organic compounds
12-(4-Chlorophenyl)-7-methyl-10-phenyl-3,4,5,6,8,10-hexaazatricyclo[7.3.0.02,6]dodeca-1(9),2,4,7,11-pentaene
aDepartment of Chemistry, M.G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, bDepartment of Physics, Bhavan's Sheth R.A. College of Science, Ahmedabad, Gujarat 380 001, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The 12 non-H atoms defining the triple-fused-ring system in the title compound, C19H13ClN6, are almost coplanar (r.m.s. deviation = 0.023 Å). The chloro-substituted ring is almost effectively coplanar with the central atoms [dihedral angle = 6.74 (13)°], but the N-bound benzene ring is not [dihedral angle = 54.38 (13)°]. In the crystal, supramolecular chains along the a axis sustained by C—H⋯π and π–π [centroid–centroid distance between N4C and C4N five-membered rings = 3.484 (2) Å] stacking occur. A very long C—Cl⋯π contact is also seen.
Related literature
For biological activity of imidazoles, see: Yohjiro et al. (1990). For related structures, see: Jotani et al. (2010a,b). Semi-empirical quantum chemical calculations were performed using MOPAC2009, see: Stewart (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810048373/hb5751sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810048373/hb5751Isup2.hkl
To a well stirred mixture of 2-methyl-4-chloro-5-(4-chlorophenyl)-7-phenyl-7H-pyrrolo[2,3-d]pyrimidine (5 mmol) and Aliquat 336 (0.202 g, 0.5 mmol) in toluene (25 ml) was added sodium azide (0.390 g, 6 mmol) in water (5 ml). The reaction mixture was stirred under reflux conditions for 1–1.5 h. Thereafter, the two phases were separated, the aqueous phase was extracted with toluene (15 ml) and combined organic layers were washed with water (10 x 2 ml) and passed through anhydrous sodium sulfate. The excess of solvent was distilled under reduced pressure. The oily residue was treated with cold methanol. The obtained solid was filtered, dried, and crystallized from dioxane to yield colourless blocks; m.pt: 251–253 K.
The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(parent atom). In the absence of significant
effects, 1165 Friedel pairs were averaged in the final In the final a low angle reflection evidently effected by the beam stop was omitted, i.e. (002).The
of the title compound, (I), was examined in connection with on-going structural studies of imidazoles (Jotani et al., 2010a; Jotani et al., 2010b), which are known to possess a wide spectrum of biological activities such as herbicidal, anti-bacterial, anti-fungal, etc. (Yohjiro et al., 1990).In (I), the 12 non-hydrogen atoms comprising the three ring fused system are co-planar with a r.m.s. deviation of 0.023 Å [max. and min. deviations = 0.033 (3) Å for atom N1 and -0.039 (4) Å for C3]. Whereas the chloro-substituted benzene ring is co-planar with the fused ring system [the C2–C3–C14–C15 torsion angle = -173.1 (4) °], the N-bound benzene ring is twisted out of the plane [the C1–N1–C8–C9 torsion angle = -54.0 (6) °]. Other features in the molecule match recently determined literature precedents (Jotani et al., 2010a; Jotani et al., 2010b)
The presence of C—H···π, Table 1, and π–π interactions between five-membered rings [ring centroid(N1,C1–C4)···ring centroid(N3–N6,C6) = 3.484 (2) Å with an angle of inclination = 2.2 (2) ° for i: 1/2 + x, 1/2 - y, 1 - z] lead to supramolecular chains along the a axis. The major interactions involving the Cl atom are of the type C—Cl···π, Table 1, which serve to connect molecules along the b axis.
Semi-empirical Quantum Chemical Calculations were performed using the MOPAC2009 programme (Stewart, 2009) to optimize the experimental structure with the Parametrization Model 6 (PM6) approximation together with restricted the Hartree Folk closed shell wavefunction; the minimizations were terminated at a r.m.s. gradient less than 0.01 kJ-mol-1 Å-1. These calculations gave an optimized structure which had different conformations for the chloro-substituted and the N-bound benzene rings, as seen in the C2—C3—C14—C15 and C1—N1—C8—C9 torsion angles of 146.1 and -38.5 °, respectively.
For biological activity of imidazoles, see: Yohjiro et al. (1990). For related structures, see: Jotani et al. (2010a,b). Semi-empirical quantum chemical calculations were performed using MOPAC2009, see: Stewart (2009).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C19H13ClN6 | F(000) = 744 |
Mr = 360.80 | Dx = 1.480 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3699 reflections |
a = 6.9459 (5) Å | θ = 2.3–29.6° |
b = 9.7010 (8) Å | µ = 0.25 mm−1 |
c = 24.0382 (16) Å | T = 293 K |
V = 1619.7 (2) Å3 | Block, colourless |
Z = 4 | 0.40 × 0.22 × 0.15 mm |
Bruker SMART APEX CCD diffractometer | 1677 independent reflections |
Radiation source: fine-focus sealed tube | 1405 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω and φ scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→4 |
Tmin = 0.928, Tmax = 0.975 | k = −11→11 |
8751 measured reflections | l = −27→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3 |
1677 reflections | (Δ/σ)max < 0.001 |
236 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C19H13ClN6 | V = 1619.7 (2) Å3 |
Mr = 360.80 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.9459 (5) Å | µ = 0.25 mm−1 |
b = 9.7010 (8) Å | T = 293 K |
c = 24.0382 (16) Å | 0.40 × 0.22 × 0.15 mm |
Bruker SMART APEX CCD diffractometer | 1677 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1405 reflections with I > 2σ(I) |
Tmin = 0.928, Tmax = 0.975 | Rint = 0.047 |
8751 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.17 e Å−3 |
1677 reflections | Δρmin = −0.22 e Å−3 |
236 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.39113 (13) | 0.63434 (9) | 0.75124 (3) | 0.0425 (3) | |
N1 | 0.4515 (4) | 0.4484 (3) | 0.42147 (10) | 0.0298 (6) | |
N2 | 0.4434 (4) | 0.2102 (3) | 0.39545 (10) | 0.0298 (6) | |
N3 | 0.4374 (4) | 0.0610 (3) | 0.47095 (10) | 0.0283 (6) | |
N4 | 0.4365 (5) | −0.0648 (3) | 0.49607 (11) | 0.0376 (7) | |
N5 | 0.4374 (5) | −0.0389 (3) | 0.54866 (12) | 0.0425 (8) | |
N6 | 0.4393 (5) | 0.0980 (3) | 0.56050 (11) | 0.0361 (7) | |
C1 | 0.4475 (5) | 0.3117 (3) | 0.43459 (12) | 0.0278 (7) | |
C2 | 0.4411 (5) | 0.2987 (3) | 0.49267 (11) | 0.0245 (7) | |
C3 | 0.4383 (5) | 0.4353 (3) | 0.51533 (12) | 0.0273 (7) | |
C4 | 0.4465 (5) | 0.5218 (3) | 0.47005 (13) | 0.0301 (7) | |
H4 | 0.4484 | 0.6175 | 0.4722 | 0.036* | |
C5 | 0.4366 (5) | 0.0842 (3) | 0.41388 (13) | 0.0300 (7) | |
C6 | 0.4393 (5) | 0.1602 (3) | 0.51112 (12) | 0.0281 (7) | |
C7 | 0.4230 (6) | −0.0361 (4) | 0.37716 (14) | 0.0405 (9) | |
H7A | 0.2920 | −0.0674 | 0.3758 | 0.061* | |
H7B | 0.5037 | −0.1085 | 0.3912 | 0.061* | |
H7C | 0.4645 | −0.0111 | 0.3404 | 0.061* | |
C8 | 0.4640 (5) | 0.5089 (3) | 0.36712 (12) | 0.0289 (8) | |
C9 | 0.6114 (5) | 0.4716 (4) | 0.33131 (13) | 0.0349 (8) | |
H9 | 0.7011 | 0.4051 | 0.3416 | 0.042* | |
C10 | 0.6221 (6) | 0.5346 (4) | 0.28045 (13) | 0.0408 (9) | |
H10 | 0.7186 | 0.5087 | 0.2557 | 0.049* | |
C11 | 0.4940 (5) | 0.6351 (4) | 0.26511 (13) | 0.0394 (9) | |
H11 | 0.5054 | 0.6785 | 0.2308 | 0.047* | |
C12 | 0.3477 (5) | 0.6713 (4) | 0.30125 (13) | 0.0396 (9) | |
H12 | 0.2596 | 0.7390 | 0.2912 | 0.048* | |
C13 | 0.3322 (5) | 0.6070 (4) | 0.35236 (13) | 0.0358 (8) | |
H13 | 0.2329 | 0.6304 | 0.3765 | 0.043* | |
C14 | 0.4292 (5) | 0.4834 (3) | 0.57356 (12) | 0.0276 (7) | |
C15 | 0.4074 (5) | 0.6233 (3) | 0.58553 (13) | 0.0315 (7) | |
H15 | 0.3997 | 0.6860 | 0.5564 | 0.038* | |
C16 | 0.3968 (5) | 0.6708 (3) | 0.63951 (13) | 0.0336 (8) | |
H16 | 0.3824 | 0.7644 | 0.6467 | 0.040* | |
C17 | 0.4079 (5) | 0.5776 (3) | 0.68284 (12) | 0.0300 (7) | |
C18 | 0.4282 (5) | 0.4389 (3) | 0.67246 (13) | 0.0340 (8) | |
H18 | 0.4342 | 0.3768 | 0.7019 | 0.041* | |
C19 | 0.4397 (5) | 0.3921 (3) | 0.61828 (12) | 0.0319 (7) | |
H19 | 0.4548 | 0.2983 | 0.6115 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0529 (6) | 0.0401 (5) | 0.0344 (4) | −0.0031 (4) | 0.0028 (4) | −0.0066 (4) |
N1 | 0.0367 (16) | 0.0210 (15) | 0.0317 (14) | −0.0009 (13) | 0.0002 (12) | 0.0045 (12) |
N2 | 0.0289 (15) | 0.0257 (16) | 0.0348 (14) | −0.0007 (14) | −0.0003 (12) | −0.0003 (12) |
N3 | 0.0281 (15) | 0.0209 (14) | 0.0358 (14) | −0.0017 (12) | 0.0016 (12) | −0.0010 (12) |
N4 | 0.0465 (19) | 0.0210 (15) | 0.0453 (18) | −0.0009 (15) | 0.0005 (14) | 0.0049 (13) |
N5 | 0.061 (2) | 0.0213 (17) | 0.0457 (18) | −0.0007 (16) | 0.0016 (16) | 0.0061 (14) |
N6 | 0.0501 (18) | 0.0232 (16) | 0.0349 (16) | −0.0033 (14) | 0.0033 (13) | 0.0065 (12) |
C1 | 0.0252 (17) | 0.0243 (18) | 0.0339 (17) | 0.0003 (15) | 0.0006 (14) | 0.0015 (14) |
C2 | 0.0231 (17) | 0.0235 (17) | 0.0269 (15) | 0.0006 (15) | 0.0011 (13) | 0.0036 (13) |
C3 | 0.0260 (17) | 0.0229 (17) | 0.0329 (17) | 0.0016 (15) | −0.0016 (14) | 0.0033 (14) |
C4 | 0.0365 (19) | 0.0214 (18) | 0.0323 (17) | −0.0015 (15) | 0.0007 (15) | −0.0013 (14) |
C5 | 0.0238 (18) | 0.0308 (19) | 0.0355 (18) | 0.0000 (15) | 0.0017 (14) | −0.0022 (15) |
C6 | 0.0233 (17) | 0.0260 (18) | 0.0350 (17) | 0.0001 (15) | 0.0020 (13) | 0.0004 (14) |
C7 | 0.043 (2) | 0.030 (2) | 0.048 (2) | 0.0006 (18) | 0.0033 (18) | −0.0072 (16) |
C8 | 0.0356 (19) | 0.0227 (18) | 0.0286 (17) | −0.0026 (15) | −0.0030 (14) | 0.0036 (14) |
C9 | 0.035 (2) | 0.031 (2) | 0.0384 (18) | 0.0043 (16) | 0.0018 (15) | 0.0023 (16) |
C10 | 0.044 (2) | 0.045 (2) | 0.0336 (19) | −0.0009 (19) | 0.0070 (15) | 0.0038 (17) |
C11 | 0.054 (2) | 0.031 (2) | 0.0338 (19) | −0.0061 (17) | −0.0049 (15) | 0.0061 (17) |
C12 | 0.053 (2) | 0.032 (2) | 0.0336 (18) | 0.0090 (17) | −0.0063 (16) | 0.0038 (16) |
C13 | 0.043 (2) | 0.031 (2) | 0.0330 (18) | 0.0033 (16) | 0.0013 (14) | −0.0008 (16) |
C14 | 0.0256 (18) | 0.0259 (18) | 0.0314 (16) | −0.0047 (15) | 0.0011 (14) | −0.0022 (14) |
C15 | 0.038 (2) | 0.0224 (17) | 0.0341 (17) | 0.0005 (16) | −0.0012 (14) | 0.0057 (15) |
C16 | 0.035 (2) | 0.0216 (18) | 0.0443 (19) | −0.0005 (14) | 0.0002 (15) | −0.0034 (16) |
C17 | 0.0268 (18) | 0.033 (2) | 0.0304 (16) | −0.0015 (14) | −0.0010 (13) | −0.0010 (14) |
C18 | 0.041 (2) | 0.0290 (19) | 0.0325 (17) | −0.0014 (17) | 0.0019 (15) | 0.0067 (15) |
C19 | 0.0369 (18) | 0.0220 (18) | 0.0366 (18) | −0.0036 (16) | −0.0021 (15) | 0.0037 (14) |
Cl1—C17 | 1.738 (3) | C8—C13 | 1.368 (5) |
N1—C1 | 1.364 (4) | C8—C9 | 1.386 (5) |
N1—C4 | 1.368 (4) | C9—C10 | 1.369 (5) |
N1—C8 | 1.435 (4) | C9—H9 | 0.9300 |
N2—C5 | 1.301 (4) | C10—C11 | 1.370 (5) |
N2—C1 | 1.362 (4) | C10—H10 | 0.9300 |
N3—C6 | 1.364 (4) | C11—C12 | 1.382 (5) |
N3—N4 | 1.361 (4) | C11—H11 | 0.9300 |
N3—C5 | 1.390 (4) | C12—C13 | 1.382 (5) |
N4—N5 | 1.289 (4) | C12—H12 | 0.9300 |
N5—N6 | 1.359 (4) | C13—H13 | 0.9300 |
N6—C6 | 1.332 (4) | C14—C19 | 1.395 (4) |
C1—C2 | 1.402 (4) | C14—C15 | 1.395 (4) |
C2—C6 | 1.415 (4) | C15—C16 | 1.379 (4) |
C2—C3 | 1.433 (4) | C15—H15 | 0.9300 |
C3—C4 | 1.376 (4) | C16—C17 | 1.382 (4) |
C3—C14 | 1.477 (4) | C16—H16 | 0.9300 |
C4—H4 | 0.9300 | C17—C18 | 1.375 (5) |
C5—C7 | 1.466 (4) | C18—C19 | 1.382 (4) |
C7—H7A | 0.9600 | C18—H18 | 0.9300 |
C7—H7B | 0.9600 | C19—H19 | 0.9300 |
C7—H7C | 0.9600 | ||
C1—N1—C4 | 108.0 (3) | C13—C8—N1 | 118.7 (3) |
C1—N1—C8 | 127.6 (3) | C9—C8—N1 | 120.2 (3) |
C4—N1—C8 | 124.5 (3) | C10—C9—C8 | 118.6 (3) |
C5—N2—C1 | 116.4 (3) | C10—C9—H9 | 120.7 |
C6—N3—N4 | 108.6 (2) | C8—C9—H9 | 120.7 |
C6—N3—C5 | 125.8 (3) | C9—C10—C11 | 121.5 (3) |
N4—N3—C5 | 125.7 (3) | C9—C10—H10 | 119.2 |
N5—N4—N3 | 105.1 (3) | C11—C10—H10 | 119.2 |
N4—N5—N6 | 113.3 (3) | C10—C11—C12 | 119.3 (3) |
C6—N6—N5 | 104.9 (3) | C10—C11—H11 | 120.4 |
N2—C1—N1 | 122.9 (3) | C12—C11—H11 | 120.4 |
N2—C1—C2 | 128.5 (3) | C11—C12—C13 | 120.1 (3) |
N1—C1—C2 | 108.5 (3) | C11—C12—H12 | 120.0 |
C1—C2—C6 | 113.4 (3) | C13—C12—H12 | 120.0 |
C1—C2—C3 | 107.2 (3) | C8—C13—C12 | 119.5 (3) |
C6—C2—C3 | 139.4 (3) | C8—C13—H13 | 120.2 |
C4—C3—C2 | 105.2 (3) | C12—C13—H13 | 120.2 |
C4—C3—C14 | 124.0 (3) | C19—C14—C15 | 117.7 (3) |
C2—C3—C14 | 130.8 (3) | C19—C14—C3 | 121.9 (3) |
N1—C4—C3 | 111.0 (3) | C15—C14—C3 | 120.5 (3) |
N1—C4—H4 | 124.5 | C16—C15—C14 | 121.7 (3) |
C3—C4—H4 | 124.5 | C16—C15—H15 | 119.2 |
N2—C5—N3 | 119.2 (3) | C14—C15—H15 | 119.2 |
N2—C5—C7 | 123.0 (3) | C17—C16—C15 | 119.2 (3) |
N3—C5—C7 | 117.7 (3) | C17—C16—H16 | 120.4 |
N6—C6—N3 | 108.1 (3) | C15—C16—H16 | 120.4 |
N6—C6—C2 | 135.2 (3) | C18—C17—C16 | 120.6 (3) |
N3—C6—C2 | 116.7 (3) | C18—C17—Cl1 | 119.2 (2) |
C5—C7—H7A | 109.5 | C16—C17—Cl1 | 120.1 (3) |
C5—C7—H7B | 109.5 | C17—C18—C19 | 119.9 (3) |
H7A—C7—H7B | 109.5 | C17—C18—H18 | 120.0 |
C5—C7—H7C | 109.5 | C19—C18—H18 | 120.0 |
H7A—C7—H7C | 109.5 | C18—C19—C14 | 121.0 (3) |
H7B—C7—H7C | 109.5 | C18—C19—H19 | 119.5 |
C13—C8—C9 | 121.0 (3) | C14—C19—H19 | 119.5 |
C6—N3—N4—N5 | 0.2 (4) | N4—N3—C6—C2 | 179.8 (3) |
C5—N3—N4—N5 | −179.9 (3) | C5—N3—C6—C2 | −0.1 (5) |
N3—N4—N5—N6 | −0.1 (4) | C1—C2—C6—N6 | 177.8 (4) |
N4—N5—N6—C6 | 0.1 (4) | C3—C2—C6—N6 | −2.2 (8) |
C5—N2—C1—N1 | −178.9 (3) | C1—C2—C6—N3 | −2.2 (4) |
C5—N2—C1—C2 | −1.5 (5) | C3—C2—C6—N3 | 177.9 (4) |
C4—N1—C1—N2 | 177.4 (3) | C1—N1—C8—C13 | 128.3 (4) |
C8—N1—C1—N2 | −4.1 (5) | C4—N1—C8—C13 | −53.5 (5) |
C4—N1—C1—C2 | −0.4 (4) | C1—N1—C8—C9 | −54.1 (5) |
C8—N1—C1—C2 | 178.1 (3) | C4—N1—C8—C9 | 124.2 (4) |
N2—C1—C2—C6 | 3.2 (5) | C13—C8—C9—C10 | −0.4 (5) |
N1—C1—C2—C6 | −179.1 (3) | N1—C8—C9—C10 | −178.0 (3) |
N2—C1—C2—C3 | −176.8 (3) | C8—C9—C10—C11 | 1.6 (5) |
N1—C1—C2—C3 | 0.9 (4) | C9—C10—C11—C12 | −1.6 (6) |
C1—C2—C3—C4 | −1.0 (4) | C10—C11—C12—C13 | 0.4 (5) |
C6—C2—C3—C4 | 179.0 (4) | C9—C8—C13—C12 | −0.8 (5) |
C1—C2—C3—C14 | 179.1 (3) | N1—C8—C13—C12 | 176.8 (3) |
C6—C2—C3—C14 | −1.0 (7) | C11—C12—C13—C8 | 0.8 (5) |
C1—N1—C4—C3 | −0.3 (4) | C4—C3—C14—C19 | −173.7 (3) |
C8—N1—C4—C3 | −178.8 (3) | C2—C3—C14—C19 | 6.2 (6) |
C2—C3—C4—N1 | 0.8 (4) | C4—C3—C14—C15 | 7.0 (5) |
C14—C3—C4—N1 | −179.3 (3) | C2—C3—C14—C15 | −173.1 (3) |
C1—N2—C5—N3 | −1.1 (5) | C19—C14—C15—C16 | 0.1 (5) |
C1—N2—C5—C7 | 177.3 (3) | C3—C14—C15—C16 | 179.5 (3) |
C6—N3—C5—N2 | 2.0 (5) | C14—C15—C16—C17 | −0.1 (5) |
N4—N3—C5—N2 | −178.0 (3) | C15—C16—C17—C18 | −0.3 (5) |
C6—N3—C5—C7 | −176.5 (3) | C15—C16—C17—Cl1 | −179.0 (3) |
N4—N3—C5—C7 | 3.5 (5) | C16—C17—C18—C19 | 0.7 (5) |
N5—N6—C6—N3 | 0.0 (4) | Cl1—C17—C18—C19 | 179.3 (3) |
N5—N6—C6—C2 | −179.9 (4) | C17—C18—C19—C14 | −0.6 (5) |
N4—N3—C6—N6 | −0.1 (4) | C15—C14—C19—C18 | 0.2 (5) |
C5—N3—C6—N6 | 179.9 (3) | C3—C14—C19—C18 | −179.1 (3) |
Cg1 and Cg2 are the centroids of the C14–C19 and C8–C13 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7a···Cg1i | 0.96 | 2.62 | 3.509 (5) | 154 |
C17—Cl1···Cg2ii | 1.74 (1) | 3.61 (1) | 4.423 (4) | 106 (1) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1/2, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C19H13ClN6 |
Mr | 360.80 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 6.9459 (5), 9.7010 (8), 24.0382 (16) |
V (Å3) | 1619.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.40 × 0.22 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.928, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8751, 1677, 1405 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.096, 0.98 |
No. of reflections | 1677 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.22 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Cg1 and Cg2 are the centroids of the C14–C19 and C8–C13 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7a···Cg1i | 0.96 | 2.62 | 3.509 (5) | 154 |
C17—Cl1···Cg2ii | 1.737 (4) | 3.608 (2) | 4.423 (4) | 106.34 (13) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1/2, −y+1, z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: mmjotani@rediffmail.com.
Acknowledgements
The authors are thankful to the Department of Science and Technology (DST), and the SAIF, IIT Madras, India, for the X-ray data collection.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Jotani, M. M., Shah, R. D. & Jasinski, J. P. (2010a). Acta Cryst. E66, o212–o213. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jotani, M. M., Shah, R. D. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o805. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. http://OpenMOPAC.net. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yohjiro, H., Hiasao, S., Nobuyuki, K., Takuo, W. & Kazukuki, T. (1990). US Patent 4902705. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure of the title compound, (I), was examined in connection with on-going structural studies of imidazoles (Jotani et al., 2010a; Jotani et al., 2010b), which are known to possess a wide spectrum of biological activities such as herbicidal, anti-bacterial, anti-fungal, etc. (Yohjiro et al., 1990).
In (I), the 12 non-hydrogen atoms comprising the three ring fused system are co-planar with a r.m.s. deviation of 0.023 Å [max. and min. deviations = 0.033 (3) Å for atom N1 and -0.039 (4) Å for C3]. Whereas the chloro-substituted benzene ring is co-planar with the fused ring system [the C2–C3–C14–C15 torsion angle = -173.1 (4) °], the N-bound benzene ring is twisted out of the plane [the C1–N1–C8–C9 torsion angle = -54.0 (6) °]. Other features in the molecule match recently determined literature precedents (Jotani et al., 2010a; Jotani et al., 2010b)
The presence of C—H···π, Table 1, and π–π interactions between five-membered rings [ring centroid(N1,C1–C4)···ring centroid(N3–N6,C6) = 3.484 (2) Å with an angle of inclination = 2.2 (2) ° for i: 1/2 + x, 1/2 - y, 1 - z] lead to supramolecular chains along the a axis. The major interactions involving the Cl atom are of the type C—Cl···π, Table 1, which serve to connect molecules along the b axis.
Semi-empirical Quantum Chemical Calculations were performed using the MOPAC2009 programme (Stewart, 2009) to optimize the experimental structure with the Parametrization Model 6 (PM6) approximation together with restricted the Hartree Folk closed shell wavefunction; the minimizations were terminated at a r.m.s. gradient less than 0.01 kJ-mol-1 Å-1. These calculations gave an optimized structure which had different conformations for the chloro-substituted and the N-bound benzene rings, as seen in the C2—C3—C14—C15 and C1—N1—C8—C9 torsion angles of 146.1 and -38.5 °, respectively.