metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro­benzohydrazidato-κ2N′,O)[2-(4-chloro­benzoyl­hydrazinyl­­idene-κ2N1,O)-3-phenyl­propionato(2−)-κO1]oxidovanadium(V) methanol monosolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 November 2010; accepted 7 November 2010; online 13 November 2010)

The VV atom in the title compound, [V(C7H6ClN2O)(C16H11ClN2O3)O]·CH3OH, is N,O-chelated by the benzoyl­hydrazidate anion and O,N,O′-chelated by the (benzoyl­hydrazinyl­idene)propionate dianion. The distorted octa­hedral trans-N2O4 coordination geometry is completed by the vanadyl O atom. The mononuclear and solvent mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds about a center of inversion, generating a dimer.

Related literature

For (benzohydrazidato)[2-(benzoyl­hydrazinyl­idene)pro­pio­nato)(2–)]oxidovanadium(V), see: Wong et al. (2009a[Wong, H. W., Lo, K. M. & Ng, S. W. (2009a). Acta Cryst. E65, m422.],b[Wong, H. W., Lo, K. M. & Ng, S. W. (2009b). Acta Cryst. E65, m718.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C7H6ClN2O)(C16H11ClN2O3)O]·CH4O

  • Mr = 583.29

  • Triclinic, [P \overline 1]

  • a = 8.3217 (4) Å

  • b = 11.2505 (6) Å

  • c = 15.5064 (8) Å

  • α = 109.4045 (7)°

  • β = 98.8890 (7)°

  • γ = 111.6936 (7)°

  • V = 1206.93 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.821, Tmax = 0.935

  • 15037 measured reflections

  • 5517 independent reflections

  • 4907 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.116

  • S = 1.03

  • 5517 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 1.98 2.741 (2) 143
N4—H4⋯O6i 0.88 1.94 2.792 (3) 162
O6—H6⋯O2 0.84 2.27 2.908 (3) 133
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reaction of vanadyl(IV) sulfate and the Schiff base that is synthesized by condensing a substituted benzhydrazine and a substituted pyruvic acid leads a vanadium(V) derivative of the Schiff base. However, another mole of the Schiff base is cleaved and the resulting benzhydrazine monoanion also chelates to the metal atom (Wong et al., 2009a, 2009b). A similar product is isolated in the present study on the reaction of the Schiff base, 2-[4-chlorobenzoylhydrazono]-3-phenylpropionic acid so that the metal atom is chelated by two different ligands. The mononuclear mixed-ligand compound crystallizes as a monosolvate (Scheme I, Fig. 1). The vanadium(V) atom is N,O-chelated by the benzoylhydrazidate anion and O,N,O'-chelated by the (benzoylhydrazinylidene)propionate dianion; the terdentate chelate binds in a meridional mode. The octahedral trans-N2O4 coordination geometry is completed by the vanadyl O atom. The mononuclear and solvent molecules are linked by hydrogen bonds about a center-of-inversion to generate a hydrogen-bonded dimer.

Related literature top

For (benzohydrazidato)[2-(benzoylhydrazinylidene)propionato)(2–)]oxidovanadium(V), see: Wong et al. (2009a,b).

Experimental top

2-[4-Chlorobenzoylhydrazono]-3-phenylpropionic acid prepared from the condensation reaction of 4-chlorobenzhydrazide and 3-phenylpyruvic acid. The compound (1.00 g, 3 mmol) and vanadyl sulfate (1.25 g, 1.5 mmol) in 50 ml of methanol for 5 h. Slow evaporation of the filtrate gave brownish orange crystals.

Refinement top

Carbon-, nitrogen- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.95 to 0.99 Å, N–H 0.86 Å and O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Structure description top

The reaction of vanadyl(IV) sulfate and the Schiff base that is synthesized by condensing a substituted benzhydrazine and a substituted pyruvic acid leads a vanadium(V) derivative of the Schiff base. However, another mole of the Schiff base is cleaved and the resulting benzhydrazine monoanion also chelates to the metal atom (Wong et al., 2009a, 2009b). A similar product is isolated in the present study on the reaction of the Schiff base, 2-[4-chlorobenzoylhydrazono]-3-phenylpropionic acid so that the metal atom is chelated by two different ligands. The mononuclear mixed-ligand compound crystallizes as a monosolvate (Scheme I, Fig. 1). The vanadium(V) atom is N,O-chelated by the benzoylhydrazidate anion and O,N,O'-chelated by the (benzoylhydrazinylidene)propionate dianion; the terdentate chelate binds in a meridional mode. The octahedral trans-N2O4 coordination geometry is completed by the vanadyl O atom. The mononuclear and solvent molecules are linked by hydrogen bonds about a center-of-inversion to generate a hydrogen-bonded dimer.

For (benzohydrazidato)[2-(benzoylhydrazinylidene)propionato)(2–)]oxidovanadium(V), see: Wong et al. (2009a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of VO(C7H6ClN2O)(C16H11ClN2O3).CH3OH at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
(4-Chlorobenzohydrazidato-κ2N',O)[2-(4- chlorobenzoylhydrazinylidene-κ2N1,O)- 3-phenylpropionato(2-)-κO1]oxidovanadium(V) methanol monosolvate top
Crystal data top
[V(C7H6ClN2O)(C16H11ClN2O3)O]·CH4OZ = 2
Mr = 583.29F(000) = 596
Triclinic, P1Dx = 1.605 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3217 (4) ÅCell parameters from 8039 reflections
b = 11.2505 (6) Åθ = 2.6–28.3°
c = 15.5064 (8) ŵ = 0.68 mm1
α = 109.4045 (7)°T = 100 K
β = 98.8890 (7)°Block, brown
γ = 111.6936 (7)°0.30 × 0.20 × 0.10 mm
V = 1206.93 (11) Å3
Data collection top
Bruker SMART APEX
diffractometer
5517 independent reflections
Radiation source: fine-focus sealed tube4907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.821, Tmax = 0.935k = 1414
15037 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0658P)2 + 1.2158P]
where P = (Fo2 + 2Fc2)/3
5517 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[V(C7H6ClN2O)(C16H11ClN2O3)O]·CH4Oγ = 111.6936 (7)°
Mr = 583.29V = 1206.93 (11) Å3
Triclinic, P1Z = 2
a = 8.3217 (4) ÅMo Kα radiation
b = 11.2505 (6) ŵ = 0.68 mm1
c = 15.5064 (8) ÅT = 100 K
α = 109.4045 (7)°0.30 × 0.20 × 0.10 mm
β = 98.8890 (7)°
Data collection top
Bruker SMART APEX
diffractometer
5517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4907 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.935Rint = 0.021
15037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
5517 reflectionsΔρmin = 0.85 e Å3
335 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.70290 (4)0.70483 (4)0.70065 (2)0.01467 (10)
Cl11.70732 (7)1.31564 (6)1.15657 (4)0.02577 (14)
Cl20.91329 (8)0.00311 (6)0.37080 (4)0.02773 (14)
O10.47185 (19)0.53272 (15)0.66919 (10)0.0174 (3)
O20.3293 (2)0.35991 (16)0.71185 (11)0.0225 (3)
O30.95256 (19)0.84331 (15)0.78583 (10)0.0179 (3)
O40.8120 (2)0.54984 (16)0.65625 (10)0.0185 (3)
O50.6190 (2)0.81279 (16)0.70892 (11)0.0204 (3)
O60.4172 (3)0.2179 (3)0.54539 (15)0.0477 (5)
H60.34700.20730.57870.072*
N10.7353 (2)0.66447 (18)0.82203 (12)0.0151 (3)
N20.8951 (2)0.75265 (18)0.89745 (12)0.0167 (3)
N30.7294 (2)0.56220 (19)0.51836 (12)0.0174 (3)
H30.71250.53580.45620.021*
N40.6962 (2)0.66803 (18)0.57236 (12)0.0174 (3)
H40.67100.72060.54670.021*
C10.4566 (3)0.4711 (2)0.72789 (14)0.0171 (4)
C20.6167 (3)0.5496 (2)0.81905 (14)0.0162 (4)
C30.6358 (3)0.4883 (2)0.88969 (15)0.0193 (4)
H3A0.51560.44000.89680.023*
H3B0.71950.56440.95350.023*
C40.7112 (3)0.3833 (2)0.85310 (15)0.0196 (4)
C50.8986 (3)0.4305 (3)0.87107 (18)0.0266 (5)
H50.97950.52810.90770.032*
C60.9674 (4)0.3354 (3)0.8356 (2)0.0347 (6)
H6A1.09520.36830.84820.042*
C70.8502 (4)0.1930 (3)0.7821 (2)0.0364 (6)
H70.89760.12810.75870.044*
C80.6639 (4)0.1455 (3)0.76274 (19)0.0333 (6)
H80.58330.04790.72550.040*
C90.5945 (3)0.2402 (2)0.79772 (17)0.0262 (5)
H90.46650.20710.78380.031*
C100.9974 (3)0.8461 (2)0.87082 (14)0.0162 (4)
C111.1731 (3)0.9611 (2)0.94136 (14)0.0172 (4)
C121.2677 (3)1.0766 (2)0.92264 (15)0.0202 (4)
H121.21971.07970.86420.024*
C131.4313 (3)1.1865 (2)0.98931 (16)0.0216 (4)
H131.49521.26590.97740.026*
C141.4999 (3)1.1790 (2)1.07313 (15)0.0196 (4)
C151.4091 (3)1.0649 (2)1.09321 (15)0.0200 (4)
H151.45921.06131.15110.024*
C161.2445 (3)0.9567 (2)1.02717 (15)0.0184 (4)
H161.17950.87891.04030.022*
C170.7901 (3)0.5014 (2)0.56797 (14)0.0172 (4)
C180.8251 (3)0.3815 (2)0.51698 (15)0.0173 (4)
C190.8981 (3)0.3266 (3)0.57203 (16)0.0249 (5)
H190.92710.36850.64020.030*
C200.9286 (3)0.2114 (3)0.52785 (17)0.0272 (5)
H200.97890.17400.56510.033*
C210.8842 (3)0.1515 (2)0.42783 (16)0.0209 (4)
C220.8150 (3)0.2059 (2)0.37210 (15)0.0187 (4)
H220.78780.16460.30410.022*
C230.7861 (3)0.3220 (2)0.41712 (14)0.0173 (4)
H230.73950.36100.37980.021*
C240.4283 (7)0.1015 (6)0.5053 (4)0.0873 (15)
H24A0.48840.10670.45610.131*
H24B0.30560.02210.47500.131*
H24C0.49940.08760.55430.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01538 (17)0.01633 (18)0.01099 (17)0.00714 (14)0.00334 (13)0.00470 (13)
Cl10.0165 (2)0.0231 (3)0.0221 (3)0.0044 (2)0.0027 (2)0.0014 (2)
Cl20.0365 (3)0.0239 (3)0.0284 (3)0.0188 (2)0.0127 (2)0.0106 (2)
O10.0156 (7)0.0198 (7)0.0140 (7)0.0066 (6)0.0026 (5)0.0064 (6)
O20.0191 (7)0.0212 (8)0.0198 (7)0.0039 (6)0.0034 (6)0.0075 (6)
O30.0175 (7)0.0187 (7)0.0119 (7)0.0051 (6)0.0024 (5)0.0047 (6)
O40.0186 (7)0.0222 (7)0.0132 (7)0.0093 (6)0.0047 (5)0.0057 (6)
O50.0229 (7)0.0216 (7)0.0164 (7)0.0115 (6)0.0054 (6)0.0066 (6)
O60.0594 (14)0.0624 (15)0.0313 (11)0.0334 (12)0.0211 (10)0.0214 (10)
N10.0156 (8)0.0170 (8)0.0116 (7)0.0085 (7)0.0040 (6)0.0037 (6)
N20.0138 (8)0.0178 (8)0.0130 (8)0.0056 (7)0.0013 (6)0.0034 (7)
N30.0173 (8)0.0209 (9)0.0112 (8)0.0079 (7)0.0047 (6)0.0042 (7)
N40.0170 (8)0.0188 (8)0.0148 (8)0.0075 (7)0.0047 (6)0.0063 (7)
C10.0172 (9)0.0187 (10)0.0142 (9)0.0092 (8)0.0048 (8)0.0044 (8)
C20.0159 (9)0.0184 (9)0.0137 (9)0.0085 (8)0.0063 (7)0.0045 (8)
C30.0210 (10)0.0203 (10)0.0154 (9)0.0075 (8)0.0057 (8)0.0081 (8)
C40.0232 (10)0.0211 (10)0.0157 (9)0.0089 (9)0.0059 (8)0.0105 (8)
C50.0253 (11)0.0285 (12)0.0272 (12)0.0122 (10)0.0077 (9)0.0132 (10)
C60.0341 (13)0.0444 (15)0.0382 (14)0.0254 (12)0.0152 (11)0.0214 (12)
C70.0557 (17)0.0392 (14)0.0356 (14)0.0350 (14)0.0235 (13)0.0205 (12)
C80.0507 (16)0.0233 (12)0.0286 (12)0.0176 (11)0.0123 (11)0.0132 (10)
C90.0300 (12)0.0226 (11)0.0254 (11)0.0093 (10)0.0073 (9)0.0132 (9)
C100.0178 (9)0.0186 (9)0.0135 (9)0.0112 (8)0.0050 (7)0.0050 (8)
C110.0166 (9)0.0185 (10)0.0157 (9)0.0096 (8)0.0055 (8)0.0042 (8)
C120.0222 (10)0.0216 (10)0.0167 (10)0.0103 (9)0.0068 (8)0.0073 (8)
C130.0204 (10)0.0189 (10)0.0223 (11)0.0071 (8)0.0092 (8)0.0061 (8)
C140.0147 (9)0.0200 (10)0.0156 (9)0.0066 (8)0.0041 (8)0.0004 (8)
C150.0189 (10)0.0240 (11)0.0137 (9)0.0111 (9)0.0046 (8)0.0028 (8)
C160.0180 (9)0.0184 (10)0.0162 (9)0.0076 (8)0.0057 (8)0.0048 (8)
C170.0126 (9)0.0200 (10)0.0147 (9)0.0054 (8)0.0041 (7)0.0049 (8)
C180.0140 (9)0.0180 (9)0.0158 (9)0.0055 (8)0.0045 (7)0.0044 (8)
C190.0316 (12)0.0299 (12)0.0154 (10)0.0175 (10)0.0070 (9)0.0084 (9)
C200.0339 (12)0.0318 (12)0.0249 (11)0.0210 (11)0.0098 (10)0.0151 (10)
C210.0196 (10)0.0180 (10)0.0234 (11)0.0083 (8)0.0076 (8)0.0067 (8)
C220.0150 (9)0.0197 (10)0.0166 (9)0.0057 (8)0.0043 (7)0.0052 (8)
C230.0131 (9)0.0191 (10)0.0153 (9)0.0052 (8)0.0024 (7)0.0054 (8)
C240.076 (3)0.099 (4)0.109 (4)0.038 (3)0.040 (3)0.068 (3)
Geometric parameters (Å, º) top
V1—O51.5905 (15)C6—H6A0.9500
V1—N41.8797 (17)C7—C81.385 (4)
V1—O31.9697 (15)C7—H70.9500
V1—O12.0036 (15)C8—C91.389 (4)
V1—N12.0791 (17)C8—H80.9500
V1—O42.2149 (15)C9—H90.9500
Cl1—C141.744 (2)C10—C111.474 (3)
Cl2—C211.736 (2)C11—C161.395 (3)
O1—C11.310 (3)C11—C121.399 (3)
O2—C11.217 (3)C12—C131.387 (3)
O3—C101.299 (2)C12—H120.9500
O4—C171.248 (2)C13—C141.379 (3)
O6—C241.295 (6)C13—H130.9500
O6—H60.8400C14—C151.392 (3)
N1—C21.284 (3)C15—C161.383 (3)
N1—N21.376 (2)C15—H150.9500
N2—C101.318 (3)C16—H160.9500
N3—C171.342 (3)C17—C181.478 (3)
N3—N41.359 (2)C18—C191.395 (3)
N3—H30.8800C18—C231.395 (3)
N4—H40.8800C19—C201.386 (3)
C1—C21.507 (3)C19—H190.9500
C2—C31.493 (3)C20—C211.393 (3)
C3—C41.525 (3)C20—H200.9500
C3—H3A0.9900C21—C221.382 (3)
C3—H3B0.9900C22—C231.389 (3)
C4—C91.393 (3)C22—H220.9500
C4—C51.395 (3)C23—H230.9500
C5—C61.391 (4)C24—H24A0.9800
C5—H50.9500C24—H24B0.9800
C6—C71.385 (4)C24—H24C0.9800
O5—V1—N493.72 (8)C7—C8—H8119.9
O5—V1—O397.65 (7)C9—C8—H8119.9
N4—V1—O3108.53 (7)C8—C9—C4120.5 (2)
O5—V1—O198.01 (7)C8—C9—H9119.7
N4—V1—O196.05 (7)C4—C9—H9119.7
O3—V1—O1149.78 (6)O3—C10—N2123.85 (18)
O5—V1—N1112.76 (7)O3—C10—C11117.81 (18)
N4—V1—N1152.97 (7)N2—C10—C11118.34 (18)
O3—V1—N174.45 (6)C16—C11—C12119.72 (19)
O1—V1—N175.69 (6)C16—C11—C10120.61 (19)
O5—V1—O4167.39 (7)C12—C11—C10119.66 (19)
N4—V1—O473.68 (7)C13—C12—C11120.1 (2)
O3—V1—O486.92 (6)C13—C12—H12119.9
O1—V1—O483.33 (6)C11—C12—H12119.9
N1—V1—O479.76 (6)C14—C13—C12119.0 (2)
C1—O1—V1119.51 (13)C14—C13—H13120.5
C10—O3—V1116.22 (13)C12—C13—H13120.5
C17—O4—V1112.25 (13)C13—C14—C15121.97 (19)
C24—O6—H6109.5C13—C14—Cl1119.34 (17)
C2—N1—N2122.37 (17)C15—C14—Cl1118.69 (16)
C2—N1—V1118.81 (14)C16—C15—C14118.7 (2)
N2—N1—V1118.25 (13)C16—C15—H15120.7
C10—N2—N1106.72 (16)C14—C15—H15120.7
C17—N3—N4114.23 (16)C15—C16—C11120.4 (2)
C17—N3—H3122.9C15—C16—H16119.8
N4—N3—H3122.9C11—C16—H16119.8
N3—N4—V1121.55 (14)O4—C17—N3117.01 (19)
N3—N4—H4119.2O4—C17—C18123.37 (19)
V1—N4—H4119.2N3—C17—C18119.62 (18)
O2—C1—O1124.82 (19)C19—C18—C23119.9 (2)
O2—C1—C2121.66 (19)C19—C18—C17117.78 (19)
O1—C1—C2113.50 (18)C23—C18—C17122.34 (19)
N1—C2—C3126.31 (18)C20—C19—C18120.3 (2)
N1—C2—C1111.75 (18)C20—C19—H19119.8
C3—C2—C1121.66 (18)C18—C19—H19119.8
C2—C3—C4108.71 (16)C19—C20—C21118.8 (2)
C2—C3—H3A109.9C19—C20—H20120.6
C4—C3—H3A109.9C21—C20—H20120.6
C2—C3—H3B109.9C22—C21—C20121.8 (2)
C4—C3—H3B109.9C22—C21—Cl2118.73 (17)
H3A—C3—H3B108.3C20—C21—Cl2119.44 (17)
C9—C4—C5118.9 (2)C21—C22—C23118.96 (19)
C9—C4—C3120.8 (2)C21—C22—H22120.5
C5—C4—C3120.2 (2)C23—C22—H22120.5
C6—C5—C4120.4 (2)C22—C23—C18120.22 (19)
C6—C5—H5119.8C22—C23—H23119.9
C4—C5—H5119.8C18—C23—H23119.9
C7—C6—C5120.1 (2)O6—C24—H24A109.5
C7—C6—H6A119.9O6—C24—H24B109.5
C5—C6—H6A119.9H24A—C24—H24B109.5
C8—C7—C6119.9 (2)O6—C24—H24C109.5
C8—C7—H7120.0H24A—C24—H24C109.5
C6—C7—H7120.0H24B—C24—H24C109.5
C7—C8—C9120.1 (2)
O5—V1—O1—C1118.37 (15)C2—C3—C4—C583.8 (2)
N4—V1—O1—C1147.00 (15)C9—C4—C5—C61.2 (3)
O3—V1—O1—C12.2 (2)C3—C4—C5—C6178.3 (2)
N1—V1—O1—C16.82 (14)C4—C5—C6—C70.0 (4)
O4—V1—O1—C174.27 (14)C5—C6—C7—C80.9 (4)
O5—V1—O3—C10105.44 (15)C6—C7—C8—C90.6 (4)
N4—V1—O3—C10158.01 (14)C7—C8—C9—C40.5 (4)
O1—V1—O3—C1015.2 (2)C5—C4—C9—C81.4 (3)
N1—V1—O3—C106.14 (14)C3—C4—C9—C8178.5 (2)
O4—V1—O3—C1086.36 (14)V1—O3—C10—N28.3 (3)
O5—V1—O4—C178.3 (4)V1—O3—C10—C11171.56 (13)
N4—V1—O4—C179.75 (14)N1—N2—C10—O34.2 (3)
O3—V1—O4—C17120.08 (14)N1—N2—C10—C11175.61 (16)
O1—V1—O4—C1788.58 (14)O3—C10—C11—C16168.54 (18)
N1—V1—O4—C17165.18 (15)N2—C10—C11—C1611.6 (3)
O5—V1—N1—C2100.74 (16)O3—C10—C11—C1212.4 (3)
N4—V1—N1—C267.0 (2)N2—C10—C11—C12167.50 (19)
O3—V1—N1—C2167.36 (16)C16—C11—C12—C130.3 (3)
O1—V1—N1—C27.94 (15)C10—C11—C12—C13178.82 (18)
O4—V1—N1—C277.72 (15)C11—C12—C13—C140.9 (3)
O5—V1—N1—N287.67 (15)C12—C13—C14—C150.5 (3)
N4—V1—N1—N2104.63 (19)C12—C13—C14—Cl1179.08 (16)
O3—V1—N1—N24.23 (13)C13—C14—C15—C160.6 (3)
O1—V1—N1—N2179.52 (14)Cl1—C14—C15—C16179.84 (16)
O4—V1—N1—N293.86 (14)C14—C15—C16—C111.2 (3)
C2—N1—N2—C10169.75 (18)C12—C11—C16—C150.8 (3)
V1—N1—N2—C101.5 (2)C10—C11—C16—C15179.91 (18)
C17—N3—N4—V18.5 (2)V1—O4—C17—N38.5 (2)
O5—V1—N4—N3170.15 (15)V1—O4—C17—C18170.65 (15)
O3—V1—N4—N390.49 (15)N4—N3—C17—O41.4 (3)
O1—V1—N4—N371.68 (15)N4—N3—C17—C18177.84 (17)
N1—V1—N4—N31.5 (3)O4—C17—C18—C194.5 (3)
O4—V1—N4—N39.53 (14)N3—C17—C18—C19176.35 (19)
V1—O1—C1—O2173.47 (16)O4—C17—C18—C23174.85 (19)
V1—O1—C1—C25.1 (2)N3—C17—C18—C234.3 (3)
N2—N1—C2—C34.7 (3)C23—C18—C19—C201.3 (3)
V1—N1—C2—C3166.52 (16)C17—C18—C19—C20178.0 (2)
N2—N1—C2—C1178.68 (16)C18—C19—C20—C210.3 (4)
V1—N1—C2—C17.5 (2)C19—C20—C21—C221.6 (4)
O2—C1—C2—N1179.70 (19)C19—C20—C21—Cl2177.59 (19)
O1—C1—C2—N11.7 (2)C20—C21—C22—C231.2 (3)
O2—C1—C2—C36.0 (3)Cl2—C21—C22—C23178.00 (15)
O1—C1—C2—C3172.65 (18)C21—C22—C23—C180.5 (3)
N1—C2—C3—C493.3 (2)C19—C18—C23—C221.8 (3)
C1—C2—C3—C480.1 (2)C17—C18—C23—C22177.57 (18)
C2—C3—C4—C993.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.881.982.741 (2)143
N4—H4···O6i0.881.942.792 (3)162
O6—H6···O20.842.272.908 (3)133
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[V(C7H6ClN2O)(C16H11ClN2O3)O]·CH4O
Mr583.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3217 (4), 11.2505 (6), 15.5064 (8)
α, β, γ (°)109.4045 (7), 98.8890 (7), 111.6936 (7)
V3)1206.93 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.821, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
15037, 5517, 4907
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.116, 1.03
No. of reflections5517
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.85

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.881.982.741 (2)143
N4—H4···O6i0.881.942.792 (3)162
O6—H6···O20.842.272.908 (3)133
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, H. W., Lo, K. M. & Ng, S. W. (2009a). Acta Cryst. E65, m422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWong, H. W., Lo, K. M. & Ng, S. W. (2009b). Acta Cryst. E65, m718.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds