organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl N-[(S)-2-hy­dr­oxy-1-({[(E)-2-hy­dr­oxy-4-meth­­oxy­benzyl­­idene]hydrazin­yl}carbon­yl)eth­yl]carbamate

aFundação Oswaldo Cruz, Instituto de Tecnologia, em Fármacos – Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 November 2010; accepted 17 November 2010; online 20 November 2010)

The shape of the title compound, C19H21N3O6, is curved with the conformation about the imine bond [1.291 (3) Å] being E. While the hy­droxy-substituted benzene ring is almost coplanar with the hydrazinyl residue [N—N—C—C = 177.31 (18)°], an observation correlated with an intra­molecular O—H⋯N hydrogen bond leading to an S(6) ring, the remaining residues exhibit significant twists. The carbonyl residues are directed away from each other as are the amines. This allows for the formation of O—H⋯O and N—H⋯O hydrogen bonds in the crystal, which lead to two-dimensional supra­molecular arrays in the ac plane. Additional stabilization to the layers is afforded by C—H⋯π inter­actions.

Related literature

For the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009[Jiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274-280.]); Yakura et al. (2007[Yakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429-4438.]); Takahashi et al. (1988[Takahashi, A., Nakamura, H., Ikeda, D., Naganawa, H., Kameyama, T., Kurasawa, S., Okami, Y., Takeuchi, T. & Iitaka, Y. (1988). J. Antibiot. 41, 1568-1574.]); Sin et al. (1998[Sin, N., Meng, L., Auth, H. & Crews, C. M. (1998). Bioorg. Med. Chem. 6, 1209-1217.]). For the use of N-acyl­hydrazones derivatives from L-serine in anti-tumour testing, see: Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]); Terzioğlu & Gürsoy (2003[Terzioğlu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 633-643.]). For a related structure, see: Pinheiro et al. (2010[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004-o1005.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O6

  • Mr = 387.39

  • Monoclinic, P 21

  • a = 5.1634 (2) Å

  • b = 32.3173 (11) Å

  • c = 5.7030 (2) Å

  • β = 103.918 (2)°

  • V = 923.70 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.50 × 0.32 × 0.10 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.623, Tmax = 0.746

  • 9676 measured reflections

  • 2151 independent reflections

  • 1954 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.01

  • 2149 reflections

  • 266 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.85 (2) 1.91 (2) 2.667 (3) 149 (3)
N2—H2n⋯O4i 0.86 (2) 1.89 (2) 2.742 (2) 170 (2)
N3—H3n⋯O5ii 0.86 (2) 2.18 (2) 3.013 (2) 165 (2)
O4—H4o⋯O3iii 0.84 (2) 1.77 (2) 2.594 (2) 169 (3)
C7—H7c⋯Cg1ii 0.98 2.67 3.565 (3) 151
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Several L-serine derivatives have been found to have potential in anti-tumour therapy, for example, conagenin, a naturally occurring serine derivative, was shown to improve the anti-tumour efficacy of adriamycin and mitomycin C against murine leukemias (Jiao et al., 2009; Yakura et al., 2007). Other L-serine derivatives reported as potential new anti-tumour agents include the anti-biotic thrazarine, which sensitizes tumour cells to macrophage-mediated cytolysis (Takahashi et al., 1988), and eponemycin, an immunomodulator, which plays a crucial role in tumour progression and metastases by supplying essential nutrients to B16 melanoma cells (Sin et al., 1998).

Following on from such reports, we have synthesized some N-acylhydrazones derivatives from L-serine to use in anti-tumour testing. The choice of N-acylhydrazonyl derivatives was suggested by publications indicating that compounds with such groups can aid anti-tumour activities (Rollas & Küçükgüzel, 2007; Terzioğlu & Gürsoy, 2003). We recently reported the structure of benzyl (1S)-2-[2-(2-methoxybenzylidene)hydrazino]-1-(hydroxymethyl)-2-oxoethylcarbamate (Pinheiro et al., 2010) and now we wish to report the structure of the 2-hydroxy-4-methoxy analogue, (I).

Although the absolute structure of (I), Fig. 1, could not be determined experimentally, the assignment of the S-configuration at the C10 atom is based on a starting reagent. Overall, the molecule of (I) is curved. The 2-hydroxy-4-methoxyphenyl group is planar [the C7—O2—C4—C3 torsion angle is -1.2 (3) °] and the planarity extends to include the hydrazino residue [N2—N1—C8—C1 = 177.31 (18) °]; the conformation about the N1C8 bond [1.291 (3) Å] is E. The observed planar conformation is stabilized by an intramolecular O1—H···N1 bond that closes an S(6) ring, Table 1. A noticeable twist is evident about the hydrazino bond [C8—N1—N2—C9 = -167.97 (19) °], and the remainder of the molecule is similarly twisted. The twists in the molecule results in a conformation where the two carbonyl atoms are directed away from each other, and a similar situation pertains for the amine groups. This arrangement optimizes the formation of a number of strong hydrogen bonds.

In the crystal packing, the O4-hydroxyl group forms an O—H···O hydrogen bond with the carbonyl-O3 atom adjacent to the hydrazino residue, Table 1. Each of the N—H atoms form a N—H···O hydrogen bond: N2 to the O4-hydroxyl group and N3 to the O5-ester atom, Table 1. This results in the formation of supramolecular layers in the ac plane, Fig. 2. Additional stabilization to the layers is afforded by C—H···π interactions, Table 1 and Fig. 2.

Related literature top

For the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009); Yakura et al. (2007); Takahashi et al. (1988); Sin et al. (1998). For the use of N-acylhydrazones derivatives from L-serine in anti-tumour testing, see: Rollas & Küçükgüzel (2007); Terzioğlu & Gürsoy (2003). For a related structure, see: Pinheiro et al. (2010).

Experimental top

The compound, phenyl (1S)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate, was obtained from L-serine methyl ester hydrochloride on successive reactions with (a) PhCH2Cl and Et3N, and (b) N2H4.H2O. To a stirred ethanol solution (10 ml) of phenyl (1S)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate (1.0 mmol) at room temperature was added 2-hydroxy-4-methoxybenzaldehyde (1.05 mmol). The reaction mixture was stirred for 4 h at 353 K and concentrated under reduced pressure. The residue was purified by washing with cold ethanol (3 x 10 ml), affording (I), yield 80%; m.p. 435 K. The NMR spectra in DMSO solution revealed the presence of (E)- and (Z)-isomers. However, the colourless needles obtained from methanol were solely the (E)-isomer.

1H NMR (500 MHz, DMSO-d6) δ (p.p.m.): 11.68 & 11.27 (1H, s, NHN, E & Z isomers), 10.45 & 10.17 (1H, s C1—OH, E & Z isomers), 8.36 & 8.19 (1H, s, NCH, E & Z isomers), 7.60 (d, J = 8.8 Hz) & 7.47 (d, J = 7.8 Hz), (1H, H5, E & Z isomers), 7.40 (d, J = 8.4 Hz) & 7.38–7.25 (m), (1H, NHCH, E & Z isomers), 7.38–7.25 (5H, m, Ph), 6.55–6.40 (2H, m, H2 & H4), 5.04 (2H, s, CH2Ph), 5.10–5.00 (m) & 4.89 (t, J = 5.9 Hz), (1H, OH, E & Z isomers), 4.93 &.5.11 (1H, m, CH, E & Z isomers), 3,76 & 3.74 (3H, s, CH3, E & Z isomers), 3.70–3.55 (2H, m, CH2OH). 13C NMR (125 MHz, DMSO-d6) δ (p.p.m.): 171.2 & 167.0 (COCH, E & Z isomers), 162.5 & 162.2 (C3, E & Z isomers), 159.7 & 158.3 (C1, E & Z isomers) 156.4 (COO), 148.4 & 141.7 (NCH, E & Z isomers), 137.4 (C6') 131.5, 128.8, 128.7, 128.3, 128.2 & 127.6 (C5, C1', C2', C3', C4' & C5'), 112.1 (C6), 106.9 (C4), 101.6 (C2), 66.0 & 65.8 (CH2Ph, E & Z isomers), 61.9 & 61.5 (CH2OH, E & Z isomers), 56.7 & 54.9 (CH, E & Z isomers), 55.8 & 55.6 (CH3; E & Z isomers). IR (cm-1; KBr): 3329 (O—H), 1678 (CO). EM/ESI: [M—H]: 386.3.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraint O–H = 0.84 ± 0.01 and N–H = 0.86±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N. In the absence of significant anomalous scattering effects, 1934 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the L-serine starting material. In the final refinement two reflections exhibiting poor agreement were omitted, i.e. (001) and (011).

Structure description top

Several L-serine derivatives have been found to have potential in anti-tumour therapy, for example, conagenin, a naturally occurring serine derivative, was shown to improve the anti-tumour efficacy of adriamycin and mitomycin C against murine leukemias (Jiao et al., 2009; Yakura et al., 2007). Other L-serine derivatives reported as potential new anti-tumour agents include the anti-biotic thrazarine, which sensitizes tumour cells to macrophage-mediated cytolysis (Takahashi et al., 1988), and eponemycin, an immunomodulator, which plays a crucial role in tumour progression and metastases by supplying essential nutrients to B16 melanoma cells (Sin et al., 1998).

Following on from such reports, we have synthesized some N-acylhydrazones derivatives from L-serine to use in anti-tumour testing. The choice of N-acylhydrazonyl derivatives was suggested by publications indicating that compounds with such groups can aid anti-tumour activities (Rollas & Küçükgüzel, 2007; Terzioğlu & Gürsoy, 2003). We recently reported the structure of benzyl (1S)-2-[2-(2-methoxybenzylidene)hydrazino]-1-(hydroxymethyl)-2-oxoethylcarbamate (Pinheiro et al., 2010) and now we wish to report the structure of the 2-hydroxy-4-methoxy analogue, (I).

Although the absolute structure of (I), Fig. 1, could not be determined experimentally, the assignment of the S-configuration at the C10 atom is based on a starting reagent. Overall, the molecule of (I) is curved. The 2-hydroxy-4-methoxyphenyl group is planar [the C7—O2—C4—C3 torsion angle is -1.2 (3) °] and the planarity extends to include the hydrazino residue [N2—N1—C8—C1 = 177.31 (18) °]; the conformation about the N1C8 bond [1.291 (3) Å] is E. The observed planar conformation is stabilized by an intramolecular O1—H···N1 bond that closes an S(6) ring, Table 1. A noticeable twist is evident about the hydrazino bond [C8—N1—N2—C9 = -167.97 (19) °], and the remainder of the molecule is similarly twisted. The twists in the molecule results in a conformation where the two carbonyl atoms are directed away from each other, and a similar situation pertains for the amine groups. This arrangement optimizes the formation of a number of strong hydrogen bonds.

In the crystal packing, the O4-hydroxyl group forms an O—H···O hydrogen bond with the carbonyl-O3 atom adjacent to the hydrazino residue, Table 1. Each of the N—H atoms form a N—H···O hydrogen bond: N2 to the O4-hydroxyl group and N3 to the O5-ester atom, Table 1. This results in the formation of supramolecular layers in the ac plane, Fig. 2. Additional stabilization to the layers is afforded by C—H···π interactions, Table 1 and Fig. 2.

For the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009); Yakura et al. (2007); Takahashi et al. (1988); Sin et al. (1998). For the use of N-acylhydrazones derivatives from L-serine in anti-tumour testing, see: Rollas & Küçükgüzel (2007); Terzioğlu & Gürsoy (2003). For a related structure, see: Pinheiro et al. (2010).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the stacking of 2-D supramolecular arrays in the ac plane in (I) with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively. The C—H···π interactions are shown as purple dashed lines.
Benzyl N-[(S)-2-hydroxy-1-({[(E)-2-hydroxy- 4-methoxybenzylidene]hydrazinyl}carbonyl)ethyl]carbamate top
Crystal data top
C19H21N3O6F(000) = 408
Mr = 387.39Dx = 1.393 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9310 reflections
a = 5.1634 (2) Åθ = 2.9–27.5°
b = 32.3173 (11) ŵ = 0.11 mm1
c = 5.7030 (2) ÅT = 120 K
β = 103.918 (2)°Prism, colourless
V = 923.70 (6) Å30.50 × 0.32 × 0.10 mm
Z = 2
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2151 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.7°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 4141
Tmin = 0.623, Tmax = 0.746l = 77
9676 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1213P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2149 reflectionsΔρmax = 0.14 e Å3
266 parametersΔρmin = 0.19 e Å3
5 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H21N3O6V = 923.70 (6) Å3
Mr = 387.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.1634 (2) ŵ = 0.11 mm1
b = 32.3173 (11) ÅT = 120 K
c = 5.7030 (2) Å0.50 × 0.32 × 0.10 mm
β = 103.918 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2151 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1954 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.746Rint = 0.035
9676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0325 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.14 e Å3
2149 reflectionsΔρmin = 0.19 e Å3
266 parametersAbsolute structure: nd
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1786 (3)1.07693 (5)0.1104 (3)0.0267 (3)
H1O0.050 (4)1.0606 (8)0.111 (5)0.040*
O20.3856 (3)1.18463 (5)0.6089 (3)0.0345 (4)
O30.3291 (3)0.99440 (5)0.1161 (3)0.0296 (4)
O40.8158 (3)0.98932 (5)0.2785 (3)0.0292 (3)
H4O0.981 (2)0.9933 (11)0.240 (5)0.044*
O51.1738 (3)0.91538 (5)0.3209 (3)0.0280 (3)
O60.9066 (3)0.87370 (4)0.4806 (3)0.0232 (3)
N10.2721 (4)1.03527 (5)0.2864 (3)0.0229 (4)
N20.4763 (3)1.00743 (5)0.2848 (3)0.0225 (4)
H2N0.597 (4)1.0034 (8)0.415 (3)0.027*
N30.7233 (3)0.92467 (5)0.2328 (3)0.0214 (4)
H3N0.575 (3)0.9171 (8)0.263 (4)0.026*
C10.1100 (4)1.08823 (6)0.5067 (4)0.0234 (4)
C20.1163 (4)1.09787 (7)0.3212 (4)0.0225 (4)
C30.2859 (4)1.13016 (7)0.3504 (4)0.0251 (4)
H30.43681.13680.22400.030*
C40.2330 (5)1.15243 (6)0.5648 (4)0.0267 (5)
C50.0123 (5)1.14263 (8)0.7516 (4)0.0310 (5)
H50.02221.15780.89870.037*
C60.1537 (5)1.11119 (7)0.7217 (4)0.0291 (5)
H60.30291.10470.85000.035*
C70.6104 (5)1.19656 (7)0.4213 (5)0.0332 (5)
H7A0.55161.20270.27400.050*
H7B0.69341.22120.47170.050*
H7C0.74031.17390.38960.050*
C80.3021 (4)1.05654 (7)0.4826 (4)0.0243 (4)
H80.45181.05140.61320.029*
C90.4915 (4)0.98936 (6)0.0787 (4)0.0205 (4)
C100.7381 (4)0.96234 (6)0.0944 (4)0.0194 (4)
H100.89870.97840.17990.023*
C110.7671 (4)0.95243 (7)0.1585 (4)0.0243 (4)
H11A0.91680.93290.14870.029*
H11B0.60190.93900.25210.029*
C120.9530 (4)0.90556 (6)0.3433 (4)0.0215 (4)
C131.1447 (4)0.85176 (7)0.6038 (4)0.0309 (5)
H13A1.27360.87130.70310.037*
H13B1.23010.83870.48440.037*
C141.0676 (4)0.81910 (7)0.7625 (4)0.0269 (5)
C151.1859 (5)0.78017 (7)0.7770 (5)0.0355 (6)
H151.30040.77360.67460.043*
C161.1382 (5)0.75094 (8)0.9394 (5)0.0394 (6)
H161.22250.72470.94930.047*
C170.9694 (5)0.75974 (8)1.0862 (4)0.0347 (5)
H170.93950.73981.19910.042*
C180.8429 (5)0.79800 (8)1.0684 (4)0.0358 (6)
H180.72170.80391.16560.043*
C190.8938 (5)0.82745 (7)0.9084 (4)0.0315 (5)
H190.80870.85370.89840.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (8)0.0238 (8)0.0305 (8)0.0034 (6)0.0034 (6)0.0037 (6)
O20.0306 (9)0.0285 (8)0.0460 (10)0.0027 (7)0.0122 (7)0.0117 (7)
O30.0182 (7)0.0414 (9)0.0264 (8)0.0038 (7)0.0003 (6)0.0081 (7)
O40.0185 (7)0.0398 (9)0.0280 (7)0.0006 (7)0.0031 (6)0.0156 (7)
O50.0189 (7)0.0290 (8)0.0369 (8)0.0027 (6)0.0084 (6)0.0102 (7)
O60.0179 (7)0.0238 (7)0.0278 (8)0.0034 (6)0.0052 (6)0.0083 (6)
N10.0204 (9)0.0178 (9)0.0309 (9)0.0042 (7)0.0070 (7)0.0049 (7)
N20.0186 (8)0.0203 (8)0.0268 (9)0.0048 (7)0.0022 (7)0.0048 (7)
N30.0163 (8)0.0220 (9)0.0263 (9)0.0011 (6)0.0062 (7)0.0071 (7)
C10.0250 (11)0.0201 (10)0.0265 (11)0.0013 (8)0.0088 (8)0.0037 (8)
C20.0219 (10)0.0199 (10)0.0278 (11)0.0037 (8)0.0098 (8)0.0005 (8)
C30.0196 (10)0.0229 (10)0.0332 (11)0.0014 (8)0.0071 (8)0.0020 (9)
C40.0281 (11)0.0193 (10)0.0368 (13)0.0021 (8)0.0162 (9)0.0020 (9)
C50.0379 (13)0.0275 (12)0.0288 (11)0.0028 (10)0.0102 (10)0.0021 (9)
C60.0336 (12)0.0276 (11)0.0248 (11)0.0013 (10)0.0043 (9)0.0028 (9)
C70.0298 (12)0.0246 (11)0.0480 (14)0.0019 (9)0.0147 (10)0.0025 (11)
C80.0245 (10)0.0204 (10)0.0283 (11)0.0000 (8)0.0069 (8)0.0054 (9)
C90.0165 (9)0.0198 (10)0.0244 (10)0.0010 (8)0.0036 (7)0.0049 (8)
C100.0154 (9)0.0210 (10)0.0207 (9)0.0016 (8)0.0020 (7)0.0046 (8)
C110.0245 (11)0.0261 (11)0.0225 (10)0.0002 (8)0.0059 (8)0.0040 (9)
C120.0213 (10)0.0213 (10)0.0224 (9)0.0024 (8)0.0065 (8)0.0027 (8)
C130.0222 (11)0.0295 (12)0.0396 (13)0.0071 (9)0.0047 (9)0.0159 (11)
C140.0243 (11)0.0252 (11)0.0286 (11)0.0002 (8)0.0010 (9)0.0058 (9)
C150.0369 (14)0.0303 (12)0.0428 (14)0.0085 (10)0.0166 (11)0.0103 (11)
C160.0460 (15)0.0262 (12)0.0500 (15)0.0085 (11)0.0192 (12)0.0128 (11)
C170.0452 (15)0.0279 (12)0.0314 (12)0.0017 (10)0.0099 (10)0.0071 (10)
C180.0459 (15)0.0346 (13)0.0306 (12)0.0000 (11)0.0167 (11)0.0017 (10)
C190.0368 (13)0.0239 (12)0.0344 (13)0.0038 (9)0.0098 (10)0.0028 (10)
Geometric parameters (Å, º) top
O1—C21.349 (3)C5—H50.9500
O1—H1O0.846 (10)C6—H60.9500
O2—C41.365 (3)C7—H7A0.9800
O2—C71.430 (3)C7—H7B0.9800
O3—C91.231 (2)C7—H7C0.9800
O4—C111.427 (3)C8—H80.9500
O4—H4O0.840 (10)C9—C101.529 (3)
O5—C121.219 (3)C10—C111.519 (3)
O6—C121.349 (2)C10—H101.0000
O6—C131.446 (2)C11—H11A0.9900
N1—C81.291 (3)C11—H11B0.9900
N1—N21.388 (2)C13—C141.505 (3)
N2—C91.332 (3)C13—H13A0.9900
N2—H2N0.857 (10)C13—H13B0.9900
N3—C121.351 (3)C14—C191.389 (3)
N3—C101.463 (3)C14—C151.393 (3)
N3—H3N0.861 (10)C15—C161.385 (4)
C1—C61.404 (3)C15—H150.9500
C1—C21.410 (3)C16—C171.376 (4)
C1—C81.455 (3)C16—H160.9500
C2—C31.398 (3)C17—C181.391 (4)
C3—C41.388 (3)C17—H170.9500
C3—H30.9500C18—C191.387 (3)
C4—C51.396 (3)C18—H180.9500
C5—C61.366 (3)C19—H190.9500
C2—O1—H1O107 (2)N2—C9—C10115.08 (16)
C4—O2—C7117.93 (18)N3—C10—C11111.51 (16)
C11—O4—H4O107 (2)N3—C10—C9110.83 (16)
C12—O6—C13114.04 (16)C11—C10—C9109.62 (16)
C8—N1—N2114.69 (18)N3—C10—H10108.3
C9—N2—N1119.74 (17)C11—C10—H10108.3
C9—N2—H2N120.9 (19)C9—C10—H10108.3
N1—N2—H2N119.3 (18)O4—C11—C10110.37 (17)
C12—N3—C10118.55 (17)O4—C11—H11A109.6
C12—N3—H3N120.1 (17)C10—C11—H11A109.6
C10—N3—H3N120.6 (18)O4—C11—H11B109.6
C6—C1—C2117.9 (2)C10—C11—H11B109.6
C6—C1—C8119.0 (2)H11A—C11—H11B108.1
C2—C1—C8123.06 (19)O5—C12—O6124.06 (19)
O1—C2—C3117.29 (19)O5—C12—N3124.77 (19)
O1—C2—C1122.32 (19)O6—C12—N3111.17 (17)
C3—C2—C1120.38 (19)O6—C13—C14108.60 (18)
C4—C3—C2119.7 (2)O6—C13—H13A110.0
C4—C3—H3120.2C14—C13—H13A110.0
C2—C3—H3120.2O6—C13—H13B110.0
O2—C4—C3123.9 (2)C14—C13—H13B110.0
O2—C4—C5115.7 (2)H13A—C13—H13B108.4
C3—C4—C5120.4 (2)C19—C14—C15118.5 (2)
C6—C5—C4119.6 (2)C19—C14—C13121.8 (2)
C6—C5—H5120.2C15—C14—C13119.6 (2)
C4—C5—H5120.2C16—C15—C14120.6 (2)
C5—C6—C1121.9 (2)C16—C15—H15119.7
C5—C6—H6119.1C14—C15—H15119.7
C1—C6—H6119.1C17—C16—C15120.4 (2)
O2—C7—H7A109.5C17—C16—H16119.8
O2—C7—H7B109.5C15—C16—H16119.8
H7A—C7—H7B109.5C16—C17—C18119.7 (2)
O2—C7—H7C109.5C16—C17—H17120.2
H7A—C7—H7C109.5C18—C17—H17120.2
H7B—C7—H7C109.5C19—C18—C17119.9 (2)
N1—C8—C1120.96 (19)C19—C18—H18120.1
N1—C8—H8119.5C17—C18—H18120.1
C1—C8—H8119.5C18—C19—C14120.9 (2)
O3—C9—N2124.50 (19)C18—C19—H19119.6
O3—C9—C10120.36 (19)C14—C19—H19119.6
C8—N1—N2—C9167.97 (19)C12—N3—C10—C9154.94 (18)
C6—C1—C2—O1178.4 (2)O3—C9—C10—N3112.2 (2)
C8—C1—C2—O13.3 (3)N2—C9—C10—N370.4 (2)
C6—C1—C2—C31.8 (3)O3—C9—C10—C1111.3 (3)
C8—C1—C2—C3176.6 (2)N2—C9—C10—C11166.09 (17)
O1—C2—C3—C4179.26 (19)N3—C10—C11—O4172.47 (16)
C1—C2—C3—C40.9 (3)C9—C10—C11—O464.4 (2)
C7—O2—C4—C31.2 (3)C13—O6—C12—O50.5 (3)
C7—O2—C4—C5178.6 (2)C13—O6—C12—N3179.84 (18)
C2—C3—C4—O2179.4 (2)C10—N3—C12—O56.3 (3)
C2—C3—C4—C50.3 (3)C10—N3—C12—O6174.38 (16)
O2—C4—C5—C6179.1 (2)C12—O6—C13—C14176.21 (18)
C3—C4—C5—C60.7 (3)O6—C13—C14—C1945.1 (3)
C4—C5—C6—C10.3 (4)O6—C13—C14—C15139.2 (2)
C2—C1—C6—C51.5 (3)C19—C14—C15—C162.2 (4)
C8—C1—C6—C5176.9 (2)C13—C14—C15—C16173.6 (2)
N2—N1—C8—C1177.31 (18)C14—C15—C16—C171.1 (4)
C6—C1—C8—N1178.7 (2)C15—C16—C17—C181.0 (4)
C2—C1—C8—N10.4 (3)C16—C17—C18—C192.0 (4)
N1—N2—C9—O32.6 (3)C17—C18—C19—C140.8 (4)
N1—N2—C9—C10174.73 (17)C15—C14—C19—C181.2 (4)
C12—N3—C10—C1182.6 (2)C13—C14—C19—C18174.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (2)1.91 (2)2.667 (3)149 (3)
N2—H2n···O4i0.86 (2)1.89 (2)2.742 (2)170 (2)
N3—H3n···O5ii0.86 (2)2.18 (2)3.013 (2)165 (2)
O4—H4o···O3iii0.84 (2)1.77 (2)2.594 (2)169 (3)
C7—H7c···Cg1ii0.982.673.565 (3)151
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H21N3O6
Mr387.39
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)5.1634 (2), 32.3173 (11), 5.7030 (2)
β (°) 103.918 (2)
V3)923.70 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.32 × 0.10
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.623, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9676, 2151, 1954
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.01
No. of reflections2149
No. of parameters266
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19
Absolute structureNd

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (2)1.91 (2)2.667 (3)149 (3)
N2—H2n···O4i0.857 (18)1.894 (18)2.742 (2)170 (2)
N3—H3n···O5ii0.860 (18)2.175 (17)3.013 (2)165 (2)
O4—H4o···O3iii0.838 (15)1.766 (16)2.594 (2)169 (3)
C7—H7c···Cg1ii0.982.673.565 (3)151
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274–280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004–o1005.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSin, N., Meng, L., Auth, H. & Crews, C. M. (1998). Bioorg. Med. Chem. 6, 1209–1217.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTakahashi, A., Nakamura, H., Ikeda, D., Naganawa, H., Kameyama, T., Kurasawa, S., Okami, Y., Takeuchi, T. & Iitaka, Y. (1988). J. Antibiot. 41, 1568–1574.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTerzioğlu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 633–643.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429–4438.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds