organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-benzyl­idenecarbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: weifangjjh@126.com

(Received 22 November 2010; accepted 23 November 2010; online 27 November 2010)

In the title compound, C10H12N2O2, the dihedral angle between the mean planes of the aromatic ring and the side chain (r.m.s. deviation = 0.035 Å) is 18.23 (13)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) amide chains propagating in [010].

Related literature

For related structures, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]); Li & Meng (2010[Li, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2685.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O2

  • Mr = 192.22

  • Orthorhombic, P b c a

  • a = 11.309 (2) Å

  • b = 7.6693 (15) Å

  • c = 24.684 (5) Å

  • V = 2140.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 19439 measured reflections

  • 2449 independent reflections

  • 1147 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.206

  • S = 1.00

  • 2449 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.04 2.885 (3) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For related structures, see: Li & Jian (2010); Li & Meng (2010).

Experimental top

A mixture of benzaldehyde (0.01 mol) and ethyl carbazate (0.01 mol) was stirred in refluxing ethanol (20 mL) for 2 h to afford the title compound (0.095 mol, yield 95%). Colourless blocks were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Structure description top

For related structures, see: Li & Jian (2010); Li & Meng (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
Ethyl 3-benzylidenecarbazate top
Crystal data top
C10H12N2O2Dx = 1.193 Mg m3
Mr = 192.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2449 reflections
a = 11.309 (2) Åθ = 3.3–27.5°
b = 7.6693 (15) ŵ = 0.09 mm1
c = 24.684 (5) ÅT = 293 K
V = 2140.8 (7) Å3Block, colorless
Z = 80.22 × 0.20 × 0.18 mm
F(000) = 816
Data collection top
Bruker SMART CCD
diffractometer
1147 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.100
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
φ and ω scansh = 1414
19439 measured reflectionsk = 98
2449 independent reflectionsl = 3231
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1041P)2]
where P = (Fo2 + 2Fc2)/3
2449 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H12N2O2V = 2140.8 (7) Å3
Mr = 192.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.309 (2) ŵ = 0.09 mm1
b = 7.6693 (15) ÅT = 293 K
c = 24.684 (5) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1147 reflections with I > 2σ(I)
19439 measured reflectionsRint = 0.100
2449 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2449 reflectionsΔρmin = 0.22 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.26886 (18)0.1974 (3)0.64212 (7)0.0581 (6)
C50.3635 (2)0.2155 (3)0.72854 (9)0.0531 (6)
N10.2584 (2)0.2687 (3)0.59115 (7)0.0683 (6)
H1A0.30450.35190.58110.082*
C30.1754 (3)0.2069 (4)0.55722 (10)0.0662 (7)
O20.11238 (17)0.0819 (2)0.56498 (7)0.0752 (6)
C40.3463 (2)0.2693 (3)0.67226 (9)0.0591 (7)
H4A0.39300.35820.65810.071*
C60.4598 (2)0.2798 (4)0.75763 (10)0.0663 (7)
H6A0.51390.35280.74060.080*
O10.1713 (2)0.3068 (3)0.51302 (7)0.0940 (7)
C100.2827 (2)0.1092 (3)0.75513 (9)0.0591 (7)
H10A0.21710.06680.73660.071*
C80.3955 (3)0.1299 (4)0.83678 (10)0.0730 (8)
H8A0.40620.10070.87300.088*
C90.2993 (2)0.0663 (3)0.80883 (10)0.0689 (8)
H9A0.24530.00590.82630.083*
C70.4757 (2)0.2363 (4)0.81131 (11)0.0751 (8)
H7A0.54070.27900.83020.090*
C20.0890 (4)0.2517 (5)0.47098 (14)0.1325 (16)
H2B0.11140.13780.45730.159*
H2C0.00970.24350.48580.159*
C10.0915 (5)0.3756 (8)0.42843 (15)0.167 (2)
H1B0.03720.34080.40050.250*
H1C0.16990.38200.41370.250*
H1D0.06890.48780.44220.250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0598 (13)0.0575 (13)0.0569 (11)0.0006 (10)0.0028 (9)0.0056 (9)
C50.0501 (14)0.0482 (14)0.0610 (13)0.0036 (11)0.0004 (10)0.0012 (10)
N10.0776 (15)0.0659 (14)0.0613 (12)0.0123 (11)0.0069 (11)0.0136 (10)
C30.0709 (18)0.0651 (18)0.0625 (15)0.0030 (15)0.0064 (13)0.0077 (13)
O20.0767 (13)0.0716 (13)0.0773 (11)0.0072 (11)0.0111 (9)0.0063 (9)
C40.0573 (15)0.0547 (15)0.0653 (14)0.0023 (12)0.0026 (11)0.0063 (11)
C60.0498 (15)0.0712 (18)0.0778 (17)0.0037 (13)0.0045 (12)0.0056 (12)
O10.1229 (17)0.0917 (15)0.0675 (11)0.0224 (13)0.0252 (11)0.0214 (10)
C100.0559 (15)0.0573 (15)0.0643 (15)0.0027 (12)0.0024 (11)0.0006 (11)
C80.0762 (19)0.077 (2)0.0653 (15)0.0128 (16)0.0065 (14)0.0001 (12)
C90.0742 (19)0.0658 (17)0.0666 (15)0.0025 (14)0.0069 (13)0.0058 (12)
C70.0577 (17)0.089 (2)0.0783 (17)0.0010 (15)0.0175 (14)0.0027 (15)
C20.174 (4)0.142 (3)0.082 (2)0.046 (3)0.063 (2)0.026 (2)
C10.172 (5)0.231 (6)0.096 (3)0.051 (4)0.045 (3)0.054 (3)
Geometric parameters (Å, º) top
N2—C41.275 (3)C10—C91.379 (3)
N2—N11.377 (2)C10—H10A0.9300
C5—C101.389 (3)C8—C71.372 (4)
C5—C61.394 (3)C8—C91.378 (4)
C5—C41.462 (3)C8—H8A0.9300
N1—C31.345 (3)C9—H9A0.9300
N1—H1A0.8600C7—H7A0.9300
C3—O21.210 (3)C2—C11.417 (5)
C3—O11.334 (3)C2—H2B0.9700
C4—H4A0.9300C2—H2C0.9700
C6—C71.378 (3)C1—H1B0.9600
C6—H6A0.9300C1—H1C0.9600
O1—C21.457 (4)C1—H1D0.9600
C4—N2—N1114.8 (2)C7—C8—H8A119.9
C10—C5—C6118.5 (2)C9—C8—H8A119.9
C10—C5—C4121.8 (2)C8—C9—C10120.3 (3)
C6—C5—C4119.5 (2)C8—C9—H9A119.9
C3—N1—N2119.3 (2)C10—C9—H9A119.9
C3—N1—H1A120.4C8—C7—C6119.8 (3)
N2—N1—H1A120.4C8—C7—H7A120.1
O2—C3—O1124.3 (2)C6—C7—H7A120.1
O2—C3—N1126.3 (2)C1—C2—O1108.7 (3)
O1—C3—N1109.3 (3)C1—C2—H2B109.9
N2—C4—C5121.6 (2)O1—C2—H2B109.9
N2—C4—H4A119.2C1—C2—H2C109.9
C5—C4—H4A119.2O1—C2—H2C109.9
C7—C6—C5120.8 (3)H2B—C2—H2C108.3
C7—C6—H6A119.6C2—C1—H1B109.5
C5—C6—H6A119.6C2—C1—H1C109.5
C3—O1—C2116.0 (2)H1B—C1—H1C109.5
C9—C10—C5120.3 (2)C2—C1—H1D109.5
C9—C10—H10A119.8H1B—C1—H1D109.5
C5—C10—H10A119.8H1C—C1—H1D109.5
C7—C8—C9120.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.042.885 (3)168
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H12N2O2
Mr192.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.309 (2), 7.6693 (15), 24.684 (5)
V3)2140.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19439, 2449, 1147
Rint0.100
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.206, 1.00
No. of reflections2449
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.042.885 (3)168
Symmetry code: (i) x+1/2, y+1/2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds