metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2-Bis[(4S)-4-iso­propyl-4,5-di­hydro-1,3-oxazol-2-yl]propane}­bis­­(N,N-di­methyl­formamide)­copper(II) bis­­[hexa­fluorido­anti­monate(V)]

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de

(Received 17 November 2010; accepted 22 November 2010; online 27 November 2010)

In the title compound, [Cu(C15H26N2O2)(C3H7NO)2][SbF6]2, which is a potential catalyst in the catalytic asymmetric Gosteli–Claisen rearrangement, the central CuII atom is in a nearly square-planar cis-N2O2 environment in the cation arising from its coordination by an N,N-bidentate 2,2-bis­[(4S)-4-isopropyl-4,5-dihydro-1,3-oxazol-2-yl]propane ligand and two O-bonded N,N-dimethyl­formamide mol­ecules. Two SbF6 anions are positioned on opposite sides of the plane through the CuN2O2 unit, generating an axially distorted CuN2O2F2 octa­hedral geometry for the metal ion.

Related literature

For background to the catalytic asymmetric Gosteli–Claisen rearrangement, see: Abraham & Hiersemann (2001[Abraham, L. & Hiersemann, M. (2001). Org. Lett. 3, 48-52.]); Abraham et al. (2001[Abraham, L., Czerwonka, R. & Hiersemann, M. (2001). Angew. Chem. Int. Ed. 40, 4700-4703.], 2004[Abraham, L., Körner, M. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281-1294.]); Hiersemann & Abraham (2002[Hiersemann, M. & Abraham, L. (2002). Eur. J. Org. Chem. pp. 1461-1471.]). For further synthetic details, see: Evans et al. (1991[Evans, D. A., Woerpel, K. A., Hinman, M. M. & Faul, M. M. (1991). J. Am. Chem. Soc. 113, 726-728.], 1998[Evans, D. A., Peterson, G. S., Johnson, J. S., Barnes, D. M., Campos, K. R. & Woerpel, K. A. (1998). J. Org. Chem. 63, 4541-4544.]); McKennon et al. (1993[McKennon, M. J., Meyers, A. I., Drauz, K. & Schwarm, M. (1993). J. Org. Chem. 58, 3568-3571.]). For application of the catalytic asymmetric Gosteli–Claisen rearrangement, see: Körner & Hiersemann (2007[Körner, M. & Hiersemann, M. (2007). Org. Lett. 9, 4979-4982.]); Pollex & Hiersemann (2005[Pollex, A. & Hiersemann, M. (2005). Org. Lett. 7, 5705-5708.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C15H26N2O2)(C3H7NO)2][SbF6]2

  • Mr = 947.61

  • Orthorhombic, P 21 21 21

  • a = 9.7256 (2) Å

  • b = 15.2444 (3) Å

  • c = 23.2040 (5) Å

  • V = 3440.25 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.820, Tmax = 1.000

  • 41873 measured reflections

  • 7479 independent reflections

  • 6078 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.037

  • S = 1.04

  • 7479 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2727 Friedel pairs

  • Flack parameter: −0.008 (10)

Table 1
Selected geometric parameters (Å, °)

Cu—O2 1.951 (2)
Cu—N4 1.962 (2)
Cu—O1 1.964 (2)
Cu—N3 1.971 (2)
Cu—F7 2.4232 (18)
Cu—F5 2.5452 (19)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), was tested as a catalyst in the catalytic asymmetric Gosteli-Claisen rearrangement (Abraham et al., 2001; Abraham & Hiersemann, 2001; Hiersemann & Abraham, 2002; Abraham et al., 2004). The synthesis of the title compound, (I), was accomplished according to a modified procedure of Evans et al. (1991, 1998). A sequence of Meyers` amino acid reduction of (S)-Valine (McKennon et al., 1993), subsequent condensation with dimethyl malonic acid dichloride and p-TsCl catalyzed cyclization provided the (S,S)-iPr-box ligand. Treatment of the box ligand with CuCl2 and subsequent anion metathesis with AgSbF6 provided [Cu{(S,S)-iPr-box}](SbF6)2 (Evans et al., 1998). Addition of 2 eq of DMF to a solution of [Cu{(S,S)-iPr-box}](SbF6)2 in 1,2-dichloroethane afforded [Cu{(S,S)-iPr-box}(dmf)2](SbF6)2. Crystallization was achieved by vapor diffusion recrystallization at 243 K.

Related literature top

For background to the Gosteli–Claisen rearrangement, see: Abraham & Hiersemann (2001); Abraham et al. (2001, 2004); Hiersemann & Abraham (2002). For further synthetic details, see: Evans et al. (1991, 1998); McKennon et al. (1993). For related literature [on what subject?], see: Körner & Hiersemann (2007); Pollex & Hiersemann (2005).

Experimental top

To a solution of [Cu{(S,S)-iPr-box}](SbF6)2 (78.1 mg, 0.094 mmol, 1 eq) in dry 1,2-dichloroethane (1 ml) under argon atmosphere was added DMF (14.5 µL, 0.188 mmol, 2 eq) by a microliter syringe and the resulting deep blue solution was stirred for 15 min at room temperature. Subsequent cooling to 243 K provided (I) as deep blue blocks.

Structure description top

The title compound, (I), was tested as a catalyst in the catalytic asymmetric Gosteli-Claisen rearrangement (Abraham et al., 2001; Abraham & Hiersemann, 2001; Hiersemann & Abraham, 2002; Abraham et al., 2004). The synthesis of the title compound, (I), was accomplished according to a modified procedure of Evans et al. (1991, 1998). A sequence of Meyers` amino acid reduction of (S)-Valine (McKennon et al., 1993), subsequent condensation with dimethyl malonic acid dichloride and p-TsCl catalyzed cyclization provided the (S,S)-iPr-box ligand. Treatment of the box ligand with CuCl2 and subsequent anion metathesis with AgSbF6 provided [Cu{(S,S)-iPr-box}](SbF6)2 (Evans et al., 1998). Addition of 2 eq of DMF to a solution of [Cu{(S,S)-iPr-box}](SbF6)2 in 1,2-dichloroethane afforded [Cu{(S,S)-iPr-box}(dmf)2](SbF6)2. Crystallization was achieved by vapor diffusion recrystallization at 243 K.

For background to the Gosteli–Claisen rearrangement, see: Abraham & Hiersemann (2001); Abraham et al. (2001, 2004); Hiersemann & Abraham (2002). For further synthetic details, see: Evans et al. (1991, 1998); McKennon et al. (1993). For related literature [on what subject?], see: Körner & Hiersemann (2007); Pollex & Hiersemann (2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with H-atoms are omitted for clarity. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. : The molecular structure of the cation [Cu(C15H26N2O2)(C3H7NO)2]2+.
{2,2-Bis[(4S)-4-isopropyl-4,5-dihydro-1,3-oxazol-2- yl]propane}bis(N,N-dimethylformamide)copper(II) bis[hexafluoridoantimonate(V)] top
Crystal data top
[Cu(C15H26N2O2)(C3H7NO)2][SbF6]2F(000) = 1860
Mr = 947.61Dx = 1.830 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 18634 reflections
a = 9.7256 (2) Åθ = 2.2–29.1°
b = 15.2444 (3) ŵ = 2.27 mm1
c = 23.2040 (5) ÅT = 173 K
V = 3440.25 (12) Å3Block, blue
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
7479 independent reflections
Radiation source: Enhance (Mo) X-ray Source6078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.0560 pixels mm-1θmax = 27.0°, θmin = 2.2°
ω scansh = 1213
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2020
Tmin = 0.820, Tmax = 1.000l = 2929
41873 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.0104P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
7479 reflectionsΔρmax = 0.81 e Å3
407 parametersΔρmin = 0.52 e Å3
0 restraintsAbsolute structure: Flack (1983), 3264 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (10)
Crystal data top
[Cu(C15H26N2O2)(C3H7NO)2][SbF6]2V = 3440.25 (12) Å3
Mr = 947.61Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7256 (2) ŵ = 2.27 mm1
b = 15.2444 (3) ÅT = 173 K
c = 23.2040 (5) Å0.30 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
7479 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
6078 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 1.000Rint = 0.046
41873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.037Δρmax = 0.81 e Å3
S = 1.04Δρmin = 0.52 e Å3
7479 reflectionsAbsolute structure: Flack (1983), 3264 Friedel pairs
407 parametersAbsolute structure parameter: 0.008 (10)
0 restraints
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.37 (release 24-10-2008) Empirical absorption correction using sperical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5137 (4)0.0127 (2)0.49613 (13)0.0289 (9)
H10.44000.02720.52130.035*
C20.6042 (3)0.0081 (2)0.40077 (13)0.0401 (10)
H2A0.68080.02020.42100.060*
H2B0.56820.03170.37120.060*
H2C0.63670.06220.38250.060*
C30.3714 (4)0.0676 (3)0.41833 (15)0.0533 (12)
H3A0.30910.08250.45000.080*
H3B0.39470.12090.39680.080*
H3C0.32640.02560.39250.080*
C40.4588 (3)0.1619 (2)0.58081 (13)0.0256 (8)
H40.51600.17320.54840.031*
C50.2758 (4)0.2059 (3)0.64305 (15)0.0542 (12)
H5A0.27780.14410.65480.081*
H5B0.18100.22310.63430.081*
H5C0.31140.24250.67440.081*
C60.3425 (4)0.2977 (2)0.55892 (15)0.0454 (10)
H6A0.35910.34860.58370.068*
H6B0.24840.30010.54390.068*
H6C0.40780.29820.52680.068*
C70.4543 (3)0.0165 (2)0.74066 (13)0.0287 (9)
H70.40680.00570.70310.034*
C80.4871 (4)0.0730 (2)0.76668 (15)0.0483 (12)
H8A0.54670.10590.74030.073*
H8B0.40150.10570.77280.073*
H8C0.53420.06510.80360.073*
C90.3533 (4)0.0675 (3)0.77929 (14)0.0444 (11)
H9A0.39730.08030.81640.067*
H9B0.27070.03200.78570.067*
H9C0.32780.12260.76040.067*
C100.5804 (3)0.0722 (2)0.72801 (12)0.0211 (8)
H100.55180.13050.71230.025*
C110.6784 (4)0.0848 (2)0.77903 (13)0.0324 (9)
H11A0.71940.14430.77860.039*
H11B0.62980.07610.81610.039*
C120.7743 (3)0.0033 (2)0.71476 (13)0.0253 (8)
C130.8862 (3)0.0654 (2)0.69651 (13)0.0299 (9)
C140.8660 (4)0.1533 (2)0.72814 (14)0.0482 (11)
H14A0.86200.14280.76980.072*
H14B0.94320.19240.71940.072*
H14C0.78000.18060.71530.072*
C151.0259 (3)0.0252 (3)0.71247 (15)0.0457 (11)
H15A1.03680.03120.69270.069*
H15B1.09970.06500.70060.069*
H15C1.03030.01610.75420.069*
C160.8874 (3)0.0824 (2)0.63266 (13)0.0241 (8)
C170.9624 (4)0.1531 (2)0.55485 (14)0.0317 (9)
H17A0.91440.20910.54690.038*
H17B1.05170.15300.53430.038*
C180.8747 (3)0.0751 (2)0.53675 (13)0.0221 (8)
H180.79990.09510.51030.027*
C190.9522 (4)0.0016 (2)0.50941 (13)0.0295 (9)
H190.88490.05080.50490.035*
C201.0693 (4)0.0358 (2)0.54629 (15)0.0429 (10)
H20A1.03300.05640.58330.064*
H20B1.11490.08450.52640.064*
H20C1.13580.01140.55300.064*
C211.0018 (4)0.0230 (3)0.44894 (15)0.0426 (10)
H21A1.04900.02730.43160.064*
H21B0.92270.03930.42510.064*
H21C1.06540.07260.45150.064*
Cu0.64767 (4)0.02331 (2)0.602048 (15)0.01965 (9)
F10.8666 (3)0.37550 (14)0.65651 (10)0.0660 (8)
F20.7212 (2)0.32927 (15)0.56382 (10)0.0693 (8)
F30.6661 (2)0.25671 (14)0.66418 (9)0.0605 (7)
F40.9252 (2)0.20713 (17)0.67247 (9)0.0705 (7)
F50.77901 (19)0.16435 (12)0.58166 (8)0.0398 (5)
F60.97787 (19)0.28174 (17)0.57245 (9)0.0569 (6)
F70.5062 (2)0.10547 (12)0.61729 (9)0.0539 (6)
F80.3044 (3)0.15540 (19)0.54937 (11)0.0903 (10)
F90.5315 (3)0.2408 (2)0.55262 (12)0.1229 (13)
F100.3038 (3)0.31014 (16)0.59552 (11)0.1034 (10)
F110.5076 (3)0.26059 (18)0.66505 (11)0.0897 (9)
F120.2818 (2)0.1733 (2)0.66203 (12)0.0942 (10)
N10.4964 (3)0.02873 (19)0.44157 (11)0.0281 (7)
N20.3604 (3)0.21768 (18)0.59222 (10)0.0273 (7)
N30.6737 (3)0.02687 (16)0.68626 (9)0.0188 (6)
N40.8145 (3)0.04765 (16)0.59293 (10)0.0192 (6)
O10.6184 (2)0.01985 (15)0.51831 (8)0.0240 (5)
O20.4822 (2)0.09465 (13)0.60992 (9)0.0232 (5)
O30.7822 (2)0.01878 (17)0.77070 (9)0.0345 (6)
O40.9819 (2)0.14044 (14)0.61644 (10)0.0347 (6)
Sb10.82253 (2)0.270184 (15)0.619240 (9)0.02832 (6)
Sb20.40579 (2)0.208325 (15)0.607463 (10)0.03231 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.032 (2)0.0181 (19)0.007 (2)0.0039 (16)0.0065 (17)
C20.046 (2)0.056 (3)0.0185 (18)0.013 (2)0.0007 (17)0.0003 (17)
C30.058 (3)0.071 (3)0.030 (2)0.024 (3)0.0164 (19)0.002 (2)
C40.026 (2)0.032 (2)0.0195 (18)0.0009 (19)0.0029 (15)0.0005 (17)
C50.046 (2)0.073 (3)0.043 (2)0.040 (3)0.0168 (18)0.009 (2)
C60.051 (3)0.034 (2)0.051 (2)0.017 (2)0.004 (2)0.0040 (19)
C70.033 (2)0.041 (2)0.0115 (17)0.015 (2)0.0025 (14)0.0001 (16)
C80.065 (3)0.048 (3)0.032 (2)0.015 (2)0.011 (2)0.007 (2)
C90.046 (3)0.061 (3)0.026 (2)0.014 (2)0.0115 (18)0.0117 (19)
C100.0221 (19)0.028 (2)0.0135 (16)0.0001 (18)0.0008 (14)0.0016 (14)
C110.034 (2)0.041 (2)0.0223 (18)0.004 (2)0.0015 (17)0.0109 (16)
C120.025 (2)0.032 (2)0.0185 (18)0.0036 (18)0.0003 (14)0.0049 (16)
C130.032 (2)0.035 (2)0.0219 (18)0.005 (2)0.0057 (15)0.0043 (16)
C140.066 (3)0.047 (3)0.032 (2)0.014 (2)0.000 (2)0.0125 (19)
C150.039 (2)0.072 (3)0.027 (2)0.015 (2)0.0120 (17)0.013 (2)
C160.025 (2)0.0183 (18)0.0286 (19)0.0002 (17)0.0016 (15)0.0023 (15)
C170.038 (2)0.023 (2)0.034 (2)0.0064 (19)0.0071 (17)0.0083 (17)
C180.020 (2)0.023 (2)0.0231 (18)0.0025 (17)0.0029 (13)0.0055 (15)
C190.034 (2)0.030 (2)0.0244 (19)0.0044 (19)0.0065 (15)0.0016 (16)
C200.046 (3)0.038 (2)0.044 (2)0.010 (2)0.008 (2)0.000 (2)
C210.042 (2)0.050 (3)0.036 (2)0.000 (2)0.0171 (18)0.004 (2)
Cu0.0244 (2)0.0223 (2)0.01230 (19)0.00190 (19)0.00036 (16)0.00085 (17)
F10.089 (2)0.0442 (14)0.0649 (17)0.0308 (14)0.0121 (13)0.0198 (12)
F20.0860 (19)0.0492 (16)0.0727 (18)0.0242 (14)0.0256 (14)0.0122 (13)
F30.0603 (13)0.0506 (15)0.0704 (15)0.0135 (13)0.0353 (12)0.0259 (12)
F40.0802 (17)0.0779 (18)0.0534 (14)0.0076 (17)0.0219 (12)0.0184 (15)
F50.0443 (13)0.0282 (12)0.0470 (13)0.0084 (10)0.0141 (9)0.0097 (10)
F60.0401 (12)0.0687 (18)0.0618 (14)0.0192 (14)0.0148 (10)0.0022 (14)
F70.0751 (15)0.0443 (13)0.0422 (14)0.0327 (11)0.0080 (12)0.0008 (12)
F80.0765 (19)0.108 (2)0.0861 (19)0.0432 (18)0.0446 (16)0.0576 (17)
F90.123 (2)0.145 (3)0.101 (2)0.017 (2)0.0507 (19)0.077 (2)
F100.166 (3)0.0594 (18)0.085 (2)0.0660 (19)0.0287 (19)0.0046 (15)
F110.097 (2)0.068 (2)0.105 (2)0.0046 (16)0.0373 (16)0.0335 (18)
F120.0541 (17)0.135 (3)0.094 (2)0.0123 (17)0.0283 (14)0.028 (2)
N10.0313 (17)0.0369 (19)0.0161 (15)0.0008 (16)0.0018 (13)0.0025 (14)
N20.0270 (15)0.0310 (17)0.0238 (14)0.0080 (16)0.0014 (11)0.0036 (13)
N30.0200 (15)0.0206 (15)0.0159 (13)0.0055 (15)0.0026 (12)0.0018 (11)
N40.0227 (15)0.0151 (14)0.0197 (14)0.0004 (14)0.0028 (12)0.0004 (11)
O10.0245 (14)0.0312 (14)0.0164 (12)0.0012 (12)0.0031 (9)0.0015 (10)
O20.0267 (12)0.0247 (12)0.0184 (12)0.0055 (10)0.0031 (10)0.0070 (11)
O30.0385 (15)0.0518 (18)0.0131 (12)0.0099 (14)0.0065 (10)0.0055 (12)
O40.0393 (14)0.0307 (14)0.0340 (15)0.0170 (12)0.0026 (12)0.0011 (13)
Sb10.03023 (13)0.02309 (12)0.03164 (13)0.00408 (12)0.00031 (11)0.00031 (11)
Sb20.04411 (15)0.02205 (13)0.03076 (13)0.00479 (12)0.00402 (11)0.00098 (11)
Geometric parameters (Å, º) top
C1—O11.245 (4)C13—C141.540 (5)
C1—N11.300 (4)C14—H14A0.9800
C1—H10.9500C14—H14B0.9800
C2—N11.448 (4)C14—H14C0.9800
C2—H2A0.9800C15—H15A0.9800
C2—H2B0.9800C15—H15B0.9800
C2—H2C0.9800C15—H15C0.9800
C3—N11.456 (4)C16—N41.278 (4)
C3—H3A0.9800C16—O41.330 (4)
C3—H3B0.9800C17—O41.455 (4)
C3—H3C0.9800C17—C181.523 (4)
C4—O21.249 (4)C17—H17A0.9900
C4—N21.307 (4)C17—H17B0.9900
C4—H40.9500C18—N41.489 (4)
C5—N21.450 (4)C18—C191.529 (4)
C5—H5A0.9800C18—H181.0000
C5—H5B0.9800C19—C201.517 (4)
C5—H5C0.9800C19—C211.530 (4)
C6—N21.454 (4)C19—H191.0000
C6—H6A0.9800C20—H20A0.9800
C6—H6B0.9800C20—H20B0.9800
C6—H6C0.9800C20—H20C0.9800
C7—C101.521 (4)C21—H21A0.9800
C7—C81.526 (5)C21—H21B0.9800
C7—C91.540 (5)C21—H21C0.9800
C7—H71.0000Cu—O21.951 (2)
C8—H8A0.9800Cu—N41.962 (2)
C8—H8B0.9800Cu—O11.964 (2)
C8—H8C0.9800Cu—N31.971 (2)
C9—H9A0.9800Cu—F72.4232 (18)
C9—H9B0.9800Cu—F52.5452 (19)
C9—H9C0.9800F1—Sb11.873 (2)
C10—N31.497 (4)F2—Sb11.854 (2)
C10—C111.532 (4)F3—Sb11.8560 (18)
C10—H101.0000F4—Sb11.856 (2)
C11—O31.439 (4)F5—Sb11.8822 (18)
C11—H11A0.9900F6—Sb11.8687 (19)
C11—H11B0.9900F7—Sb21.8613 (18)
C12—N31.268 (4)F8—Sb21.855 (2)
C12—O31.343 (4)F9—Sb21.832 (2)
C12—C131.503 (5)F10—Sb21.863 (2)
C13—C161.504 (4)F11—Sb21.844 (2)
C13—C151.536 (4)F12—Sb21.828 (2)
O1—C1—N1125.7 (3)H17A—C17—H17B109.0
O1—C1—H1117.1N4—C18—C17101.4 (2)
N1—C1—H1117.1N4—C18—C19110.0 (3)
N1—C2—H2A109.5C17—C18—C19115.8 (3)
N1—C2—H2B109.5N4—C18—H18109.7
H2A—C2—H2B109.5C17—C18—H18109.7
N1—C2—H2C109.5C19—C18—H18109.7
H2A—C2—H2C109.5C20—C19—C18113.5 (3)
H2B—C2—H2C109.5C20—C19—C21111.4 (3)
N1—C3—H3A109.5C18—C19—C21110.4 (3)
N1—C3—H3B109.5C20—C19—H19107.1
H3A—C3—H3B109.5C18—C19—H19107.1
N1—C3—H3C109.5C21—C19—H19107.1
H3A—C3—H3C109.5C19—C20—H20A109.5
H3B—C3—H3C109.5C19—C20—H20B109.5
O2—C4—N2123.9 (3)H20A—C20—H20B109.5
O2—C4—H4118.1C19—C20—H20C109.5
N2—C4—H4118.1H20A—C20—H20C109.5
N2—C5—H5A109.5H20B—C20—H20C109.5
N2—C5—H5B109.5C19—C21—H21A109.5
H5A—C5—H5B109.5C19—C21—H21B109.5
N2—C5—H5C109.5H21A—C21—H21B109.5
H5A—C5—H5C109.5C19—C21—H21C109.5
H5B—C5—H5C109.5H21A—C21—H21C109.5
N2—C6—H6A109.5H21B—C21—H21C109.5
N2—C6—H6B109.5O2—Cu—N4179.10 (10)
H6A—C6—H6B109.5O2—Cu—O189.32 (9)
N2—C6—H6C109.5N4—Cu—O189.90 (9)
H6A—C6—H6C109.5O2—Cu—N389.86 (10)
H6B—C6—H6C109.5N4—Cu—N390.92 (10)
C10—C7—C8114.1 (3)O1—Cu—N3179.05 (10)
C10—C7—C9110.1 (3)O2—Cu—F788.26 (8)
C8—C7—C9110.8 (3)N4—Cu—F792.21 (9)
C10—C7—H7107.2O1—Cu—F792.32 (8)
C8—C7—H7107.2N3—Cu—F787.16 (9)
C9—C7—H7107.2O2—Cu—F587.74 (8)
C7—C8—H8A109.5N4—Cu—F591.75 (8)
C7—C8—H8B109.5O1—Cu—F584.92 (8)
H8A—C8—H8B109.5N3—Cu—F595.54 (8)
C7—C8—H8C109.5F7—Cu—F5175.16 (7)
H8A—C8—H8C109.5Sb1—F5—Cu138.67 (9)
H8B—C8—H8C109.5Sb2—F7—Cu164.27 (12)
C7—C9—H9A109.5C1—N1—C2120.1 (3)
C7—C9—H9B109.5C1—N1—C3123.0 (3)
H9A—C9—H9B109.5C2—N1—C3116.8 (3)
C7—C9—H9C109.5C4—N2—C5120.0 (3)
H9A—C9—H9C109.5C4—N2—C6121.7 (3)
H9B—C9—H9C109.5C5—N2—C6117.9 (3)
N3—C10—C7110.8 (3)C12—N3—C10107.3 (2)
N3—C10—C11100.4 (2)C12—N3—Cu127.3 (2)
C7—C10—C11115.0 (3)C10—N3—Cu125.2 (2)
N3—C10—H10110.1C16—N4—C18107.3 (3)
C7—C10—H10110.1C16—N4—Cu127.6 (2)
C11—C10—H10110.1C18—N4—Cu125.06 (19)
O3—C11—C10104.2 (2)C1—O1—Cu122.6 (2)
O3—C11—H11A110.9C4—O2—Cu123.9 (2)
C10—C11—H11A110.9C12—O3—C11105.4 (2)
O3—C11—H11B110.9C16—O4—C17106.0 (2)
C10—C11—H11B110.9F2—Sb1—F390.45 (11)
H11A—C11—H11B108.9F2—Sb1—F4177.53 (11)
N3—C12—O3117.2 (3)F3—Sb1—F490.55 (10)
N3—C12—C13129.8 (3)F2—Sb1—F688.91 (11)
O3—C12—C13112.9 (3)F3—Sb1—F6178.42 (10)
C12—C13—C16113.1 (3)F4—Sb1—F690.03 (10)
C12—C13—C15108.7 (3)F2—Sb1—F191.46 (11)
C16—C13—C15107.4 (3)F3—Sb1—F191.31 (9)
C12—C13—C14108.8 (3)F4—Sb1—F190.78 (11)
C16—C13—C14108.7 (3)F6—Sb1—F190.14 (10)
C15—C13—C14110.2 (3)F2—Sb1—F588.61 (10)
C13—C14—H14A109.5F3—Sb1—F588.92 (8)
C13—C14—H14B109.5F4—Sb1—F589.16 (10)
H14A—C14—H14B109.5F6—Sb1—F589.63 (9)
C13—C14—H14C109.5F1—Sb1—F5179.76 (10)
H14A—C14—H14C109.5F12—Sb2—F9178.67 (15)
H14B—C14—H14C109.5F12—Sb2—F1188.77 (13)
C13—C15—H15A109.5F9—Sb2—F1191.63 (14)
C13—C15—H15B109.5F12—Sb2—F891.47 (13)
H15A—C15—H15B109.5F9—Sb2—F888.12 (14)
C13—C15—H15C109.5F11—Sb2—F8179.62 (12)
H15A—C15—H15C109.5F12—Sb2—F790.88 (11)
H15B—C15—H15C109.5F9—Sb2—F787.85 (12)
N4—C16—O4117.1 (3)F11—Sb2—F789.62 (11)
N4—C16—C13129.4 (3)F8—Sb2—F790.09 (10)
O4—C16—C13113.5 (3)F12—Sb2—F1089.71 (13)
O4—C17—C18103.9 (2)F9—Sb2—F1091.55 (14)
O4—C17—H17A111.0F11—Sb2—F1091.94 (12)
C18—C17—H17A111.0F8—Sb2—F1088.36 (12)
O4—C17—H17B111.0F7—Sb2—F10178.35 (11)
C18—C17—H17B111.0
C8—C7—C10—N359.8 (3)F7—Cu—N3—C1297.1 (3)
C9—C7—C10—N3174.9 (3)F5—Cu—N3—C1286.9 (3)
C8—C7—C10—C1153.1 (4)O2—Cu—N3—C100.8 (2)
C9—C7—C10—C1172.1 (4)N4—Cu—N3—C10179.7 (2)
N3—C10—C11—O322.7 (3)F7—Cu—N3—C1087.5 (2)
C7—C10—C11—O396.3 (3)F5—Cu—N3—C1088.5 (2)
N3—C12—C13—C169.9 (5)O4—C16—N4—C188.3 (4)
O3—C12—C13—C16173.6 (3)C13—C16—N4—C18169.4 (3)
N3—C12—C13—C15129.1 (4)O4—C16—N4—Cu168.4 (2)
O3—C12—C13—C1554.4 (4)C13—C16—N4—Cu13.8 (5)
N3—C12—C13—C14110.9 (4)C17—C18—N4—C1617.6 (3)
O3—C12—C13—C1465.6 (4)C19—C18—N4—C16105.6 (3)
C12—C13—C16—N45.2 (5)C17—C18—N4—Cu159.3 (2)
C15—C13—C16—N4114.8 (4)C19—C18—N4—Cu77.5 (3)
C14—C13—C16—N4126.0 (4)O1—Cu—N4—C16171.4 (3)
C12—C13—C16—O4177.0 (3)N3—Cu—N4—C168.1 (3)
C15—C13—C16—O463.0 (4)F7—Cu—N4—C1679.1 (3)
C14—C13—C16—O456.2 (4)F5—Cu—N4—C16103.7 (3)
O4—C17—C18—N420.0 (3)O1—Cu—N4—C184.8 (2)
O4—C17—C18—C1999.0 (3)N3—Cu—N4—C18175.7 (2)
N4—C18—C19—C2059.9 (4)F7—Cu—N4—C1897.1 (2)
C17—C18—C19—C2054.3 (4)F5—Cu—N4—C1880.1 (2)
N4—C18—C19—C21174.2 (3)N1—C1—O1—Cu169.4 (3)
C17—C18—C19—C2171.6 (4)O2—Cu—O1—C161.1 (3)
O2—Cu—F5—Sb162.36 (16)N4—Cu—O1—C1119.4 (3)
N4—Cu—F5—Sb1118.37 (16)F7—Cu—O1—C127.2 (3)
O1—Cu—F5—Sb1151.89 (16)F5—Cu—O1—C1148.9 (3)
N3—Cu—F5—Sb127.28 (17)N2—C4—O2—Cu168.2 (2)
O2—Cu—F7—Sb2106.6 (4)O1—Cu—O2—C450.1 (2)
N4—Cu—F7—Sb272.7 (4)N3—Cu—O2—C4130.4 (3)
O1—Cu—F7—Sb217.3 (4)F7—Cu—O2—C4142.4 (3)
N3—Cu—F7—Sb2163.5 (4)F5—Cu—O2—C434.9 (2)
O1—C1—N1—C20.3 (5)N3—C12—O3—C119.1 (4)
O1—C1—N1—C3179.5 (3)C13—C12—O3—C11173.9 (3)
O2—C4—N2—C53.6 (5)C10—C11—O3—C1220.0 (3)
O2—C4—N2—C6176.4 (3)N4—C16—O4—C175.6 (4)
O3—C12—N3—C106.7 (4)C13—C16—O4—C17176.3 (3)
C13—C12—N3—C10169.7 (3)C18—C17—O4—C1616.4 (3)
O3—C12—N3—Cu169.3 (2)Cu—F5—Sb1—F2116.14 (16)
C13—C12—N3—Cu14.2 (5)Cu—F5—Sb1—F325.67 (15)
C7—C10—N3—C12103.8 (3)Cu—F5—Sb1—F464.90 (15)
C11—C10—N3—C1218.2 (3)Cu—F5—Sb1—F6154.94 (15)
C7—C10—N3—Cu80.0 (3)Cu—F7—Sb2—F12145.8 (4)
C11—C10—N3—Cu158.0 (2)Cu—F7—Sb2—F933.8 (4)
O2—Cu—N3—C12174.6 (3)Cu—F7—Sb2—F11125.5 (4)
N4—Cu—N3—C124.9 (3)Cu—F7—Sb2—F854.3 (4)

Experimental details

Crystal data
Chemical formula[Cu(C15H26N2O2)(C3H7NO)2][SbF6]2
Mr947.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.7256 (2), 15.2444 (3), 23.2040 (5)
V3)3440.25 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.820, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
41873, 7479, 6078
Rint0.046
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.037, 1.04
No. of reflections7479
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.52
Absolute structureFlack (1983), 3264 Friedel pairs
Absolute structure parameter0.008 (10)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu—O21.951 (2)Cu—N31.971 (2)
Cu—N41.962 (2)Cu—F72.4232 (18)
Cu—O11.964 (2)Cu—F52.5452 (19)
N4—Cu—N390.92 (10)Sb2—F7—Cu164.27 (12)
Sb1—F5—Cu138.67 (9)
 

References

First citationAbraham, L., Czerwonka, R. & Hiersemann, M. (2001). Angew. Chem. Int. Ed. 40, 4700–4703.  Web of Science CrossRef CAS Google Scholar
First citationAbraham, L. & Hiersemann, M. (2001). Org. Lett. 3, 48–52.  Google Scholar
First citationAbraham, L., Körner, M. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281–1294.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, D. A., Peterson, G. S., Johnson, J. S., Barnes, D. M., Campos, K. R. & Woerpel, K. A. (1998). J. Org. Chem. 63, 4541–4544.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, D. A., Woerpel, K. A., Hinman, M. M. & Faul, M. M. (1991). J. Am. Chem. Soc. 113, 726–728.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHiersemann, M. & Abraham, L. (2002). Eur. J. Org. Chem. pp. 1461–1471.  CrossRef Google Scholar
First citationKörner, M. & Hiersemann, M. (2007). Org. Lett. 9, 4979–4982.  Web of Science PubMed Google Scholar
First citationMcKennon, M. J., Meyers, A. I., Drauz, K. & Schwarm, M. (1993). J. Org. Chem. 58, 3568–3571.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPollex, A. & Hiersemann, M. (2005). Org. Lett. 7, 5705–5708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds