51630.68470.12940.020*
C17B0.5415 (2)0.74426 (12)0.25178 (10)0.0169 (3)
H17C0.42260.76650.25450.020*
H17D0.61920.79650.28880.020*
C18B0.5463 (2)0.64715 (12)0.27882 (10)0.0178 (3)
H18C0.66430.62360.27580.021*
H18D0.46550.59500.24350.021*
C19B0.4938 (2)0.66626 (13)0.36472 (11)0.0203 (4)
H19C0.55580.72880.39680.024*
H19D0.36830.67560.36470.024*
C20B0.5329 (3)0.58199 (14)0.40434 (12)0.0244 (4)
H20C0.65770.57090.40290.029*
H20D0.50800.60380.46010.029*
C21B0.4270 (3)0.48291 (15)0.36512 (14)0.0372 (5)
H21D0.45150.43470.39500.056*
H21E0.45900.45740.31140.056*
H21F0.30320.49370.36420.056*
H1OB1.074 (3)1.212 (2)0.3885 (16)0.045 (7)*
H1OA0.063 (4)0.261 (2)0.7782 (18)0.062 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0294 (7)0.0205 (6)0.0194 (7)0.0003 (5)0.0103 (5)0.0085 (5)
O2A0.0319 (7)0.0226 (6)0.0166 (6)0.0068 (5)0.0104 (5)0.0066 (5)
O3A0.0281 (6)0.0133 (5)0.0186 (6)0.0005 (5)0.0095 (5)0.0064 (5)
C1A0.0193 (8)0.0183 (8)0.0157 (8)0.0027 (6)0.0036 (7)0.0042 (6)
C2A0.0165 (8)0.0234 (8)0.0166 (8)0.0005 (6)0.0046 (7)0.0084 (7)
C3A0.0251 (9)0.0183 (8)0.0226 (9)0.0005 (7)0.0050 (7)0.0082 (7)
C4A0.0278 (9)0.0188 (8)0.0213 (9)0.0044 (7)0.0076 (7)0.0036 (7)
C5A0.0248 (9)0.0226 (8)0.0161 (8)0.0035 (7)0.0071 (7)0.0074 (7)
C6A0.0177 (8)0.0205 (8)0.0149 (8)0.0013 (6)0.0016 (6)0.0069 (6)
C7A0.0208 (8)0.0200 (8)0.0162 (8)0.0035 (6)0.0044 (7)0.0063 (6)
C8A0.0181 (8)0.0178 (8)0.0174 (8)0.0023 (6)0.0047 (7)0.0041 (6)
C9A0.0145 (7)0.0189 (8)0.0153 (8)0.0018 (6)0.0012 (6)0.0050 (6)
C10A0.0146 (7)0.0183 (8)0.0148 (8)0.0011 (6)0.0018 (6)0.0055 (6)
C11A0.0196 (8)0.0142 (7)0.0175 (8)0.0016 (6)0.0027 (7)0.0044 (6)
C12A0.0218 (8)0.0147 (7)0.0163 (8)0.0022 (6)0.0051 (7)0.0020 (6)
C13A0.0150 (7)0.0181 (8)0.0154 (8)0.0005 (6)0.0024 (6)0.0052 (6)
C14A0.0188 (8)0.0153 (7)0.0191 (9)0.0009 (6)0.0040 (7)0.0060 (6)
C15A0.0189 (8)0.0164 (8)0.0170 (8)0.0023 (6)0.0030 (7)0.0026 (6)
C16A0.0211 (8)0.0141 (7)0.0202 (9)0.0004 (6)0.0040 (7)0.0069 (6)
C17A0.0205 (8)0.0166 (8)0.0174 (8)0.0009 (6)0.0031 (7)0.0074 (6)
C18A0.0257 (9)0.0183 (8)0.0197 (9)0.0003 (7)0.0049 (7)0.0084 (7)
C19A0.0253 (9)0.0193 (8)0.0206 (9)0.0003 (7)0.0061 (7)0.0072 (7)
C20A0.0312 (10)0.0228 (9)0.0217 (9)0.0054 (7)0.0058 (8)0.0076 (7)
C21A0.0494 (13)0.0252 (10)0.0437 (13)0.0081 (9)0.0132 (11)0.0185 (9)
O1B0.0327 (7)0.0212 (6)0.0153 (6)0.0026 (5)0.0076 (5)0.0087 (5)
O2B0.0343 (7)0.0193 (6)0.0187 (7)0.0042 (5)0.0120 (6)0.0062 (5)
O3B0.0329 (7)0.0158 (6)0.0195 (6)0.0054 (5)0.0142 (5)0.0096 (5)
C1B0.0182 (8)0.0162 (7)0.0160 (8)0.0008 (6)0.0042 (6)0.0042 (6)
C2B0.0177 (8)0.0202 (8)0.0138 (8)0.0003 (6)0.0023 (6)0.0073 (6)
C3B0.0213 (8)0.0156 (8)0.0200 (9)0.0007 (6)0.0032 (7)0.0082 (6)
C4B0.0210 (8)0.0167 (8)0.0198 (9)0.0007 (6)0.0047 (7)0.0040 (6)
C5B0.0202 (8)0.0208 (8)0.0149 (8)0.0003 (6)0.0058 (7)0.0065 (6)
C6B0.0155 (7)0.0189 (8)0.0163 (8)0.0001 (6)0.0028 (6)0.0074 (6)
C7B0.0219 (8)0.0171 (8)0.0167 (8)0.0013 (6)0.0052 (7)0.0057 (6)
C8B0.0213 (8)0.0169 (8)0.0159 (8)0.0013 (6)0.0052 (7)0.0062 (6)
C9B0.0171 (8)0.0186 (8)0.0148 (8)0.0002 (6)0.0027 (6)0.0058 (6)
C10B0.0152 (7)0.0181 (8)0.0152 (8)0.0002 (6)0.0025 (6)0.0072 (6)
C11B0.0207 (8)0.0150 (7)0.0188 (8)0.0028 (6)0.0040 (7)0.0067 (6)
C12B0.0231 (8)0.0158 (8)0.0181 (9)0.0045 (6)0.0073 (7)0.0056 (6)
C13B0.0164 (8)0.0191 (8)0.0170 (8)0.0009 (6)0.0048 (6)0.0075 (6)
C14B0.0192 (8)0.0144 (7)0.0193 (8)0.0022 (6)0.0061 (7)0.0071 (6)
C15B0.0184 (8)0.0171 (8)0.0163 (8)0.0024 (6)0.0040 (6)0.0053 (6)
C16B0.0208 (8)0.0149 (7)0.0179 (8)0.0021 (6)0.0053 (7)0.0077 (6)
C17B0.0196 (8)0.0162 (8)0.0162 (8)0.0008 (6)0.0054 (6)0.0060 (6)
C18B0.0224 (8)0.0172 (8)0.0166 (8)0.0018 (6)0.0066 (7)0.0080 (6)
C19B0.0261 (9)0.0193 (8)0.0175 (9)0.0018 (7)0.0054 (7)0.0076 (7)
C20B0.0301 (10)0.0255 (9)0.0228 (9)0.0053 (7)0.0081 (8)0.0137 (7)
C21B0.0598 (15)0.0233 (10)0.0336 (12)0.0012 (9)0.0109 (11)0.0155 (9)
Geometric parameters (Å, º) top
O1A—C2A1.369 (2)O1B—C2B1.363 (2)
O1A—H1OA0.92 (3)O1B—H1OB0.85 (3)
O2A—C9A1.237 (2)O2B—C9B1.235 (2)
O3A—C13A1.355 (2)O3B—C13B1.355 (2)
O3A—C16A1.4440 (19)O3B—C16B1.4428 (19)
C1A—C2A1.393 (2)C1B—C2B1.395 (2)
C1A—C6A1.396 (2)C1B—C6B1.399 (2)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C3A1.389 (2)C2B—C3B1.394 (2)
C3A—C4A1.391 (3)C3B—C4B1.394 (2)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.388 (2)C4B—C5B1.384 (2)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.399 (2)C5B—C6B1.400 (2)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.467 (2)C6B—C7B1.466 (2)
C7A—C8A1.330 (2)C7B—C8B1.331 (2)
C7A—H7AA0.9300C7B—H7BA0.9300
C8A—C9A1.477 (2)C8B—C9B1.482 (2)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.484 (2)C9B—C10B1.481 (2)
C10A—C15A1.403 (2)C10B—C15B1.404 (2)
C10A—C11A1.407 (2)C10B—C11B1.408 (2)
C11A—C12A1.377 (2)C11B—C12B1.379 (2)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.398 (2)C12B—C13B1.396 (2)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.398 (2)C13B—C14B1.400 (2)
C14A—C15A1.384 (2)C14B—C15B1.379 (2)
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.509 (2)C16B—C17B1.508 (2)
C16A—H16A0.9700C16B—H16C0.9700
C16A—H16B0.9700C16B—H16D0.9700
C17A—C18A1.525 (2)C17B—C18B1.527 (2)
C17A—H17A0.9700C17B—H17C0.9700
C17A—H17B0.9700C17B—H17D0.9700
C18A—C19A1.534 (2)C18B—C19B1.529 (2)
C18A—H18A0.9700C18B—H18C0.9700
C18A—H18B0.9700C18B—H18D0.9700
C19A—C20A1.531 (2)C19B—C20B1.526 (2)
C19A—H19A0.9700C19B—H19C0.9700
C19A—H19B0.9700C19B—H19D0.9700
C20A—C21A1.517 (3)C20B—C21B1.513 (3)
C20A—H20A0.9700C20B—H20C0.9700
C20A—H20B0.9700C20B—H20D0.9700
C21A—H21A0.9600C21B—H21D0.9600
C21A—H21B0.9600C21B—H21E0.9600
C21A—H21C0.9600C21B—H21F0.9600
C2A—O1A—H1OA107.6 (18)C2B—O1B—H1OB108.3 (18)
C13A—O3A—C16A119.39 (13)C13B—O3B—C16B119.73 (13)
C2A—C1A—C6A120.84 (16)C2B—C1B—C6B120.76 (15)
C2A—C1A—H1AA119.6C2B—C1B—H1BA119.6
C6A—C1A—H1AA119.6C6B—C1B—H1BA119.6
O1A—C2A—C3A118.21 (15)O1B—C2B—C3B117.90 (15)
O1A—C2A—C1A121.99 (15)O1B—C2B—C1B122.35 (15)
C3A—C2A—C1A119.80 (16)C3B—C2B—C1B119.75 (15)
C2A—C3A—C4A119.48 (16)C4B—C3B—C2B119.28 (15)
C2A—C3A—H3AA120.3C4B—C3B—H3BA120.4
C4A—C3A—H3AA120.3C2B—C3B—H3BA120.4
C5A—C4A—C3A121.01 (16)C5B—C4B—C3B121.31 (16)
C5A—C4A—H4AA119.5C5B—C4B—H4BA119.3
C3A—C4A—H4AA119.5C3B—C4B—H4BA119.3
C4A—C5A—C6A119.79 (16)C4B—C5B—C6B119.71 (16)
C4A—C5A—H5AA120.1C4B—C5B—H5BA120.1
C6A—C5A—H5AA120.1C6B—C5B—H5BA120.1
C1A—C6A—C5A119.05 (15)C1B—C6B—C5B119.19 (15)
C1A—C6A—C7A117.76 (15)C1B—C6B—C7B117.64 (15)
C5A—C6A—C7A123.17 (16)C5B—C6B—C7B123.17 (15)
C8A—C7A—C6A128.02 (16)C8B—C7B—C6B127.82 (16)
C8A—C7A—H7AA116.0C8B—C7B—H7BA116.1
C6A—C7A—H7AA116.0C6B—C7B—H7BA116.1
C7A—C8A—C9A120.77 (16)C7B—C8B—C9B120.59 (16)
C7A—C8A—H8AA119.6C7B—C8B—H8BA119.7
C9A—C8A—H8AA119.6C9B—C8B—H8BA119.7
O2A—C9A—C8A119.90 (16)O2B—C9B—C10B120.05 (15)
O2A—C9A—C10A120.17 (15)O2B—C9B—C8B119.86 (15)
C8A—C9A—C10A119.93 (14)C10B—C9B—C8B120.09 (14)
C15A—C10A—C11A117.86 (16)C15B—C10B—C11B117.80 (15)
C15A—C10A—C9A119.11 (15)C15B—C10B—C9B119.00 (15)
C11A—C10A—C9A123.03 (15)C11B—C10B—C9B123.19 (15)
C12A—C11A—C10A120.96 (15)C12B—C11B—C10B121.04 (15)
C12A—C11A—H11A119.5C12B—C11B—H11B119.5
C10A—C11A—H11A119.5C10B—C11B—H11B119.5
C11A—C12A—C13A120.12 (15)C11B—C12B—C13B119.99 (15)
C11A—C12A—H12A119.9C11B—C12B—H12B120.0
C13A—C12A—H12A119.9C13B—C12B—H12B120.0
O3A—C13A—C12A115.01 (14)O3B—C13B—C12B114.92 (14)
O3A—C13A—C14A124.78 (15)O3B—C13B—C14B124.96 (15)
C12A—C13A—C14A120.21 (16)C12B—C13B—C14B120.11 (16)
C15A—C14A—C13A118.93 (15)C15B—C14B—C13B119.23 (15)
C15A—C14A—H14A120.5C15B—C14B—H14B120.4
C13A—C14A—H14A120.5C13B—C14B—H14B120.4
C14A—C15A—C10A121.91 (15)C14B—C15B—C10B121.81 (15)
C14A—C15A—H15A119.0C14B—C15B—H15B119.1
C10A—C15A—H15A119.0C10B—C15B—H15B119.1
O3A—C16A—C17A105.46 (13)O3B—C16B—C17B105.71 (13)
O3A—C16A—H16A110.6O3B—C16B—H16C110.6
C17A—C16A—H16A110.6C17B—C16B—H16C110.6
O3A—C16A—H16B110.6O3B—C16B—H16D110.6
C17A—C16A—H16B110.6C17B—C16B—H16D110.6
H16A—C16A—H16B108.8H16C—C16B—H16D108.7
C16A—C17A—C18A114.68 (14)C16B—C17B—C18B114.30 (14)
C16A—C17A—H17A108.6C16B—C17B—H17C108.7
C18A—C17A—H17A108.6C18B—C17B—H17C108.7
C16A—C17A—H17B108.6C16B—C17B—H17D108.7
C18A—C17A—H17B108.6C18B—C17B—H17D108.7
H17A—C17A—H17B107.6H17C—C17B—H17D107.6
C17A—C18A—C19A110.30 (14)C17B—C18B—C19B110.22 (14)
C17A—C18A—H18A109.6C17B—C18B—H18C109.6
C19A—C18A—H18A109.6C19B—C18B—H18C109.6
C17A—C18A—H18B109.6C17B—C18B—H18D109.6
C19A—C18A—H18B109.6C19B—C18B—H18D109.6
H18A—C18A—H18B108.1H18C—C18B—H18D108.1
C20A—C19A—C18A114.49 (15)C20B—C19B—C18B114.61 (14)
C20A—C19A—H19A108.6C20B—C19B—H19C108.6
C18A—C19A—H19A108.6C18B—C19B—H19C108.6
C20A—C19A—H19B108.6C20B—C19B—H19D108.6
C18A—C19A—H19B108.6C18B—C19B—H19D108.6
H19A—C19A—H19B107.6H19C—C19B—H19D107.6
C21A—C20A—C19A113.07 (16)C21B—C20B—C19B113.65 (16)
C21A—C20A—H20A109.0C21B—C20B—H20C108.8
C19A—C20A—H20A109.0C19B—C20B—H20C108.8
C21A—C20A—H20B109.0C21B—C20B—H20D108.8
C19A—C20A—H20B109.0C19B—C20B—H20D108.8
H20A—C20A—H20B107.8H20C—C20B—H20D107.7
C20A—C21A—H21A109.5C20B—C21B—H21D109.5
C20A—C21A—H21B109.5C20B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
C20A—C21A—H21C109.5C20B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C6A—C1A—C2A—O1A179.04 (15)C6B—C1B—C2B—O1B178.82 (15)
C6A—C1A—C2A—C3A1.2 (3)C6B—C1B—C2B—C3B0.8 (2)
O1A—C2A—C3A—C4A179.22 (15)O1B—C2B—C3B—C4B179.76 (15)
C1A—C2A—C3A—C4A1.0 (3)C1B—C2B—C3B—C4B0.1 (2)
C2A—C3A—C4A—C5A0.1 (3)C2B—C3B—C4B—C5B0.8 (3)
C3A—C4A—C5A—C6A1.0 (3)C3B—C4B—C5B—C6B0.5 (3)
C2A—C1A—C6A—C5A0.3 (2)C2B—C1B—C6B—C5B1.1 (2)
C2A—C1A—C6A—C7A178.12 (15)C2B—C1B—C6B—C7B178.81 (15)
C4A—C5A—C6A—C1A0.8 (3)C4B—C5B—C6B—C1B0.4 (2)
C4A—C5A—C6A—C7A179.09 (16)C4B—C5B—C6B—C7B179.44 (16)
C1A—C6A—C7A—C8A173.88 (17)C1B—C6B—C7B—C8B170.15 (17)
C5A—C6A—C7A—C8A4.5 (3)C5B—C6B—C7B—C8B9.7 (3)
C6A—C7A—C8A—C9A177.51 (16)C6B—C7B—C8B—C9B179.51 (16)
C7A—C8A—C9A—O2A3.7 (2)C7B—C8B—C9B—O2B2.2 (3)
C7A—C8A—C9A—C10A176.67 (15)C7B—C8B—C9B—C10B177.85 (15)
O2A—C9A—C10A—C15A4.2 (2)O2B—C9B—C10B—C15B3.5 (2)
C8A—C9A—C10A—C15A175.42 (14)C8B—C9B—C10B—C15B176.44 (15)
O2A—C9A—C10A—C11A176.26 (16)O2B—C9B—C10B—C11B177.33 (16)
C8A—C9A—C10A—C11A4.1 (2)C8B—C9B—C10B—C11B2.7 (2)
C15A—C10A—C11A—C12A0.1 (2)C15B—C10B—C11B—C12B0.4 (2)
C9A—C10A—C11A—C12A179.65 (15)C9B—C10B—C11B—C12B179.52 (15)
C10A—C11A—C12A—C13A0.3 (2)C10B—C11B—C12B—C13B0.1 (3)
C16A—O3A—C13A—C12A174.49 (14)C16B—O3B—C13B—C12B173.44 (14)
C16A—O3A—C13A—C14A5.5 (2)C16B—O3B—C13B—C14B6.2 (2)
C11A—C12A—C13A—O3A179.47 (14)C11B—C12B—C13B—O3B179.27 (15)
C11A—C12A—C13A—C14A0.5 (2)C11B—C12B—C13B—C14B0.4 (3)
O3A—C13A—C14A—C15A179.74 (15)O3B—C13B—C14B—C15B179.00 (15)
C12A—C13A—C14A—C15A0.2 (2)C12B—C13B—C14B—C15B0.6 (2)
C13A—C14A—C15A—C10A0.2 (2)C13B—C14B—C15B—C10B0.3 (2)
C11A—C10A—C15A—C14A0.4 (2)C11B—C10B—C15B—C14B0.1 (2)
C9A—C10A—C15A—C14A179.95 (15)C9B—C10B—C15B—C14B179.32 (15)
C13A—O3A—C16A—C17A172.30 (13)C13B—O3B—C16B—C17B170.35 (14)
O3A—C16A—C17A—C18A177.78 (14)O3B—C16B—C17B—C18B178.70 (13)
C16A—C17A—C18A—C19A176.80 (15)C16B—C17B—C18B—C19B178.55 (14)
C17A—C18A—C19A—C20A165.05 (15)C17B—C18B—C19B—C20B167.08 (15)
C18A—C19A—C20A—C21A67.1 (2)C18B—C19B—C20B—C21B64.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1B—H1OB···O2Ai0.86 (3)1.92 (3)2.773 (2)171 (2)
C1B—H1BA···O2Ai0.932.503.196 (2)132
O1A—H1OA···O2Bii0.92 (3)1.85 (3)2.763 (2)175 (3)
C1A—H1AA···O2Bii0.932.503.214 (2)133
C12B—H12B···O3Aiii0.932.563.483 (2)175
C12A—H12A···O3Biv0.932.563.487 (2)174
C16A—H16A···Cg1v0.972.803.653 (2)147
C16B—H16C···Cg3vi0.972.733.595 (2)149
C17B—H17C···Cg3vii0.972.743.640 (2)154
Symmetry codes: (i) x+1, y+1, z1; (ii) x1, y1, z+1; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1, y, z+1; (vi) x+2, y+2, z; (vii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC21H24O3
Mr324.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6053 (3), 13.7328 (5), 17.3769 (7)
α, β, γ (°)105.226 (2), 93.740 (2), 93.038 (2)
V3)1742.80 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.77 × 0.44 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.940, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
36519, 10044, 6371
Rint0.036
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.188, 1.04
No. of reflections10044
No. of parameters443
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1B—H1OB···O2Ai0.86 (3)1.92 (3)2.773 (2)171 (2)
C1B—H1BA···O2Ai0.932.503.196 (2)132
O1A—H1OA···O2Bii0.92 (3)1.85 (3)2.763 (2)175 (3)
C1A—H1AA···O2Bii0.932.503.214 (2)133
C12B—H12B···O3Aiii0.932.563.483 (2)175
C12A—H12A···O3Biv0.932.563.487 (2)174
C16A—H16A···Cg1v0.972.803.653 (2)147
C16B—H16C···Cg3vi0.972.733.595 (2)149
C17B—H17C···Cg3vii0.972.743.640 (2)154
Symmetry codes: (i) x+1, y+1, z1; (ii) x1, y1, z+1; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1, y, z+1; (vi) x+2, y+2, z; (vii) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

§Additional correspondence, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University grant No. 1001/PFIZIK/811151. ZN and HH thank Universiti Malaysia Sarawak (UMS) for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007 (01) and Fundamental Research grant No: FRGS/01(03)/608/2006(41). SMHF thanks the Malaysian Government and UMS for providing a schol­arship for postgraduate studies.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889–o890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881–o882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133–o1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092–o1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883–889.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem. 30, 505–514.  CAS Google Scholar
First citationZhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds