organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(4-Eth­­oxy­phen­yl)-1-(2-methyl-4-phenyl­quinolin-3-yl)prop-2-en-1-one monohydrate

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, India, bMaterials Research Centre, Indian Institute of Science, Bengaluru-560012, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 November 2010; accepted 18 November 2010; online 24 November 2010)

The title hydrate, C27H23NO2·H2O, features an almost planar quinoline residue (r.m.s. deviation = 0.015 Å) with the benzene [dihedral angle = 63.80 (7) °] and chalcone [C—C—C—O torsion angle = −103.38 (18)°] substituents twisted significantly out of its plane. The configuration about the C=C bond [1.340 (2) Å] is E. In the crystal, mol­ecules related by the 21 symmetry operation are linked along the b axis via water mol­ecules that form O—H⋯Oc and O—H⋯Nq hydrogen bonds (c = carbonyl and q = quinoline). A C—H⋯O inter­action also occurs.

Related literature

For background to chalcones, see: Schröder et al. (1988[Schröder, G., Brown, J. W. S. & Schröder, J. (1988). Eur. J. Biochem. 172, 101-109.]); Schröder & Schröder (1990[Schröder, G. & Schröder, J. (1990). Z. Naturforsch. Teil C, 45, 1-8.]). For a related structure, see: Prasath et al. (2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.]).

[Scheme 1]

Experimental

Crystal data
  • C27H23NO2·H2O

  • Mr = 411.48

  • Monoclinic, P 21 /c

  • a = 17.4256 (4) Å

  • b = 7.6240 (2) Å

  • c = 18.4117 (4) Å

  • β = 116.957 (1)°

  • V = 2180.27 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.37 × 0.24 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.988

  • 29183 measured reflections

  • 4993 independent reflections

  • 3568 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.146

  • S = 1.05

  • 4993 reflections

  • 288 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯N1i 0.83 (2) 2.11 (2) 2.934 (2) 174 (2)
O1w—H2w⋯O1 0.83 (2) 2.28 (2) 3.082 (2) 164 (3)
C26—H26b⋯O1ii 0.97 2.55 3.507 (3) 167
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chalcones are open-chain flavonoids in which two aromatic rings, jointed by a three carbon linker, are synthesized by chalcone synthetase from 3-malonyl-CoA and a starter CoA ester such as 4-coumaronyl-CoA in plants (Schröder et al., 1988). Chalcone synthetase functions as a key enzyme of flavonoid biosynthesis, using the similar substrates as stilbene synthetase (Schröder & Schröder, 1990). The title hydrate, (I), was investigated in continuation of structural studies of chalcones (Prasath et al., 2010).

With reference to least-squares plane through the quinoline residue in (I), Fig. 1, the phenyl ring is twisted and forms a dihedral angle of 63.80 (7) ° with it. Similarly, the chalcone residue is also twisted out of the plane as seen in the value of the C1—C2—C17—O1 torsion angle of -103.38 (18) °. There are discernible twists in the chalcone residue as seen in the value of the O1—C17—C18—C19 torsion angle of 6.8 (3) ° and especially C18—C19—C20—C21 of -168.50 (16) °. The configuration about the C18 C19 bond [1.340 (2) Å] is E. The ethoxy group is lies in the plane of the benzene ring to which it is connected [C26—O2—C23—C22 = -3.7 (3) ° and C23—O2—C26—C27 = -178.30 (17) °].

The crystal packing is dominated by hydrogen bonds formed by the water molecule of crystallization. Thus, the carbonyl-O1 of one molecule is linked to a quinoline-N of another via O—H···O and O—H···N hydrogen bonds, Table 1. This results in the formation of a supramolecular chain with a helical topology along the b axis, Fig. 2. Chains are consolidated in the crystal packing by C—H···O contacts, Table 1.

Related literature top

For background to chalcones, see: Schröder et al. (1988); Schröder & Schröder (1990). For a related structure, see: Prasath et al. (2010).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.6 g 0.01 M) and 4-ethoxybenzaldehyde (1.5 g 0.01 M) and a catalytic amount of KOH in distilled ethanol (50 ml) was stirred for about 24 h. The resulting mixture was concentrated to remove ethanol then poured onto ice and neutralized with dilute acetic acid. The resultant solid was filtered off, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and petroleum ether. Recrystallization was from acetone to yield colourless blocks; Yield: 64% and m. pt: 427–429 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The remaining H were located from a difference map and refined with O–H = 0.82±0.01 Å (with H1w···H2w = 1.36±0.015 Å), and with Uiso(H) = 1.5Ueq(O).

Structure description top

Chalcones are open-chain flavonoids in which two aromatic rings, jointed by a three carbon linker, are synthesized by chalcone synthetase from 3-malonyl-CoA and a starter CoA ester such as 4-coumaronyl-CoA in plants (Schröder et al., 1988). Chalcone synthetase functions as a key enzyme of flavonoid biosynthesis, using the similar substrates as stilbene synthetase (Schröder & Schröder, 1990). The title hydrate, (I), was investigated in continuation of structural studies of chalcones (Prasath et al., 2010).

With reference to least-squares plane through the quinoline residue in (I), Fig. 1, the phenyl ring is twisted and forms a dihedral angle of 63.80 (7) ° with it. Similarly, the chalcone residue is also twisted out of the plane as seen in the value of the C1—C2—C17—O1 torsion angle of -103.38 (18) °. There are discernible twists in the chalcone residue as seen in the value of the O1—C17—C18—C19 torsion angle of 6.8 (3) ° and especially C18—C19—C20—C21 of -168.50 (16) °. The configuration about the C18 C19 bond [1.340 (2) Å] is E. The ethoxy group is lies in the plane of the benzene ring to which it is connected [C26—O2—C23—C22 = -3.7 (3) ° and C23—O2—C26—C27 = -178.30 (17) °].

The crystal packing is dominated by hydrogen bonds formed by the water molecule of crystallization. Thus, the carbonyl-O1 of one molecule is linked to a quinoline-N of another via O—H···O and O—H···N hydrogen bonds, Table 1. This results in the formation of a supramolecular chain with a helical topology along the b axis, Fig. 2. Chains are consolidated in the crystal packing by C—H···O contacts, Table 1.

For background to chalcones, see: Schröder et al. (1988); Schröder & Schröder (1990). For a related structure, see: Prasath et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of a supramolecular chain sustained by O—H···O and O—H···N hydrogen bonds shown as orange and blue dashed lines, respectively.
(2E)-3-(4-Ethoxyphenyl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one monohydrate top
Crystal data top
C27H23NO2·H2OF(000) = 872
Mr = 411.48Dx = 1.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9513 reflections
a = 17.4256 (4) Åθ = 2.2–29.5°
b = 7.6240 (2) ŵ = 0.08 mm1
c = 18.4117 (4) ÅT = 293 K
β = 116.957 (1)°Block, colourless
V = 2180.27 (9) Å30.37 × 0.24 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4993 independent reflections
Radiation source: fine-focus sealed tube3568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2222
Tmin = 0.977, Tmax = 0.988k = 98
29183 measured reflectionsl = 1823
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.065P)2 + 0.6319P]
where P = (Fo2 + 2Fc2)/3
4993 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 0.25 e Å3
3 restraintsΔρmin = 0.19 e Å3
Crystal data top
C27H23NO2·H2OV = 2180.27 (9) Å3
Mr = 411.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.4256 (4) ŵ = 0.08 mm1
b = 7.6240 (2) ÅT = 293 K
c = 18.4117 (4) Å0.37 × 0.24 × 0.15 mm
β = 116.957 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4993 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3568 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.988Rint = 0.033
29183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
4993 reflectionsΔρmin = 0.19 e Å3
288 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25716 (8)0.36751 (17)0.84346 (7)0.0543 (3)
O20.50345 (8)0.52976 (18)1.12587 (8)0.0590 (4)
N10.02026 (8)0.1867 (2)0.72578 (8)0.0466 (4)
C10.06079 (10)0.1951 (2)0.78155 (10)0.0414 (4)
C20.12999 (10)0.2106 (2)0.76061 (9)0.0366 (3)
C30.11343 (10)0.2195 (2)0.67992 (9)0.0362 (3)
C40.02593 (10)0.2109 (2)0.61876 (9)0.0392 (4)
C50.00012 (12)0.2155 (2)0.53384 (10)0.0500 (4)
H50.04160.22740.51550.060*
C60.08461 (13)0.2026 (3)0.47860 (11)0.0593 (5)
H60.10040.20670.42310.071*
C70.14798 (13)0.1831 (3)0.50494 (12)0.0631 (6)
H70.20550.17360.46680.076*
C80.12593 (12)0.1781 (3)0.58612 (12)0.0574 (5)
H80.16850.16490.60300.069*
C90.03862 (10)0.1928 (2)0.64478 (10)0.0431 (4)
C100.07655 (12)0.1904 (3)0.86890 (11)0.0568 (5)
H10A0.02250.19700.87090.085*
H10B0.11200.28810.89780.085*
H10C0.10520.08300.89370.085*
C110.18529 (10)0.2312 (2)0.65688 (9)0.0377 (4)
C120.19313 (12)0.3754 (3)0.61469 (10)0.0498 (4)
H120.15370.46680.60100.060*
C130.25941 (13)0.3837 (3)0.59282 (12)0.0581 (5)
H130.26420.48090.56460.070*
C140.31808 (12)0.2493 (3)0.61263 (11)0.0546 (5)
H140.36220.25500.59750.066*
C150.31119 (12)0.1063 (3)0.65488 (11)0.0526 (5)
H150.35120.01600.66880.063*
C160.24500 (11)0.0957 (2)0.67697 (10)0.0449 (4)
H160.24060.00180.70520.054*
C170.22121 (10)0.2250 (2)0.82790 (9)0.0378 (4)
C180.26143 (10)0.0642 (2)0.87161 (9)0.0434 (4)
H180.23250.04150.85270.052*
C190.33811 (10)0.0620 (2)0.93782 (9)0.0401 (4)
H190.36590.16940.95460.048*
C200.38267 (9)0.0908 (2)0.98645 (9)0.0375 (4)
C210.45460 (10)0.0704 (2)1.06181 (10)0.0460 (4)
H210.47480.04221.07990.055*
C220.49672 (11)0.2115 (2)1.11034 (10)0.0481 (4)
H220.54400.19381.16070.058*
C230.46812 (10)0.3798 (2)1.08362 (10)0.0449 (4)
C240.39746 (11)0.4039 (3)1.00726 (11)0.0519 (4)
H240.37860.51670.98850.062*
C250.35586 (10)0.2621 (2)0.95986 (10)0.0452 (4)
H250.30900.28010.90920.054*
C260.57919 (12)0.5162 (3)1.20221 (12)0.0619 (5)
H26A0.56730.44771.24030.074*
H26B0.62490.45891.19480.074*
C270.60576 (15)0.6989 (3)1.23413 (14)0.0752 (7)
H27A0.56060.75321.24240.113*
H27B0.65730.69411.28500.113*
H27C0.61630.76601.19550.113*
O1W0.17008 (10)0.6955 (2)0.74149 (10)0.0673 (4)
H1W0.1271 (11)0.701 (3)0.7493 (17)0.101*
H2W0.1963 (15)0.603 (2)0.7613 (16)0.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0495 (7)0.0459 (8)0.0520 (7)0.0053 (6)0.0095 (6)0.0020 (6)
O20.0491 (7)0.0527 (8)0.0566 (8)0.0010 (6)0.0077 (6)0.0129 (6)
N10.0380 (7)0.0570 (10)0.0438 (8)0.0002 (7)0.0177 (6)0.0018 (6)
C10.0407 (9)0.0450 (10)0.0373 (8)0.0005 (7)0.0166 (7)0.0011 (7)
C20.0360 (8)0.0368 (9)0.0333 (7)0.0022 (7)0.0123 (6)0.0023 (6)
C30.0364 (8)0.0338 (8)0.0340 (7)0.0034 (7)0.0120 (6)0.0023 (6)
C40.0394 (8)0.0370 (9)0.0350 (8)0.0070 (7)0.0114 (6)0.0013 (6)
C50.0513 (10)0.0555 (11)0.0359 (8)0.0077 (9)0.0133 (7)0.0014 (8)
C60.0595 (12)0.0641 (13)0.0357 (9)0.0115 (10)0.0053 (8)0.0015 (8)
C70.0447 (10)0.0689 (14)0.0505 (11)0.0075 (10)0.0003 (8)0.0081 (10)
C80.0376 (9)0.0669 (13)0.0578 (11)0.0040 (9)0.0131 (8)0.0063 (9)
C90.0373 (8)0.0435 (10)0.0411 (8)0.0036 (7)0.0113 (7)0.0020 (7)
C100.0536 (11)0.0788 (14)0.0414 (9)0.0015 (10)0.0247 (8)0.0011 (9)
C110.0375 (8)0.0431 (9)0.0300 (7)0.0014 (7)0.0131 (6)0.0005 (6)
C120.0551 (10)0.0485 (11)0.0487 (9)0.0076 (9)0.0260 (8)0.0079 (8)
C130.0704 (13)0.0584 (12)0.0568 (11)0.0030 (10)0.0385 (10)0.0072 (9)
C140.0504 (10)0.0673 (13)0.0540 (10)0.0019 (9)0.0305 (9)0.0012 (9)
C150.0483 (10)0.0583 (12)0.0533 (10)0.0091 (9)0.0249 (8)0.0023 (9)
C160.0473 (9)0.0460 (10)0.0414 (8)0.0039 (8)0.0201 (7)0.0030 (7)
C170.0365 (8)0.0434 (10)0.0315 (7)0.0022 (7)0.0137 (6)0.0000 (6)
C180.0396 (9)0.0433 (10)0.0401 (8)0.0018 (7)0.0117 (7)0.0023 (7)
C190.0386 (8)0.0429 (9)0.0374 (8)0.0005 (7)0.0162 (7)0.0025 (7)
C200.0315 (7)0.0447 (9)0.0347 (7)0.0003 (7)0.0135 (6)0.0008 (6)
C210.0390 (9)0.0470 (10)0.0422 (9)0.0037 (8)0.0097 (7)0.0062 (7)
C220.0356 (8)0.0574 (12)0.0385 (8)0.0015 (8)0.0056 (7)0.0011 (8)
C230.0363 (8)0.0500 (11)0.0446 (9)0.0040 (8)0.0151 (7)0.0097 (8)
C240.0460 (10)0.0439 (10)0.0512 (10)0.0048 (8)0.0093 (8)0.0008 (8)
C250.0350 (8)0.0509 (11)0.0384 (8)0.0032 (7)0.0067 (7)0.0016 (7)
C260.0471 (10)0.0639 (13)0.0558 (11)0.0048 (10)0.0067 (8)0.0130 (10)
C270.0647 (13)0.0706 (16)0.0712 (14)0.0141 (12)0.0139 (11)0.0229 (12)
O1W0.0615 (9)0.0736 (11)0.0734 (10)0.0010 (8)0.0363 (8)0.0040 (8)
Geometric parameters (Å, º) top
O1—C171.222 (2)C13—H130.9300
O2—C231.363 (2)C14—C151.375 (3)
O2—C261.430 (2)C14—H140.9300
N1—C11.318 (2)C15—C161.388 (2)
N1—C91.377 (2)C15—H150.9300
C1—C21.428 (2)C16—H160.9300
C1—C101.504 (2)C17—C181.460 (2)
C2—C31.381 (2)C18—C191.340 (2)
C2—C171.513 (2)C18—H180.9300
C3—C41.428 (2)C19—C201.460 (2)
C3—C111.496 (2)C19—H190.9300
C4—C91.415 (2)C20—C211.394 (2)
C4—C51.418 (2)C20—C251.398 (2)
C5—C61.365 (3)C21—C221.379 (2)
C5—H50.9300C21—H210.9300
C6—C71.401 (3)C22—C231.383 (3)
C6—H60.9300C22—H220.9300
C7—C81.365 (3)C23—C241.399 (2)
C7—H70.9300C24—C251.372 (2)
C8—C91.416 (2)C24—H240.9300
C8—H80.9300C25—H250.9300
C10—H10A0.9600C26—C271.501 (3)
C10—H10B0.9600C26—H26A0.9700
C10—H10C0.9600C26—H26B0.9700
C11—C121.388 (2)C27—H27A0.9600
C11—C161.392 (2)C27—H27B0.9600
C12—C131.386 (3)C27—H27C0.9600
C12—H120.9300O1W—H1W0.83 (2)
C13—C141.375 (3)O1W—H2W0.83 (2)
C23—O2—C26118.49 (15)C14—C15—C16120.59 (17)
C1—N1—C9118.87 (14)C14—C15—H15119.7
N1—C1—C2122.10 (14)C16—C15—H15119.7
N1—C1—C10116.33 (15)C15—C16—C11119.96 (16)
C2—C1—C10121.56 (14)C15—C16—H16120.0
C3—C2—C1120.30 (14)C11—C16—H16120.0
C3—C2—C17120.48 (14)O1—C17—C18123.42 (14)
C1—C2—C17119.18 (13)O1—C17—C2119.56 (14)
C2—C3—C4118.28 (14)C18—C17—C2117.02 (14)
C2—C3—C11120.97 (13)C19—C18—C17122.91 (16)
C4—C3—C11120.72 (13)C19—C18—H18118.5
C9—C4—C5118.18 (15)C17—C18—H18118.5
C9—C4—C3117.77 (14)C18—C19—C20126.98 (16)
C5—C4—C3124.04 (15)C18—C19—H19116.5
C6—C5—C4121.01 (18)C20—C19—H19116.5
C6—C5—H5119.5C21—C20—C25117.36 (15)
C4—C5—H5119.5C21—C20—C19120.63 (15)
C5—C6—C7120.40 (17)C25—C20—C19122.01 (14)
C5—C6—H6119.8C22—C21—C20122.15 (16)
C7—C6—H6119.8C22—C21—H21118.9
C8—C7—C6120.50 (17)C20—C21—H21118.9
C8—C7—H7119.8C21—C22—C23119.56 (15)
C6—C7—H7119.8C21—C22—H22120.2
C7—C8—C9120.31 (18)C23—C22—H22120.2
C7—C8—H8119.8O2—C23—C22125.33 (15)
C9—C8—H8119.8O2—C23—C24115.31 (16)
N1—C9—C4122.67 (14)C22—C23—C24119.35 (15)
N1—C9—C8117.72 (16)C25—C24—C23120.42 (17)
C4—C9—C8119.60 (16)C25—C24—H24119.8
C1—C10—H10A109.5C23—C24—H24119.8
C1—C10—H10B109.5C24—C25—C20121.12 (15)
H10A—C10—H10B109.5C24—C25—H25119.4
C1—C10—H10C109.5C20—C25—H25119.4
H10A—C10—H10C109.5O2—C26—C27107.53 (18)
H10B—C10—H10C109.5O2—C26—H26A110.2
C12—C11—C16119.01 (15)C27—C26—H26A110.2
C12—C11—C3120.88 (15)O2—C26—H26B110.2
C16—C11—C3120.11 (14)C27—C26—H26B110.2
C13—C12—C11120.36 (17)H26A—C26—H26B108.5
C13—C12—H12119.8C26—C27—H27A109.5
C11—C12—H12119.8C26—C27—H27B109.5
C14—C13—C12120.38 (18)H27A—C27—H27B109.5
C14—C13—H13119.8C26—C27—H27C109.5
C12—C13—H13119.8H27A—C27—H27C109.5
C13—C14—C15119.71 (17)H27B—C27—H27C109.5
C13—C14—H14120.1H1W—O1W—H2W109.0 (18)
C15—C14—H14120.1
C9—N1—C1—C20.1 (3)C16—C11—C12—C130.1 (3)
C9—N1—C1—C10179.15 (16)C3—C11—C12—C13179.23 (16)
N1—C1—C2—C30.8 (3)C11—C12—C13—C140.0 (3)
C10—C1—C2—C3178.20 (17)C12—C13—C14—C150.5 (3)
N1—C1—C2—C17178.19 (15)C13—C14—C15—C160.7 (3)
C10—C1—C2—C170.8 (2)C14—C15—C16—C110.5 (3)
C1—C2—C3—C40.7 (2)C12—C11—C16—C150.1 (2)
C17—C2—C3—C4178.00 (14)C3—C11—C16—C15179.46 (15)
C1—C2—C3—C11178.44 (15)C3—C2—C17—O174.0 (2)
C17—C2—C3—C114.2 (2)C1—C2—C17—O1103.38 (18)
C2—C3—C4—C90.3 (2)C3—C2—C17—C18106.50 (18)
C11—C3—C4—C9177.47 (15)C1—C2—C17—C1876.12 (19)
C2—C3—C4—C5178.84 (16)O1—C17—C18—C196.8 (3)
C11—C3—C4—C51.1 (2)C2—C17—C18—C19172.70 (15)
C9—C4—C5—C60.1 (3)C17—C18—C19—C20178.70 (15)
C3—C4—C5—C6178.44 (17)C18—C19—C20—C21168.50 (16)
C4—C5—C6—C70.5 (3)C18—C19—C20—C2511.8 (3)
C5—C6—C7—C80.5 (3)C25—C20—C21—C222.2 (3)
C6—C7—C8—C90.1 (3)C19—C20—C21—C22178.11 (16)
C1—N1—C9—C41.1 (3)C20—C21—C22—C231.0 (3)
C1—N1—C9—C8178.07 (17)C26—O2—C23—C223.7 (3)
C5—C4—C9—N1179.87 (16)C26—O2—C23—C24176.17 (16)
C3—C4—C9—N11.3 (2)C21—C22—C23—O2179.40 (17)
C5—C4—C9—C80.7 (2)C21—C22—C23—C240.8 (3)
C3—C4—C9—C8177.95 (16)O2—C23—C24—C25178.97 (16)
C7—C8—C9—N1179.94 (19)C22—C23—C24—C251.2 (3)
C7—C8—C9—C40.7 (3)C23—C24—C25—C200.1 (3)
C2—C3—C11—C12118.53 (18)C21—C20—C25—C241.7 (3)
C4—C3—C11—C1263.7 (2)C19—C20—C25—C24178.55 (16)
C2—C3—C11—C1662.1 (2)C23—O2—C26—C27178.30 (17)
C4—C3—C11—C16115.62 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N1i0.83 (2)2.11 (2)2.934 (2)174 (2)
O1w—H2w···O10.83 (2)2.28 (2)3.082 (2)164 (3)
C26—H26b···O1ii0.972.553.507 (3)167
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC27H23NO2·H2O
Mr411.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.4256 (4), 7.6240 (2), 18.4117 (4)
β (°) 116.957 (1)
V3)2180.27 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.24 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.977, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
29183, 4993, 3568
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.05
No. of reflections4993
No. of parameters288
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N1i0.83 (2)2.11 (2)2.934 (2)174 (2)
O1w—H2w···O10.83 (2)2.28 (2)3.082 (2)164 (3)
C26—H26b···O1ii0.972.553.507 (3)167
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal). TN acknowledges the use of the X-ray CCD facility at the Indian Institute of Science, Bangalore, set up under the IRHPA DST programme.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPrasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchröder, G., Brown, J. W. S. & Schröder, J. (1988). Eur. J. Biochem. 172, 101–109.  PubMed Web of Science Google Scholar
First citationSchröder, G. & Schröder, J. (1990). Z. Naturforsch. Teil C, 45, 1–8.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds