metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-tert-Butyl­pyridine)­chlorido[hydro­tris­­(3,5-di­methyl­pyrazol-1-yl)borato]nitro­sylmolybdenum(I) di­chloro­methane monosolvate

aSchool of Chemistry, University of Bristol, Cantock Close, BS8 ITS Bristol, England
*Correspondence e-mail: mbkassim@ukm.my

(Received 18 November 2010; accepted 19 November 2010; online 30 November 2010)

In the title compound, [Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2, the MoI atom adopts a distorted MoClN5 octa­hedral geometry with the hydro­tris­(3,5-dimethyl­pyrazol­yl)borate anion in an N,N′,N′′-tridentate tripodal (facial) coordination mode. A 4-tert-butyl­pyrine ligand, chloride anion and a nitrosyl cation complement the coodination of the MoI atom and an intra­molecular C—H⋯Cl hydrogen bond helps to stabilize the configuration of the complex mol­ecule. The packing is stabilized by an inter­molecular C—H⋯Cl hydrogen bond involving the complex mol­ecule and the CH2Cl2 solvent mol­ecule.

Related literature

For bond lengths and angles, see: Kassim & McCleverty (2010[Kassim, M. B. & McCleverty, J. A. (2010). Acta Cryst. E66, m1541-m1542.]). For related compounds, see: Kassim (2003[Kassim, M. B. (2003). PhD thesis, University of Bristol, England.]); Kassim et al. (2002[Kassim, M. B., Paul, R. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). Inorg. Chim. Acta, 327, 160-168.]); Jones et al. (1997[Jones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10-18.]); Amoroso et al. (1994[Amoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751-2752.]). For background to poly-(pyrazol­yl)borate ligands, see: Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2

  • Mr = 678.73

  • Monoclinic, P 21 /n

  • a = 13.4525 (18) Å

  • b = 16.345 (2) Å

  • c = 14.818 (2) Å

  • β = 109.376 (2)°

  • V = 3073.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 173 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.930

  • 19465 measured reflections

  • 7040 independent reflections

  • 5113 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.05

  • 7040 reflections

  • 365 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.54 e Å−3

  • Δρmin = −1.50 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—N1 1.999 (6)
Mo1—N21 2.164 (3)
Mo1—N11 2.184 (3)
Mo1—N41 2.207 (3)
Mo1—N31 2.248 (3)
Mo1—Cl1 2.4119 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H36A⋯Cl1 0.96 2.57 3.437 (5) 150
C51—H51B⋯Cl1i 0.97 2.48 3.412 (6) 161
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Poly(pyrazolyl)borate ligands [Trofimenko (1993)] have attracted many researchers for the coordination chemistry of molybdenum complexes [Kassim et al. (2002), Jones et al. (1997) & Amoroso et al. (1994)]. In the title compound, (I), the hydrotris(3,5-dimethyl(pyrazolyl)borate ligand bonds to the central molybdenum atom in a tridentate manner through the N-atom at the 6-position of the pyrazolyl rings. One chloride anion; a 4-tert-butylpyridine and a nitrosyl cation, bond via the N-atom, establish the distorted octahedral coordination of the Mo(I) centre (Fig1). In addition, one molecule of CH2Cl2 solvent cystallized together with the complex molecule.

In the complex molecule moeities, [Mo1/Cl1/N11/N12/C13/C14/C15/C16/C17/B1 (A)], [Mo1/N21/N 22/C23/C24/C25/C26/C27/B1 (B)] and [Mo1/O1/N1/N31/N32/C33/C34/C35/C36/C37/B1 (C)] are essentially planar with maximum deviations from the mean plane are 0.040 (4)° for B1, 0.029 (5)° for C27 and 0.043 (1)° for B1 atoms, respectively. The dihedral angles between A/B, A/C and B/C planes are 62.18 (10)°, 56.96 (9)° and 60.87 (10)°, respectively. Whereas the dihedral angles between these moeities and the 4-tert-butylpyridine, [N41/C42/C43/C44/C45/C46/C47/C49 (D)] which is essentially planar with maximum deviation from the mean plane is 0.056 (4)° for C47 atom, are A/D 70.28 (13)°, B/D 18.14 (14)° and C/D 55.67 (13)°, respectively.

The crystal structure is stabilized by an intramolecular hydrogen bonds C(36)—H(36 A)···Cl(1) (Fig2). The crystal packing is stabilized by an intermolecular hydrogen bonds C—H···Cl (Fig3).

Related literature top

For bond lengths and angles, see: Kassim & McCleverty (2010). For related compounds, see: Kassim (2003); Kassim et al. (2002); Jones et al. (1997); Amoroso et al. (1994). For background to poly-(pyrazolyl)borate ligands, see: Trofimenko (1993). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized from a reaction of Mo(NO)Tp*Cl2 (0.5 mmol) with 4- tert-butylpyridine (0.5 mmol) in dichloromethane in the presence of triethylammine at refluxing temperature under N2 atmosphere (Kassim 2003 & Kassim et al. 2002). Green blocks of (I) were obtained from a slow evaporation of dichloromethane solution of the title compound at room temperature. Yeild 87%.

Refinement top

The H atoms attached to the B atom was located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range of 0.93–0.98, and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Poly(pyrazolyl)borate ligands [Trofimenko (1993)] have attracted many researchers for the coordination chemistry of molybdenum complexes [Kassim et al. (2002), Jones et al. (1997) & Amoroso et al. (1994)]. In the title compound, (I), the hydrotris(3,5-dimethyl(pyrazolyl)borate ligand bonds to the central molybdenum atom in a tridentate manner through the N-atom at the 6-position of the pyrazolyl rings. One chloride anion; a 4-tert-butylpyridine and a nitrosyl cation, bond via the N-atom, establish the distorted octahedral coordination of the Mo(I) centre (Fig1). In addition, one molecule of CH2Cl2 solvent cystallized together with the complex molecule.

In the complex molecule moeities, [Mo1/Cl1/N11/N12/C13/C14/C15/C16/C17/B1 (A)], [Mo1/N21/N 22/C23/C24/C25/C26/C27/B1 (B)] and [Mo1/O1/N1/N31/N32/C33/C34/C35/C36/C37/B1 (C)] are essentially planar with maximum deviations from the mean plane are 0.040 (4)° for B1, 0.029 (5)° for C27 and 0.043 (1)° for B1 atoms, respectively. The dihedral angles between A/B, A/C and B/C planes are 62.18 (10)°, 56.96 (9)° and 60.87 (10)°, respectively. Whereas the dihedral angles between these moeities and the 4-tert-butylpyridine, [N41/C42/C43/C44/C45/C46/C47/C49 (D)] which is essentially planar with maximum deviation from the mean plane is 0.056 (4)° for C47 atom, are A/D 70.28 (13)°, B/D 18.14 (14)° and C/D 55.67 (13)°, respectively.

The crystal structure is stabilized by an intramolecular hydrogen bonds C(36)—H(36 A)···Cl(1) (Fig2). The crystal packing is stabilized by an intermolecular hydrogen bonds C—H···Cl (Fig3).

For bond lengths and angles, see: Kassim & McCleverty (2010). For related compounds, see: Kassim (2003); Kassim et al. (2002); Jones et al. (1997); Amoroso et al. (1994). For background to poly-(pyrazolyl)borate ligands, see: Trofimenko (1993). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. The complex molecule picturing the intramolecular H-bond shown as dotted line. The displacement ellipsoids are drawn at the 50% probability level and H atom is shown as spheres of arbitary radius.
[Figure 3] Fig. 3. The packing diagram of the title compound, (I), view down the crystallographic b-axis showing the intermolecular H-bonds [symmetry code: -x + 1/2, y + 1/2,-z + 1/2]. The displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitary radius.
(4-tert-Butylpyridine)chlorido[hydrotris(3,5-dimethylpyrazol-1- yl)borato]nitrosylmolybdenum(I) dichloromethane monosolvate top
Crystal data top
[Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2F(000) = 1396
Mr = 678.73Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7070 reflections
a = 13.4525 (18) Åθ = 0.9–0.9°
b = 16.345 (2) ŵ = 0.72 mm1
c = 14.818 (2) ÅT = 173 K
β = 109.376 (2)°Block, green
V = 3073.7 (7) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
7040 independent reflections
Radiation source: fine-focus sealed tube5113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω/2θ scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 178
Tmin = 0.878, Tmax = 0.930k = 2021
19465 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0573P)2 + 2.0808P]
where P = (Fo2 + 2Fc2)/3
7040 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 1.54 e Å3
0 restraintsΔρmin = 1.50 e Å3
Crystal data top
[Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2V = 3073.7 (7) Å3
Mr = 678.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4525 (18) ŵ = 0.72 mm1
b = 16.345 (2) ÅT = 173 K
c = 14.818 (2) Å0.30 × 0.15 × 0.10 mm
β = 109.376 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5113 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.930Rint = 0.036
19465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.54 e Å3
7040 reflectionsΔρmin = 1.50 e Å3
365 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer 1986) with a nominal stability of 0.1 K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.01682 (2)0.190933 (16)0.201620 (19)0.02194 (9)
Cl10.09795 (11)0.07454 (9)0.25484 (10)0.0659 (3)
O10.1941 (4)0.0915 (3)0.1352 (4)0.0633 (14)
N10.1472 (5)0.1227 (3)0.1546 (4)0.0506 (16)
N110.1070 (2)0.30427 (15)0.16343 (18)0.0210 (5)
N120.0789 (2)0.36951 (15)0.22502 (18)0.0209 (6)
N210.0271 (2)0.21357 (17)0.3421 (2)0.0260 (6)
N220.0113 (2)0.29123 (17)0.37923 (19)0.0246 (6)
N310.1233 (2)0.27485 (17)0.25025 (19)0.0257 (6)
N320.1155 (2)0.34300 (17)0.30134 (19)0.0244 (6)
N410.0079 (2)0.18807 (16)0.06164 (19)0.0238 (6)
C130.1469 (3)0.43159 (19)0.1912 (2)0.0261 (7)
C140.2200 (3)0.4062 (2)0.1067 (2)0.0275 (7)
H140.27640.43640.06760.033*
C150.1933 (3)0.3268 (2)0.0910 (2)0.0239 (7)
C160.2479 (3)0.2725 (2)0.0085 (3)0.0361 (9)
H16A0.19850.25460.02150.054*
H16B0.30410.30210.03690.054*
H16C0.27610.22580.03100.054*
C170.1376 (3)0.5122 (2)0.2406 (3)0.0406 (9)
H17A0.15400.50570.29850.061*
H17B0.18600.55040.19940.061*
H17C0.06700.53240.25560.061*
C230.0187 (3)0.2914 (2)0.4679 (2)0.0323 (8)
C240.0413 (3)0.2125 (3)0.4880 (3)0.0389 (9)
H240.05130.19430.54380.047*
C250.0460 (3)0.1657 (2)0.4090 (3)0.0334 (8)
C260.0657 (4)0.0756 (2)0.3935 (3)0.0450 (10)
H26A0.11890.06650.33250.068*
H26B0.08920.05380.44320.068*
H26C0.00170.04870.39500.068*
C270.0024 (4)0.3667 (3)0.5285 (3)0.0457 (10)
H27A0.07100.38100.55060.069*
H27B0.02500.35640.58250.069*
H27C0.04270.41090.49140.069*
C330.2073 (3)0.3848 (2)0.3266 (2)0.0295 (8)
C340.2748 (3)0.3431 (2)0.2915 (3)0.0341 (8)
H340.34350.35780.29790.041*
C350.2212 (3)0.2748 (2)0.2446 (3)0.0314 (8)
C360.2608 (3)0.2098 (3)0.1939 (3)0.0440 (10)
H36A0.22540.15920.19590.066*
H36B0.33520.20290.22470.066*
H36C0.24700.22570.12850.066*
C370.2245 (3)0.4632 (2)0.3822 (3)0.0411 (10)
H37A0.16830.50060.35180.062*
H37B0.29040.48690.38410.062*
H37C0.22570.45230.44620.062*
C420.0214 (3)0.1171 (2)0.0216 (3)0.0311 (8)
H420.00790.06860.04830.037*
C430.0542 (3)0.1124 (2)0.0569 (3)0.0301 (8)
H430.06340.06150.08110.036*
C440.0738 (3)0.1834 (2)0.1005 (2)0.0253 (7)
C450.0539 (3)0.2565 (2)0.0615 (2)0.0294 (8)
H450.06190.30590.08940.035*
C460.0224 (3)0.2567 (2)0.0179 (2)0.0284 (7)
H460.01070.30670.04240.034*
C470.1185 (3)0.1786 (2)0.1822 (3)0.0323 (8)
C480.2272 (3)0.1384 (3)0.1414 (3)0.0549 (12)
H48A0.26180.13980.18860.082*
H48B0.21920.08270.12470.082*
H48C0.26880.16780.08550.082*
C490.1299 (5)0.2623 (3)0.2217 (4)0.0710 (17)
H49A0.15890.25650.27250.106*
H49B0.17610.29540.17170.106*
H49C0.06200.28800.24590.106*
C500.0491 (4)0.1245 (3)0.2622 (3)0.0522 (12)
H50A0.02010.14810.28730.078*
H50B0.04420.07090.23750.078*
H50C0.07930.12060.31240.078*
C510.1685 (4)0.5102 (3)0.0856 (4)0.0593 (13)
H51A0.14600.54900.03330.071*
H51B0.22400.53560.13750.071*
Cl520.06149 (10)0.48814 (11)0.12480 (9)0.0811 (5)
Cl530.21867 (12)0.42286 (8)0.04752 (10)0.0710 (4)
B10.0133 (3)0.3618 (2)0.3211 (3)0.0258 (8)
H10.021 (2)0.4210 (19)0.360 (2)0.016 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02209 (15)0.02111 (14)0.02357 (15)0.00110 (12)0.00883 (11)0.00138 (11)
Cl10.0607 (8)0.0723 (8)0.0686 (8)0.0042 (6)0.0267 (7)0.0112 (6)
O10.073 (3)0.081 (4)0.044 (3)0.029 (2)0.030 (2)0.024 (2)
N10.106 (5)0.029 (2)0.029 (2)0.036 (2)0.039 (3)0.0152 (18)
N110.0200 (13)0.0219 (13)0.0212 (13)0.0019 (11)0.0071 (11)0.0018 (10)
N120.0203 (14)0.0220 (13)0.0224 (13)0.0034 (11)0.0097 (11)0.0033 (10)
N210.0244 (15)0.0284 (15)0.0253 (14)0.0024 (11)0.0087 (12)0.0045 (11)
N220.0220 (15)0.0313 (15)0.0195 (13)0.0025 (11)0.0055 (11)0.0001 (11)
N310.0199 (15)0.0320 (15)0.0261 (15)0.0033 (12)0.0087 (12)0.0007 (12)
N320.0233 (15)0.0271 (14)0.0226 (14)0.0034 (12)0.0075 (12)0.0007 (11)
N410.0241 (14)0.0217 (13)0.0272 (14)0.0014 (11)0.0105 (12)0.0019 (11)
C130.0289 (18)0.0224 (16)0.0329 (18)0.0021 (14)0.0181 (15)0.0013 (13)
C140.0249 (18)0.0273 (17)0.0310 (18)0.0056 (14)0.0103 (15)0.0040 (14)
C150.0208 (16)0.0293 (18)0.0238 (16)0.0003 (13)0.0105 (13)0.0016 (12)
C160.028 (2)0.042 (2)0.0318 (19)0.0042 (16)0.0010 (16)0.0053 (16)
C170.041 (2)0.0288 (19)0.052 (2)0.0030 (17)0.0155 (19)0.0067 (17)
C230.0283 (19)0.049 (2)0.0201 (17)0.0032 (16)0.0088 (15)0.0009 (14)
C240.038 (2)0.058 (3)0.0223 (18)0.0022 (18)0.0116 (16)0.0103 (16)
C250.029 (2)0.039 (2)0.0291 (19)0.0049 (16)0.0062 (15)0.0095 (15)
C260.053 (3)0.042 (2)0.042 (2)0.014 (2)0.018 (2)0.0110 (18)
C270.052 (3)0.059 (3)0.028 (2)0.008 (2)0.0166 (19)0.0121 (18)
C330.0238 (18)0.038 (2)0.0221 (17)0.0094 (15)0.0012 (14)0.0051 (14)
C340.0181 (18)0.048 (2)0.035 (2)0.0075 (16)0.0071 (15)0.0048 (16)
C350.0209 (18)0.042 (2)0.0311 (19)0.0007 (15)0.0085 (15)0.0064 (15)
C360.025 (2)0.057 (3)0.054 (3)0.0037 (18)0.0183 (19)0.004 (2)
C370.039 (2)0.043 (2)0.038 (2)0.0185 (18)0.0083 (18)0.0068 (17)
C420.039 (2)0.0226 (18)0.0367 (19)0.0040 (15)0.0187 (17)0.0005 (14)
C430.035 (2)0.0227 (17)0.037 (2)0.0006 (15)0.0183 (16)0.0036 (14)
C440.0223 (16)0.0277 (17)0.0278 (17)0.0002 (14)0.0108 (14)0.0001 (13)
C450.037 (2)0.0235 (17)0.0324 (19)0.0017 (15)0.0181 (16)0.0053 (14)
C460.034 (2)0.0216 (16)0.0327 (18)0.0025 (14)0.0146 (16)0.0006 (13)
C470.038 (2)0.0307 (19)0.037 (2)0.0018 (15)0.0238 (17)0.0000 (14)
C480.038 (3)0.076 (3)0.060 (3)0.007 (2)0.028 (2)0.006 (2)
C490.124 (5)0.041 (3)0.084 (4)0.003 (3)0.083 (4)0.007 (2)
C500.057 (3)0.073 (3)0.034 (2)0.012 (2)0.025 (2)0.007 (2)
C510.046 (3)0.076 (3)0.056 (3)0.023 (2)0.016 (2)0.001 (2)
Cl520.0496 (8)0.1453 (14)0.0461 (7)0.0186 (8)0.0129 (6)0.0341 (8)
Cl530.0898 (10)0.0600 (8)0.0600 (8)0.0163 (7)0.0207 (7)0.0117 (6)
B10.027 (2)0.0265 (19)0.0240 (19)0.0045 (15)0.0088 (16)0.0033 (14)
Geometric parameters (Å, º) top
Mo1—N11.999 (6)C27—H27A0.9600
Mo1—N212.164 (3)C27—H27B0.9600
Mo1—N112.184 (3)C27—H27C0.9600
Mo1—N412.207 (3)C33—C341.368 (5)
Mo1—N312.248 (3)C33—C371.499 (5)
Mo1—Cl12.4119 (14)C34—C351.385 (5)
O1—N10.787 (6)C34—H340.9300
N11—C151.345 (4)C35—C361.496 (5)
N11—N121.373 (3)C36—H36A0.9600
N12—C131.347 (4)C36—H36B0.9600
N12—B11.552 (5)C36—H36C0.9600
N21—C251.352 (4)C37—H37A0.9600
N21—N221.371 (4)C37—H37B0.9600
N22—C231.350 (4)C37—H37C0.9600
N22—B11.540 (5)C42—C431.376 (5)
N31—C351.347 (4)C42—H420.9300
N31—N321.371 (4)C43—C441.395 (5)
N32—C331.351 (4)C43—H430.9300
N32—B11.529 (5)C44—C451.390 (5)
N41—C461.341 (4)C44—C471.522 (5)
N41—C421.342 (4)C45—C461.376 (5)
C13—C141.375 (5)C45—H450.9300
C13—C171.492 (5)C46—H460.9300
C14—C151.385 (5)C47—C491.517 (5)
C14—H140.9300C47—C501.525 (5)
C15—C161.493 (5)C47—C481.532 (6)
C16—H16A0.9600C48—H48A0.9600
C16—H16B0.9600C48—H48B0.9600
C16—H16C0.9600C48—H48C0.9600
C17—H17A0.9600C49—H49A0.9600
C17—H17B0.9600C49—H49B0.9600
C17—H17C0.9600C49—H49C0.9600
C23—C241.380 (5)C50—H50A0.9600
C23—C271.496 (5)C50—H50B0.9600
C24—C251.382 (5)C50—H50C0.9600
C24—H240.9300C51—Cl531.751 (5)
C25—C261.501 (5)C51—Cl521.758 (5)
C26—H26A0.9600C51—H51A0.9700
C26—H26B0.9600C51—H51B0.9700
C26—H26C0.9600B1—H11.12 (3)
N1—Mo1—N2195.86 (16)C23—C27—H27C109.5
N1—Mo1—N1192.03 (16)H27A—C27—H27C109.5
N21—Mo1—N1184.08 (10)H27B—C27—H27C109.5
N1—Mo1—N4192.79 (16)N32—C33—C34107.7 (3)
N21—Mo1—N41170.21 (10)N32—C33—C37123.0 (3)
N11—Mo1—N4191.05 (9)C34—C33—C37129.4 (3)
N1—Mo1—N31176.27 (16)C33—C34—C35107.0 (3)
N21—Mo1—N3184.37 (10)C33—C34—H34126.5
N11—Mo1—N3184.28 (10)C35—C34—H34126.5
N41—Mo1—N3186.70 (10)N31—C35—C34108.9 (3)
N1—Mo1—Cl193.79 (15)N31—C35—C36123.4 (3)
N21—Mo1—Cl193.37 (8)C34—C35—C36127.7 (3)
N11—Mo1—Cl1173.86 (8)C35—C36—H36A109.5
N41—Mo1—Cl190.63 (8)C35—C36—H36B109.5
N31—Mo1—Cl189.92 (8)H36A—C36—H36B109.5
O1—N1—Mo1173.1 (9)C35—C36—H36C109.5
C15—N11—N12107.0 (2)H36A—C36—H36C109.5
C15—N11—Mo1134.3 (2)H36B—C36—H36C109.5
N12—N11—Mo1118.68 (19)C33—C37—H37A109.5
C13—N12—N11109.5 (3)C33—C37—H37B109.5
C13—N12—B1129.8 (3)H37A—C37—H37B109.5
N11—N12—B1120.5 (3)C33—C37—H37C109.5
C25—N21—N22106.5 (3)H37A—C37—H37C109.5
C25—N21—Mo1134.0 (3)H37B—C37—H37C109.5
N22—N21—Mo1119.55 (19)N41—C42—C43123.4 (3)
C23—N22—N21109.9 (3)N41—C42—H42118.3
C23—N22—B1129.9 (3)C43—C42—H42118.3
N21—N22—B1120.2 (3)C42—C43—C44120.5 (3)
C35—N31—N32106.9 (3)C42—C43—H43119.8
C35—N31—Mo1135.5 (2)C44—C43—H43119.8
N32—N31—Mo1117.6 (2)C45—C44—C43115.5 (3)
C33—N32—N31109.4 (3)C45—C44—C47123.9 (3)
C33—N32—B1130.0 (3)C43—C44—C47120.6 (3)
N31—N32—B1120.5 (3)C46—C45—C44120.9 (3)
C46—N41—C42116.5 (3)C46—C45—H45119.5
C46—N41—Mo1121.9 (2)C44—C45—H45119.5
C42—N41—Mo1121.2 (2)N41—C46—C45123.1 (3)
N12—C13—C14107.7 (3)N41—C46—H46118.4
N12—C13—C17123.1 (3)C45—C46—H46118.4
C14—C13—C17129.2 (3)C49—C47—C44112.1 (3)
C13—C14—C15106.8 (3)C49—C47—C50109.7 (4)
C13—C14—H14126.6C44—C47—C50110.3 (3)
C15—C14—H14126.6C49—C47—C48109.4 (4)
N11—C15—C14109.0 (3)C44—C47—C48106.7 (3)
N11—C15—C16123.4 (3)C50—C47—C48108.5 (3)
C14—C15—C16127.6 (3)C47—C48—H48A109.5
C15—C16—H16A109.5C47—C48—H48B109.5
C15—C16—H16B109.5H48A—C48—H48B109.5
H16A—C16—H16B109.5C47—C48—H48C109.5
C15—C16—H16C109.5H48A—C48—H48C109.5
H16A—C16—H16C109.5H48B—C48—H48C109.5
H16B—C16—H16C109.5C47—C49—H49A109.5
C13—C17—H17A109.5C47—C49—H49B109.5
C13—C17—H17B109.5H49A—C49—H49B109.5
H17A—C17—H17B109.5C47—C49—H49C109.5
C13—C17—H17C109.5H49A—C49—H49C109.5
H17A—C17—H17C109.5H49B—C49—H49C109.5
H17B—C17—H17C109.5C47—C50—H50A109.5
N22—C23—C24107.5 (3)C47—C50—H50B109.5
N22—C23—C27122.9 (3)H50A—C50—H50B109.5
C24—C23—C27129.7 (3)C47—C50—H50C109.5
C23—C24—C25106.6 (3)H50A—C50—H50C109.5
C23—C24—H24126.7H50B—C50—H50C109.5
C25—C24—H24126.7Cl53—C51—Cl52112.7 (3)
N21—C25—C24109.5 (3)Cl53—C51—H51A109.1
N21—C25—C26121.5 (3)Cl52—C51—H51A109.1
C24—C25—C26129.0 (3)Cl53—C51—H51B109.1
C25—C26—H26A109.5Cl52—C51—H51B109.1
C25—C26—H26B109.5H51A—C51—H51B107.8
H26A—C26—H26B109.5N32—B1—N22109.3 (3)
C25—C26—H26C109.5N32—B1—N12109.7 (3)
H26A—C26—H26C109.5N22—B1—N12108.6 (3)
H26B—C26—H26C109.5N32—B1—H1109.8 (16)
C23—C27—H27A109.5N22—B1—H1110.9 (16)
C23—C27—H27B109.5N12—B1—H1108.5 (16)
H27A—C27—H27B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36A···Cl10.962.573.437 (5)150
C51—H51B···Cl1i0.972.483.412 (6)161
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo(C15H22BN6)Cl(NO)(C9H13N)]·CH2Cl2
Mr678.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.4525 (18), 16.345 (2), 14.818 (2)
β (°) 109.376 (2)
V3)3073.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.878, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
19465, 7040, 5113
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.05
No. of reflections7040
No. of parameters365
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.54, 1.50

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mo1—N11.999 (6)Mo1—N412.207 (3)
Mo1—N212.164 (3)Mo1—N312.248 (3)
Mo1—N112.184 (3)Mo1—Cl12.4119 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36A···Cl10.962.573.437 (5)150
C51—H51B···Cl1i0.972.483.412 (6)161
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Footnotes

Present address: School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia.

Acknowledgements

The authors thank the University of Bristol for providing facilities and Universiti Kebangsaan Malaysia/World Bank for MBK's PhD scholarship and UKM-OUP-TK-16–73/2010 grant.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmoroso, A. J., Cargill Thompson, A. M., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751–2752.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, P. L., Amoroso, A. J., Jeffery, J. C., McCleverty, J. A., Psillakis, E., Rees, L. H. & Ward, M. D. (1997). Inorg. Chem. 36, 10–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationKassim, M. B. (2003). PhD thesis, University of Bristol, England.  Google Scholar
First citationKassim, M. B. & McCleverty, J. A. (2010). Acta Cryst. E66, m1541–m1542.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKassim, M. B., Paul, R. L., Jeffery, J. C., McCleverty, J. A. & Ward, M. D. (2002). Inorg. Chim. Acta, 327, 160–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds