organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzyl-2,5-dioxopyrrolidine-3,4-diyl di­acetate

aPhysics Department, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil, cInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

(Received 21 October 2010; accepted 22 October 2010; online 6 November 2010)

The pyrrolidine-2,5-dione ring in the title compound, C15H15NO6, is in a twisted conformation with the acetyl C atoms projecting to opposite sides of the ring. The acetyl groups lie to opposite sides of the five-membered ring. The benzene ring is roughly perpendicular to the heterocyclic ring, forming a dihedral angle of 76.57 (14)° with it. In the crystal, mol­ecules are connected through a network of C—H⋯O and C—H⋯π inter­actions.

Related literature

For the use of N-acyl­iminium in organic synthesis, see: Vieira et al. (2008[Vieira, A. S., Ferreira, F. P., Fiorante, P. F., Guadagnin, R. C. & Stefani, H. A. (2008). Tetrahedron, 64, 3306-3314.]); Huang (2006[Huang, P.-Q. (2006). Synlett, pp. 1133-1149.]); Russo et al. (2010[Russo, E., Citraro, R., Scicchitano, F., De Fazio, S., Di Paola, E. D., Constanti, A. & De Sarro, G. (2010). Epilepsia, 51, 1560-1569.]). For background to the synthesis, see: Caracelli et al. (2010[Caracelli, I., Zukerman-Schpector, J., Maganhi, S. H., Stefani, H. A., Guadagnin, R. & Tiekink, E. R. T. (2010). J. Braz. Chem. Soc. 21, 2164-2170.]). For a related structure, see: Naz et al. (2009[Naz, S., Zaidi, J., Mehmood, T. & Jones, P. G. (2009). Acta Cryst. E65, o1487.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Iulek & Zukerman-Schpector (1997[Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO6

  • Mr = 305.28

  • Orthorhombic, P 21 21 21

  • a = 8.8498 (4) Å

  • b = 9.8107 (4) Å

  • c = 17.5148 (6) Å

  • V = 1520.68 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 290 K

  • 0.28 × 0.23 × 0.06 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.991

  • 7672 measured reflections

  • 1541 independent reflections

  • 1396 reflections with I > 2σ(I)

  • Rint = 0.122

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.07

  • 1541 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.98 2.51 3.206 (2) 128
C3—H3⋯O1ii 0.98 2.55 3.276 (3) 131
C5—H5b⋯O6iii 0.97 2.49 3.328 (3) 144
C13—H13b⋯Cg1ii 0.96 2.95 3.702 (3) 136
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C6–C11 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

N-Acyliminium ions are very important in organic synthesis since they are reactive intermediates involved in the synthesis of many compounds with interesting biological properties (Vieira et al., 2008). Nucleophilic additions to N-acyliminium ions constitute an important method to provide α-functionalized amino compounds and for the preparation of alkaloids (Huang, 2006) and many other biologically active nitrogen heterocycles, such as ethosuximide used in the treatment of epilepsy (Russo et al., 2010). As part of our on-going research interest in bioactive compounds (Caracelli et al., 2010) the title compound, (I), was synthesized and its crystal structure determined as described herein.

The molecular structure of (I), Fig. 1, shows the pyrrolidine-2,5-dione ring [r.m.s. deviation of the N1,C1–C4 atoms = 0.105 Å] to adopt a twisted conformation with the C2 and C3 atoms being displaced by 0.089 (2) and -0.087 (2) Å, respectively, out of the plane. The ring-puckering parameters are q2 = 0.149 (2) Å, and φ2 = 87.4 (8) ° (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997). The O1 and O6 atoms lie -0.178 (2) and 0.139 (2) Å out of the plane through the pyrrolidine ring, and the benzene ring is orientated to be normal to the ring as seen in the dihedral angle formed between their least-squares planes [76.57 (14) °]. The acetyl groups lie on opposite sides of the pyrrolidine plane. To a first approximation, the structure of (I) resembles that reported recently for the N-(m-tolyl) analogue (Naz et al., 2009).

In the crystal packing, molecules are connected via C—H···O and C—H···π interactions, Fig. 2 and Table 1.

Related literature top

For the use of N-acyliminium in organic synthesis, see: Vieira et al. (2008); Huang (2006); Russo et al. (2010). For background to the synthesis, see: Caracelli et al. (2010). For a related structure, see: Naz et al. (2009). For conformational analysis, see: Cremer & Pople (1975); Iulek & Zukerman-Schpector (1997).

Experimental top

A mixture of L-tartaric acid (15.0 g, 100 mmol) and acetylchloride (70 ml, 1.0 mol) was stirred under reflux for 24 h under nitrogen atmosphere, during which the solution became homogeneous. Excess acetyl chloride was removed by distillation at 1 atm and trace amounts were removed under vacuum. The resulting crude anhydride was dissolved in dry THF (120 ml) and benzylamine (10.7 g,100 mmol) was slowly added. The solution was stirred for 4 h, and then concentrated in vacuum. The residue was then refluxed with acetyl chloride (70 ml, 1.0 mol) for another 5 h. After concentration of the reaction mixture under vacuum, the residue was purified by column chromatography (n-hexane/ethyl acetate, 2:1) to give the title compound (23.8 g, 78%) as a white solid. Single crystals of (I) were obtained by slow evaporation from its ethyl acetate-hexane solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). In the absence of significant anomalous scattering effects, 1119 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the L-tartaric acid starting material.

Structure description top

N-Acyliminium ions are very important in organic synthesis since they are reactive intermediates involved in the synthesis of many compounds with interesting biological properties (Vieira et al., 2008). Nucleophilic additions to N-acyliminium ions constitute an important method to provide α-functionalized amino compounds and for the preparation of alkaloids (Huang, 2006) and many other biologically active nitrogen heterocycles, such as ethosuximide used in the treatment of epilepsy (Russo et al., 2010). As part of our on-going research interest in bioactive compounds (Caracelli et al., 2010) the title compound, (I), was synthesized and its crystal structure determined as described herein.

The molecular structure of (I), Fig. 1, shows the pyrrolidine-2,5-dione ring [r.m.s. deviation of the N1,C1–C4 atoms = 0.105 Å] to adopt a twisted conformation with the C2 and C3 atoms being displaced by 0.089 (2) and -0.087 (2) Å, respectively, out of the plane. The ring-puckering parameters are q2 = 0.149 (2) Å, and φ2 = 87.4 (8) ° (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997). The O1 and O6 atoms lie -0.178 (2) and 0.139 (2) Å out of the plane through the pyrrolidine ring, and the benzene ring is orientated to be normal to the ring as seen in the dihedral angle formed between their least-squares planes [76.57 (14) °]. The acetyl groups lie on opposite sides of the pyrrolidine plane. To a first approximation, the structure of (I) resembles that reported recently for the N-(m-tolyl) analogue (Naz et al., 2009).

In the crystal packing, molecules are connected via C—H···O and C—H···π interactions, Fig. 2 and Table 1.

For the use of N-acyliminium in organic synthesis, see: Vieira et al. (2008); Huang (2006); Russo et al. (2010). For background to the synthesis, see: Caracelli et al. (2010). For a related structure, see: Naz et al. (2009). For conformational analysis, see: Cremer & Pople (1975); Iulek & Zukerman-Schpector (1997).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. Unit-cell contents shown in projection down the a axis in (I). The C—H···O and C—H···π contacts are shown as orange and purple dashed lines, respectively.
1-Benzyl-2,5-dioxopyrrolidine-3,4-diyl diacetate top
Crystal data top
C15H15NO6F(000) = 640
Mr = 305.28Dx = 1.333 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5560 reflections
a = 8.8498 (4) Åθ = 2.9–26.4°
b = 9.8107 (4) ŵ = 0.10 mm1
c = 17.5148 (6) ÅT = 290 K
V = 1520.68 (11) Å3Block, colourless
Z = 40.28 × 0.23 × 0.06 mm
Data collection top
Bruker SMART APEXII
diffractometer
1541 independent reflections
Radiation source: fine-focus sealed tube1396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
φ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.962, Tmax = 0.991k = 1011
7672 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.1923P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1541 reflectionsΔρmax = 0.12 e Å3
202 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.111 (10)
Crystal data top
C15H15NO6V = 1520.68 (11) Å3
Mr = 305.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8498 (4) ŵ = 0.10 mm1
b = 9.8107 (4) ÅT = 290 K
c = 17.5148 (6) Å0.28 × 0.23 × 0.06 mm
Data collection top
Bruker SMART APEXII
diffractometer
1541 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1396 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.991Rint = 0.122
7672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.07Δρmax = 0.12 e Å3
1541 reflectionsΔρmin = 0.12 e Å3
202 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25814 (16)0.67116 (18)0.09591 (10)0.0555 (5)
O20.42326 (15)0.75768 (16)0.03939 (9)0.0425 (4)
O30.57172 (17)0.60872 (18)0.02191 (10)0.0505 (4)
O40.5859 (2)1.03936 (19)0.03516 (11)0.0652 (6)
O50.3864 (3)1.1015 (2)0.10556 (14)0.0772 (6)
O60.6412 (2)0.93139 (18)0.18931 (10)0.0603 (5)
N10.44087 (19)0.79166 (19)0.15977 (11)0.0418 (5)
C10.3594 (2)0.7537 (2)0.09654 (13)0.0415 (5)
C20.4146 (2)0.8367 (2)0.02866 (13)0.0400 (5)
H20.34190.91040.01990.048*
C30.5611 (2)0.9008 (2)0.05719 (14)0.0448 (5)
H30.64530.84630.03740.054*
C40.5564 (2)0.8820 (2)0.14324 (14)0.0437 (5)
C50.4073 (3)0.7405 (3)0.23638 (14)0.0510 (6)
H5A0.49510.75380.26870.061*
H5B0.38750.64340.23360.061*
C60.2737 (3)0.8104 (2)0.27199 (13)0.0482 (6)
C70.1408 (3)0.7410 (3)0.28440 (16)0.0629 (7)
H70.13360.64950.27080.075*
C80.0181 (4)0.8059 (4)0.3169 (2)0.0835 (10)
H80.07090.75790.32540.100*
C90.0272 (5)0.9408 (4)0.3365 (2)0.0896 (12)
H90.05540.98450.35840.108*
C100.1573 (5)1.0103 (4)0.3238 (2)0.0956 (12)
H100.16361.10190.33700.115*
C110.2808 (4)0.9457 (3)0.2914 (2)0.0748 (9)
H110.36930.99440.28280.090*
C120.5071 (2)0.6412 (2)0.03556 (14)0.0425 (5)
C130.5040 (3)0.5656 (3)0.10878 (16)0.0586 (7)
H13A0.58640.50200.11020.088*
H13B0.51350.62870.15040.088*
H13C0.41020.51720.11320.088*
C140.4873 (5)1.1318 (3)0.06372 (18)0.0722 (9)
C150.5247 (7)1.2725 (3)0.0367 (3)0.1274 (19)
H15A0.44501.33380.05090.191*
H15B0.53551.27210.01780.191*
H15C0.61771.30180.05970.191*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0492 (8)0.0622 (11)0.0550 (11)0.0163 (8)0.0025 (7)0.0034 (9)
O20.0459 (7)0.0426 (8)0.0388 (8)0.0016 (7)0.0020 (6)0.0024 (7)
O30.0532 (8)0.0470 (9)0.0514 (10)0.0047 (8)0.0038 (8)0.0011 (8)
O40.0894 (13)0.0503 (10)0.0558 (11)0.0256 (10)0.0064 (10)0.0006 (9)
O50.1066 (15)0.0511 (11)0.0739 (14)0.0153 (12)0.0061 (13)0.0027 (11)
O60.0602 (10)0.0644 (11)0.0562 (11)0.0106 (9)0.0110 (8)0.0119 (10)
N10.0427 (9)0.0433 (10)0.0395 (10)0.0004 (8)0.0002 (7)0.0005 (9)
C10.0390 (10)0.0409 (11)0.0445 (12)0.0007 (10)0.0029 (9)0.0015 (11)
C20.0417 (10)0.0394 (11)0.0390 (11)0.0005 (9)0.0015 (9)0.0021 (10)
C30.0473 (11)0.0414 (11)0.0457 (13)0.0088 (10)0.0046 (10)0.0064 (11)
C40.0438 (11)0.0408 (12)0.0465 (12)0.0000 (11)0.0002 (10)0.0050 (10)
C50.0585 (12)0.0517 (13)0.0428 (12)0.0063 (12)0.0029 (10)0.0077 (12)
C60.0628 (13)0.0482 (12)0.0337 (12)0.0064 (12)0.0026 (10)0.0025 (11)
C70.0716 (15)0.0587 (15)0.0584 (17)0.0038 (15)0.0144 (13)0.0088 (15)
C80.0765 (18)0.101 (3)0.073 (2)0.016 (2)0.0284 (16)0.018 (2)
C90.104 (3)0.100 (3)0.0645 (19)0.048 (2)0.0299 (18)0.007 (2)
C100.134 (3)0.071 (2)0.082 (2)0.024 (2)0.022 (2)0.019 (2)
C110.0864 (19)0.0607 (16)0.077 (2)0.0022 (17)0.0113 (17)0.0182 (17)
C120.0421 (10)0.0384 (12)0.0469 (13)0.0025 (10)0.0043 (10)0.0014 (10)
C130.0644 (14)0.0558 (15)0.0557 (15)0.0018 (14)0.0033 (12)0.0154 (14)
C140.123 (3)0.0413 (14)0.0525 (16)0.0093 (17)0.0130 (19)0.0001 (14)
C150.246 (6)0.0468 (18)0.090 (3)0.032 (3)0.023 (3)0.0162 (19)
Geometric parameters (Å, º) top
O1—C11.208 (2)C6—C111.372 (4)
O2—C121.365 (3)C6—C71.376 (4)
O2—C21.424 (3)C7—C81.382 (4)
O3—C121.201 (3)C7—H70.9300
O4—C141.354 (4)C8—C91.370 (5)
O4—C31.430 (3)C8—H80.9300
O5—C141.193 (4)C9—C101.356 (6)
O6—C41.204 (3)C9—H90.9300
N1—C11.373 (3)C10—C111.385 (5)
N1—C41.384 (3)C10—H100.9300
N1—C51.463 (3)C11—H110.9300
C1—C21.522 (3)C12—C131.481 (3)
C2—C31.525 (3)C13—H13A0.9600
C2—H20.9800C13—H13B0.9600
C3—C41.519 (3)C13—H13C0.9600
C3—H30.9800C14—C151.496 (4)
C5—C61.502 (3)C15—H15A0.9600
C5—H5A0.9700C15—H15B0.9600
C5—H5B0.9700C15—H15C0.9600
C12—O2—C2116.37 (16)C6—C7—H7119.7
C14—O4—C3116.0 (2)C8—C7—H7119.7
C1—N1—C4113.15 (19)C9—C8—C7120.2 (4)
C1—N1—C5122.70 (18)C9—C8—H8119.9
C4—N1—C5124.15 (19)C7—C8—H8119.9
O1—C1—N1125.4 (2)C10—C9—C8119.6 (3)
O1—C1—C2126.2 (2)C10—C9—H9120.2
N1—C1—C2108.44 (17)C8—C9—H9120.2
O2—C2—C1112.34 (17)C9—C10—C11120.5 (3)
O2—C2—C3116.94 (17)C9—C10—H10119.8
C1—C2—C3103.76 (18)C11—C10—H10119.8
O2—C2—H2107.8C6—C11—C10120.5 (3)
C1—C2—H2107.8C6—C11—H11119.7
C3—C2—H2107.8C10—C11—H11119.7
O4—C3—C4112.8 (2)O3—C12—O2121.5 (2)
O4—C3—C2115.7 (2)O3—C12—C13127.0 (2)
C4—C3—C2104.60 (18)O2—C12—C13111.5 (2)
O4—C3—H3107.8C12—C13—H13A109.5
C4—C3—H3107.8C12—C13—H13B109.5
C2—C3—H3107.8H13A—C13—H13B109.5
O6—C4—N1125.3 (2)C12—C13—H13C109.5
O6—C4—C3126.8 (2)H13A—C13—H13C109.5
N1—C4—C3107.78 (18)H13B—C13—H13C109.5
N1—C5—C6112.58 (19)O5—C14—O4122.9 (3)
N1—C5—H5A109.1O5—C14—C15126.1 (4)
C6—C5—H5A109.1O4—C14—C15111.0 (4)
N1—C5—H5B109.1C14—C15—H15A109.5
C6—C5—H5B109.1C14—C15—H15B109.5
H5A—C5—H5B107.8H15A—C15—H15B109.5
C11—C6—C7118.6 (3)C14—C15—H15C109.5
C11—C6—C5120.5 (3)H15A—C15—H15C109.5
C7—C6—C5120.8 (2)H15B—C15—H15C109.5
C6—C7—C8120.6 (3)
C4—N1—C1—O1176.2 (2)O4—C3—C4—O644.1 (3)
C5—N1—C1—O13.7 (3)C2—C3—C4—O6170.7 (2)
C4—N1—C1—C25.8 (2)O4—C3—C4—N1138.79 (19)
C5—N1—C1—C2174.33 (19)C2—C3—C4—N112.2 (2)
C12—O2—C2—C154.5 (2)C1—N1—C5—C677.9 (3)
C12—O2—C2—C365.3 (2)C4—N1—C5—C6102.2 (2)
O1—C1—C2—O241.8 (3)N1—C5—C6—C1167.2 (3)
N1—C1—C2—O2140.22 (17)N1—C5—C6—C7111.6 (3)
O1—C1—C2—C3169.0 (2)C11—C6—C7—C81.0 (5)
N1—C1—C2—C313.0 (2)C5—C6—C7—C8179.7 (3)
C14—O4—C3—C455.3 (3)C6—C7—C8—C90.6 (5)
C14—O4—C3—C265.1 (3)C7—C8—C9—C100.0 (6)
O2—C2—C3—O496.2 (2)C8—C9—C10—C110.2 (6)
C1—C2—C3—O4139.5 (2)C7—C6—C11—C100.9 (5)
O2—C2—C3—C4139.1 (2)C5—C6—C11—C10179.6 (3)
C1—C2—C3—C414.8 (2)C9—C10—C11—C60.3 (6)
C1—N1—C4—O6178.6 (2)C2—O2—C12—O31.1 (3)
C5—N1—C4—O61.5 (3)C2—O2—C12—C13178.27 (18)
C1—N1—C4—C34.2 (2)C3—O4—C14—O50.9 (4)
C5—N1—C4—C3175.7 (2)C3—O4—C14—C15179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.982.513.206 (2)128
C3—H3···O1ii0.982.553.276 (3)131
C5—H5b···O6iii0.972.493.328 (3)144
C13—H13b···Cg1ii0.962.953.702 (3)136
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO6
Mr305.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)290
a, b, c (Å)8.8498 (4), 9.8107 (4), 17.5148 (6)
V3)1520.68 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.23 × 0.06
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.962, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7672, 1541, 1396
Rint0.122
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.07
No. of reflections1541
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.982.513.206 (2)128
C3—H3···O1ii0.982.553.276 (3)131
C5—H5b···O6iii0.972.493.328 (3)144
C13—H13b···Cg1ii0.962.953.702 (3)136
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank FAPESP (grant No. 07/59404–2 to HAS), CNPq (grant No. 300613/2007 to HAS) and CAPES (Rede Nanobiotec-Brasil grant No. 808/2009 to IC) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaracelli, I., Zukerman-Schpector, J., Maganhi, S. H., Stefani, H. A., Guadagnin, R. & Tiekink, E. R. T. (2010). J. Braz. Chem. Soc. 21, 2164–2170.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, P.-Q. (2006). Synlett, pp. 1133–1149.  Web of Science CrossRef Google Scholar
First citationIulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.  CrossRef CAS Web of Science Google Scholar
First citationNaz, S., Zaidi, J., Mehmood, T. & Jones, P. G. (2009). Acta Cryst. E65, o1487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRusso, E., Citraro, R., Scicchitano, F., De Fazio, S., Di Paola, E. D., Constanti, A. & De Sarro, G. (2010). Epilepsia, 51, 1560–1569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVieira, A. S., Ferreira, F. P., Fiorante, P. F., Guadagnin, R. C. & Stefani, H. A. (2008). Tetrahedron, 64, 3306–3314.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds