organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

12-(4-Chloro­phen­yl)-7-methyl-10-phenyl-3,4,5,6,8,10-hexa­aza­tri­cyclo­[7.3.0.02,6]dodeca-1(9),2,4,7,11-penta­ene

aDepartment of Chemistry, M.G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, bDepartment of Physics, Bhavan's Sheth R.A. College of Science, Ahmedabad, Gujarat 380 001, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 November 2010; accepted 19 November 2010; online 27 November 2010)

The 12 non-H atoms defining the triple-fused-ring system in the title compound, C19H13ClN6, are almost coplanar (r.m.s. deviation = 0.023 Å). The chloro-substituted ring is almost effectively coplanar with the central atoms [dihedral angle = 6.74 (13)°], but the N-bound benzene ring is not [dihedral angle = 54.38 (13)°]. In the crystal, supra­molecular chains along the a axis sustained by C—H⋯π and ππ [centroid–centroid distance between N4C and C4N five-membered rings = 3.484 (2) Å] stacking occur. A very long C—Cl⋯π contact is also seen.

Related literature

For biological activity of imidazoles, see: Yohjiro et al. (1990[Yohjiro, H., Hiasao, S., Nobuyuki, K., Takuo, W. & Kazukuki, T. (1990). US Patent 4902705.]). For related structures, see: Jotani et al. (2010a[Jotani, M. M., Shah, R. D. & Jasinski, J. P. (2010a). Acta Cryst. E66, o212-o213.],b[Jotani, M. M., Shah, R. D. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o805.]). Semi-empirical quantum chemical calculations were performed using MOPAC2009, see: Stewart (2009[Stewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. http://OpenMOPAC.net.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13ClN6

  • Mr = 360.80

  • Orthorhombic, P 21 21 21

  • a = 6.9459 (5) Å

  • b = 9.7010 (8) Å

  • c = 24.0382 (16) Å

  • V = 1619.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.40 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.975

  • 8751 measured reflections

  • 1677 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 0.98

  • 1677 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14–C19 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7a⋯Cg1i 0.96 2.62 3.509 (5) 154
C17—Cl1⋯Cg2ii 1.74 (1) 3.61 (1) 4.423 (4) 106 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title compound, (I), was examined in connection with on-going structural studies of imidazoles (Jotani et al., 2010a; Jotani et al., 2010b), which are known to possess a wide spectrum of biological activities such as herbicidal, anti-bacterial, anti-fungal, etc. (Yohjiro et al., 1990).

In (I), the 12 non-hydrogen atoms comprising the three ring fused system are co-planar with a r.m.s. deviation of 0.023 Å [max. and min. deviations = 0.033 (3) Å for atom N1 and -0.039 (4) Å for C3]. Whereas the chloro-substituted benzene ring is co-planar with the fused ring system [the C2–C3–C14–C15 torsion angle = -173.1 (4) °], the N-bound benzene ring is twisted out of the plane [the C1–N1–C8–C9 torsion angle = -54.0 (6) °]. Other features in the molecule match recently determined literature precedents (Jotani et al., 2010a; Jotani et al., 2010b)

The presence of C—H···π, Table 1, and ππ interactions between five-membered rings [ring centroid(N1,C1–C4)···ring centroid(N3–N6,C6) = 3.484 (2) Å with an angle of inclination = 2.2 (2) ° for i: 1/2 + x, 1/2 - y, 1 - z] lead to supramolecular chains along the a axis. The major interactions involving the Cl atom are of the type C—Cl···π, Table 1, which serve to connect molecules along the b axis.

Semi-empirical Quantum Chemical Calculations were performed using the MOPAC2009 programme (Stewart, 2009) to optimize the experimental structure with the Parametrization Model 6 (PM6) approximation together with restricted the Hartree Folk closed shell wavefunction; the minimizations were terminated at a r.m.s. gradient less than 0.01 kJ-mol-1 Å-1. These calculations gave an optimized structure which had different conformations for the chloro-substituted and the N-bound benzene rings, as seen in the C2—C3—C14—C15 and C1—N1—C8—C9 torsion angles of 146.1 and -38.5 °, respectively.

Related literature top

For biological activity of imidazoles, see: Yohjiro et al. (1990). For related structures, see: Jotani et al. (2010a,b). Semi-empirical quantum chemical calculations were performed using MOPAC2009, see: Stewart (2009).

Experimental top

To a well stirred mixture of 2-methyl-4-chloro-5-(4-chlorophenyl)-7-phenyl-7H-pyrrolo[2,3-d]pyrimidine (5 mmol) and Aliquat 336 (0.202 g, 0.5 mmol) in toluene (25 ml) was added sodium azide (0.390 g, 6 mmol) in water (5 ml). The reaction mixture was stirred under reflux conditions for 1–1.5 h. Thereafter, the two phases were separated, the aqueous phase was extracted with toluene (15 ml) and combined organic layers were washed with water (10 x 2 ml) and passed through anhydrous sodium sulfate. The excess of solvent was distilled under reduced pressure. The oily residue was treated with cold methanol. The obtained solid was filtered, dried, and crystallized from dioxane to yield colourless blocks; m.pt: 251–253 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(parent atom). In the absence of significant anomalous scattering effects, 1165 Friedel pairs were averaged in the final refinement. In the final refinement a low angle reflection evidently effected by the beam stop was omitted, i.e. (002).

Structure description top

The crystal structure of the title compound, (I), was examined in connection with on-going structural studies of imidazoles (Jotani et al., 2010a; Jotani et al., 2010b), which are known to possess a wide spectrum of biological activities such as herbicidal, anti-bacterial, anti-fungal, etc. (Yohjiro et al., 1990).

In (I), the 12 non-hydrogen atoms comprising the three ring fused system are co-planar with a r.m.s. deviation of 0.023 Å [max. and min. deviations = 0.033 (3) Å for atom N1 and -0.039 (4) Å for C3]. Whereas the chloro-substituted benzene ring is co-planar with the fused ring system [the C2–C3–C14–C15 torsion angle = -173.1 (4) °], the N-bound benzene ring is twisted out of the plane [the C1–N1–C8–C9 torsion angle = -54.0 (6) °]. Other features in the molecule match recently determined literature precedents (Jotani et al., 2010a; Jotani et al., 2010b)

The presence of C—H···π, Table 1, and ππ interactions between five-membered rings [ring centroid(N1,C1–C4)···ring centroid(N3–N6,C6) = 3.484 (2) Å with an angle of inclination = 2.2 (2) ° for i: 1/2 + x, 1/2 - y, 1 - z] lead to supramolecular chains along the a axis. The major interactions involving the Cl atom are of the type C—Cl···π, Table 1, which serve to connect molecules along the b axis.

Semi-empirical Quantum Chemical Calculations were performed using the MOPAC2009 programme (Stewart, 2009) to optimize the experimental structure with the Parametrization Model 6 (PM6) approximation together with restricted the Hartree Folk closed shell wavefunction; the minimizations were terminated at a r.m.s. gradient less than 0.01 kJ-mol-1 Å-1. These calculations gave an optimized structure which had different conformations for the chloro-substituted and the N-bound benzene rings, as seen in the C2—C3—C14—C15 and C1—N1—C8—C9 torsion angles of 146.1 and -38.5 °, respectively.

For biological activity of imidazoles, see: Yohjiro et al. (1990). For related structures, see: Jotani et al. (2010a,b). Semi-empirical quantum chemical calculations were performed using MOPAC2009, see: Stewart (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A supramolecular chain aligned along the a axis in (I), mediated by C–H···π and ππ interactions, both shown as purple dashed lines.
12-(4-Chlorophenyl)-7-methyl-10-phenyl- 3,4,5,6,8,10-hexaazatricyclo[7.3.0.02,6]dodeca-1(9),2,4,7,11-pentaene top
Crystal data top
C19H13ClN6F(000) = 744
Mr = 360.80Dx = 1.480 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3699 reflections
a = 6.9459 (5) Åθ = 2.3–29.6°
b = 9.7010 (8) ŵ = 0.25 mm1
c = 24.0382 (16) ÅT = 293 K
V = 1619.7 (2) Å3Block, colourless
Z = 40.40 × 0.22 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1677 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and φ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 84
Tmin = 0.928, Tmax = 0.975k = 1111
8751 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
1677 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H13ClN6V = 1619.7 (2) Å3
Mr = 360.80Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9459 (5) ŵ = 0.25 mm1
b = 9.7010 (8) ÅT = 293 K
c = 24.0382 (16) Å0.40 × 0.22 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1677 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1405 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.975Rint = 0.047
8751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.98Δρmax = 0.17 e Å3
1677 reflectionsΔρmin = 0.22 e Å3
236 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39113 (13)0.63434 (9)0.75124 (3)0.0425 (3)
N10.4515 (4)0.4484 (3)0.42147 (10)0.0298 (6)
N20.4434 (4)0.2102 (3)0.39545 (10)0.0298 (6)
N30.4374 (4)0.0610 (3)0.47095 (10)0.0283 (6)
N40.4365 (5)0.0648 (3)0.49607 (11)0.0376 (7)
N50.4374 (5)0.0389 (3)0.54866 (12)0.0425 (8)
N60.4393 (5)0.0980 (3)0.56050 (11)0.0361 (7)
C10.4475 (5)0.3117 (3)0.43459 (12)0.0278 (7)
C20.4411 (5)0.2987 (3)0.49267 (11)0.0245 (7)
C30.4383 (5)0.4353 (3)0.51533 (12)0.0273 (7)
C40.4465 (5)0.5218 (3)0.47005 (13)0.0301 (7)
H40.44840.61750.47220.036*
C50.4366 (5)0.0842 (3)0.41388 (13)0.0300 (7)
C60.4393 (5)0.1602 (3)0.51112 (12)0.0281 (7)
C70.4230 (6)0.0361 (4)0.37716 (14)0.0405 (9)
H7A0.29200.06740.37580.061*
H7B0.50370.10850.39120.061*
H7C0.46450.01110.34040.061*
C80.4640 (5)0.5089 (3)0.36712 (12)0.0289 (8)
C90.6114 (5)0.4716 (4)0.33131 (13)0.0349 (8)
H90.70110.40510.34160.042*
C100.6221 (6)0.5346 (4)0.28045 (13)0.0408 (9)
H100.71860.50870.25570.049*
C110.4940 (5)0.6351 (4)0.26511 (13)0.0394 (9)
H110.50540.67850.23080.047*
C120.3477 (5)0.6713 (4)0.30125 (13)0.0396 (9)
H120.25960.73900.29120.048*
C130.3322 (5)0.6070 (4)0.35236 (13)0.0358 (8)
H130.23290.63040.37650.043*
C140.4292 (5)0.4834 (3)0.57356 (12)0.0276 (7)
C150.4074 (5)0.6233 (3)0.58553 (13)0.0315 (7)
H150.39970.68600.55640.038*
C160.3968 (5)0.6708 (3)0.63951 (13)0.0336 (8)
H160.38240.76440.64670.040*
C170.4079 (5)0.5776 (3)0.68284 (12)0.0300 (7)
C180.4282 (5)0.4389 (3)0.67246 (13)0.0340 (8)
H180.43420.37680.70190.041*
C190.4397 (5)0.3921 (3)0.61828 (12)0.0319 (7)
H190.45480.29830.61150.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0529 (6)0.0401 (5)0.0344 (4)0.0031 (4)0.0028 (4)0.0066 (4)
N10.0367 (16)0.0210 (15)0.0317 (14)0.0009 (13)0.0002 (12)0.0045 (12)
N20.0289 (15)0.0257 (16)0.0348 (14)0.0007 (14)0.0003 (12)0.0003 (12)
N30.0281 (15)0.0209 (14)0.0358 (14)0.0017 (12)0.0016 (12)0.0010 (12)
N40.0465 (19)0.0210 (15)0.0453 (18)0.0009 (15)0.0005 (14)0.0049 (13)
N50.061 (2)0.0213 (17)0.0457 (18)0.0007 (16)0.0016 (16)0.0061 (14)
N60.0501 (18)0.0232 (16)0.0349 (16)0.0033 (14)0.0033 (13)0.0065 (12)
C10.0252 (17)0.0243 (18)0.0339 (17)0.0003 (15)0.0006 (14)0.0015 (14)
C20.0231 (17)0.0235 (17)0.0269 (15)0.0006 (15)0.0011 (13)0.0036 (13)
C30.0260 (17)0.0229 (17)0.0329 (17)0.0016 (15)0.0016 (14)0.0033 (14)
C40.0365 (19)0.0214 (18)0.0323 (17)0.0015 (15)0.0007 (15)0.0013 (14)
C50.0238 (18)0.0308 (19)0.0355 (18)0.0000 (15)0.0017 (14)0.0022 (15)
C60.0233 (17)0.0260 (18)0.0350 (17)0.0001 (15)0.0020 (13)0.0004 (14)
C70.043 (2)0.030 (2)0.048 (2)0.0006 (18)0.0033 (18)0.0072 (16)
C80.0356 (19)0.0227 (18)0.0286 (17)0.0026 (15)0.0030 (14)0.0036 (14)
C90.035 (2)0.031 (2)0.0384 (18)0.0043 (16)0.0018 (15)0.0023 (16)
C100.044 (2)0.045 (2)0.0336 (19)0.0009 (19)0.0070 (15)0.0038 (17)
C110.054 (2)0.031 (2)0.0338 (19)0.0061 (17)0.0049 (15)0.0061 (17)
C120.053 (2)0.032 (2)0.0336 (18)0.0090 (17)0.0063 (16)0.0038 (16)
C130.043 (2)0.031 (2)0.0330 (18)0.0033 (16)0.0013 (14)0.0008 (16)
C140.0256 (18)0.0259 (18)0.0314 (16)0.0047 (15)0.0011 (14)0.0022 (14)
C150.038 (2)0.0224 (17)0.0341 (17)0.0005 (16)0.0012 (14)0.0057 (15)
C160.035 (2)0.0216 (18)0.0443 (19)0.0005 (14)0.0002 (15)0.0034 (16)
C170.0268 (18)0.033 (2)0.0304 (16)0.0015 (14)0.0010 (13)0.0010 (14)
C180.041 (2)0.0290 (19)0.0325 (17)0.0014 (17)0.0019 (15)0.0067 (15)
C190.0369 (18)0.0220 (18)0.0366 (18)0.0036 (16)0.0021 (15)0.0037 (14)
Geometric parameters (Å, º) top
Cl1—C171.738 (3)C8—C131.368 (5)
N1—C11.364 (4)C8—C91.386 (5)
N1—C41.368 (4)C9—C101.369 (5)
N1—C81.435 (4)C9—H90.9300
N2—C51.301 (4)C10—C111.370 (5)
N2—C11.362 (4)C10—H100.9300
N3—C61.364 (4)C11—C121.382 (5)
N3—N41.361 (4)C11—H110.9300
N3—C51.390 (4)C12—C131.382 (5)
N4—N51.289 (4)C12—H120.9300
N5—N61.359 (4)C13—H130.9300
N6—C61.332 (4)C14—C191.395 (4)
C1—C21.402 (4)C14—C151.395 (4)
C2—C61.415 (4)C15—C161.379 (4)
C2—C31.433 (4)C15—H150.9300
C3—C41.376 (4)C16—C171.382 (4)
C3—C141.477 (4)C16—H160.9300
C4—H40.9300C17—C181.375 (5)
C5—C71.466 (4)C18—C191.382 (4)
C7—H7A0.9600C18—H180.9300
C7—H7B0.9600C19—H190.9300
C7—H7C0.9600
C1—N1—C4108.0 (3)C13—C8—N1118.7 (3)
C1—N1—C8127.6 (3)C9—C8—N1120.2 (3)
C4—N1—C8124.5 (3)C10—C9—C8118.6 (3)
C5—N2—C1116.4 (3)C10—C9—H9120.7
C6—N3—N4108.6 (2)C8—C9—H9120.7
C6—N3—C5125.8 (3)C9—C10—C11121.5 (3)
N4—N3—C5125.7 (3)C9—C10—H10119.2
N5—N4—N3105.1 (3)C11—C10—H10119.2
N4—N5—N6113.3 (3)C10—C11—C12119.3 (3)
C6—N6—N5104.9 (3)C10—C11—H11120.4
N2—C1—N1122.9 (3)C12—C11—H11120.4
N2—C1—C2128.5 (3)C11—C12—C13120.1 (3)
N1—C1—C2108.5 (3)C11—C12—H12120.0
C1—C2—C6113.4 (3)C13—C12—H12120.0
C1—C2—C3107.2 (3)C8—C13—C12119.5 (3)
C6—C2—C3139.4 (3)C8—C13—H13120.2
C4—C3—C2105.2 (3)C12—C13—H13120.2
C4—C3—C14124.0 (3)C19—C14—C15117.7 (3)
C2—C3—C14130.8 (3)C19—C14—C3121.9 (3)
N1—C4—C3111.0 (3)C15—C14—C3120.5 (3)
N1—C4—H4124.5C16—C15—C14121.7 (3)
C3—C4—H4124.5C16—C15—H15119.2
N2—C5—N3119.2 (3)C14—C15—H15119.2
N2—C5—C7123.0 (3)C17—C16—C15119.2 (3)
N3—C5—C7117.7 (3)C17—C16—H16120.4
N6—C6—N3108.1 (3)C15—C16—H16120.4
N6—C6—C2135.2 (3)C18—C17—C16120.6 (3)
N3—C6—C2116.7 (3)C18—C17—Cl1119.2 (2)
C5—C7—H7A109.5C16—C17—Cl1120.1 (3)
C5—C7—H7B109.5C17—C18—C19119.9 (3)
H7A—C7—H7B109.5C17—C18—H18120.0
C5—C7—H7C109.5C19—C18—H18120.0
H7A—C7—H7C109.5C18—C19—C14121.0 (3)
H7B—C7—H7C109.5C18—C19—H19119.5
C13—C8—C9121.0 (3)C14—C19—H19119.5
C6—N3—N4—N50.2 (4)N4—N3—C6—C2179.8 (3)
C5—N3—N4—N5179.9 (3)C5—N3—C6—C20.1 (5)
N3—N4—N5—N60.1 (4)C1—C2—C6—N6177.8 (4)
N4—N5—N6—C60.1 (4)C3—C2—C6—N62.2 (8)
C5—N2—C1—N1178.9 (3)C1—C2—C6—N32.2 (4)
C5—N2—C1—C21.5 (5)C3—C2—C6—N3177.9 (4)
C4—N1—C1—N2177.4 (3)C1—N1—C8—C13128.3 (4)
C8—N1—C1—N24.1 (5)C4—N1—C8—C1353.5 (5)
C4—N1—C1—C20.4 (4)C1—N1—C8—C954.1 (5)
C8—N1—C1—C2178.1 (3)C4—N1—C8—C9124.2 (4)
N2—C1—C2—C63.2 (5)C13—C8—C9—C100.4 (5)
N1—C1—C2—C6179.1 (3)N1—C8—C9—C10178.0 (3)
N2—C1—C2—C3176.8 (3)C8—C9—C10—C111.6 (5)
N1—C1—C2—C30.9 (4)C9—C10—C11—C121.6 (6)
C1—C2—C3—C41.0 (4)C10—C11—C12—C130.4 (5)
C6—C2—C3—C4179.0 (4)C9—C8—C13—C120.8 (5)
C1—C2—C3—C14179.1 (3)N1—C8—C13—C12176.8 (3)
C6—C2—C3—C141.0 (7)C11—C12—C13—C80.8 (5)
C1—N1—C4—C30.3 (4)C4—C3—C14—C19173.7 (3)
C8—N1—C4—C3178.8 (3)C2—C3—C14—C196.2 (6)
C2—C3—C4—N10.8 (4)C4—C3—C14—C157.0 (5)
C14—C3—C4—N1179.3 (3)C2—C3—C14—C15173.1 (3)
C1—N2—C5—N31.1 (5)C19—C14—C15—C160.1 (5)
C1—N2—C5—C7177.3 (3)C3—C14—C15—C16179.5 (3)
C6—N3—C5—N22.0 (5)C14—C15—C16—C170.1 (5)
N4—N3—C5—N2178.0 (3)C15—C16—C17—C180.3 (5)
C6—N3—C5—C7176.5 (3)C15—C16—C17—Cl1179.0 (3)
N4—N3—C5—C73.5 (5)C16—C17—C18—C190.7 (5)
N5—N6—C6—N30.0 (4)Cl1—C17—C18—C19179.3 (3)
N5—N6—C6—C2179.9 (4)C17—C18—C19—C140.6 (5)
N4—N3—C6—N60.1 (4)C15—C14—C19—C180.2 (5)
C5—N3—C6—N6179.9 (3)C3—C14—C19—C18179.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7a···Cg1i0.962.623.509 (5)154
C17—Cl1···Cg2ii1.74 (1)3.61 (1)4.423 (4)106 (1)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H13ClN6
Mr360.80
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.9459 (5), 9.7010 (8), 24.0382 (16)
V3)1619.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.22 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
8751, 1677, 1405
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 0.98
No. of reflections1677
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7a···Cg1i0.962.623.509 (5)154
C17—Cl1···Cg2ii1.737 (4)3.608 (2)4.423 (4)106.34 (13)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

The authors are thankful to the Department of Science and Technology (DST), and the SAIF, IIT Madras, India, for the X-ray data collection.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Shah, R. D. & Jasinski, J. P. (2010a). Acta Cryst. E66, o212–o213.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Shah, R. D. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o805.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. http://OpenMOPAC.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYohjiro, H., Hiasao, S., Nobuyuki, K., Takuo, W. & Kazukuki, T. (1990). US Patent 4902705.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds