organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)amino]-1-methyl-2-oxo­ethyl pyrrolidine-1-carbodi­thio­ate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 1 November 2010; accepted 7 November 2010; online 13 November 2010)

In the title compound, C19H24N4O2S2, inversion-related mol­ecules are linked together to form a dimer by N—H⋯O and C—H⋯O hydrogen bonds, generating two R21(6) rings and one R22(10) ring motif. An inter­molecular C—H⋯O hydrogen bond connects the dimers to each other. An intra­molecular C—H⋯O inter­action occurs. In the pyrrolidine ring, the two C atoms of the ring not bonded to the N atom displays positional disorder with site-occupation factors of 0.630 (18) and 0.370 (18).

Related literature

For general background to and applications of dithio­carbamate derivatives, see: Bayrak et al. (2010[Bayrak, H., Demirbaş, A., Demirbaş, N. & Karaoğlu, Ş. A. (2010). Eur. J. Med. Chem. 45, 4726-4732.]); Chourasia & Tyagi (1999[Chourasia, M. R. & Tyagi, D. (1999). Indian J. Phys. Nat. Sci. 15, 15-21.]); Günay et al. (1999[Günay, N. S., Çapan, G., Ulusoy, N., Ergenç, N., Ötük, G. & Kaya, D. (1999). Farmaco, 54, 826-831.]); Gürsoy et al. (2000[Gürsoy, A., Demirayak, Ş., Çapan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364.]); Güzel & Salman (2006[Güzel, Ö. & Salman, A. (2006). Bioorg. Med. Chem. 14, 7804-7815.]); Sondhi et al. (2001[Sondhi, S. M., Singhal, N., Verma, R. P., Arora, S. K. & Dastidar, S. G. (2001). Indian J. Chem. Sect. B, 40, 113-119.]); İsmail et al. (2007[İsmail, M. M. F., Ammar, Y. A., El-Zahaby, H. S. A., Eisa, S. I. & Barakat, S. E. (2007). Arch. Pharm. Chem. Life Sci. 340, 476-482.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N4O2S2

  • Mr = 404.56

  • Monoclinic, P 21 /c

  • a = 12.0652 (5) Å

  • b = 16.0831 (6) Å

  • c = 11.0438 (4) Å

  • β = 101.899 (3)°

  • V = 2096.96 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.53 × 0.39 × 0.18 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.880, Tmax = 0.952

  • 24440 measured reflections

  • 4352 independent reflections

  • 3699 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.05

  • 4352 reflections

  • 266 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.86 1.99 2.8463 (17) 171
C10—H10A⋯O2 0.96 2.48 3.054 (3) 119
C10—H10C⋯O2ii 0.96 2.32 3.180 (3) 148
C13—H13⋯O1i 0.98 2.43 3.260 (2) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Antipyrine (1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one) was the first pyrazolone derivative used in the management of pain and inflammation, and their derivatives have attracted the attention of several research groups due to their potential activities. In this context, broad spectra of bioactive antipyrine derivatives have been investigated and diversities of bioactivities such as analgesic (Gürsoy et al., 2000), anti-inflammatory (İsmail et al., 2007), anticancer (Sondhi et al., 2001) and antimicrobial activity (Bayrak et al., 2010) have been reported. On the other hand, the dithiocarbamate derivatives have been reported to exhibit antibacterial (Chourasia & Tyagi, 1999), antifungal (Günay et al., 1999), antimycobacterial and antitumor activities (Güzel & Salman, 2006). In view of these observations, we have synthesized the title molecule, (I), (Fig. 1), and we report here its crystal structure.

In the title compound (I), (Fig. 1), all bond lengths and angles are in normal ranges (Allen et al., 1987). The dihedral angle between the connected six- and five-membered rings (C1–C5) and (N1/N2/C7–C9) is 71.68 (11)°.

In the disorder pyrrolidine ring of (I), each component is not planar [the puckering parameters: Q(2) = 0.429 (9) Å, φ(2) = 89.9 (6) ° for major component N4/C16/C17B/C18B/C19, and Q(2) = 0.375 (19) Å, φ(2) = 271.9 (13) ° for minor component N4/C16/C17A/C18A/C19].

The molecular conformation of (I) is stabilized by the intramolecular C—H···O and C—H···S interactions. The molecules are linked together to form a dimer by N3—H3A···O1i and C13—H13···O1i hydrogen bonds [symmetry code: (i) -x + 1, -y + 1, -z + 1] (Table 1 and Fig. 2), producing two R21(6) rings and one R22(10) ring motif (Bernstein et al., 1995). An intermolecular C10—H10C···O2ii hydrogen bond [symmetry code: (ii)x, -y + 3/2, z - 1/2] (Table 1) also connects the dimers to each other.

Related literature top

For general background to and applications of dithiocarbamate derivatives, see: Bayrak et al. (2010); Chourasia & Tyagi (1999); Günay et al. (1999); Gürsoy et al. (2000); Güzel & Salman (2006); Sondhi et al. (2001); İsmail et al. (2007). For reference bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The ethanolic solution of 4-(α-chloropropionyl)amino-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole (0.005 mol) and N,N-disubstituted dithiocarbamate (0.005 mol) was refluxed for 1 h. After evaporation of the solvent in vacuo, product was washed with water and purified by recrystallization from ethanol.

Yield (%): 85. M.p. (oC): 158–160. IR [υ, cm-1, KBr]: 1684 (amide C=O), 1632 (pyrazolone C=O), 1250 (C=S). Analysis calculated for C19H24N4O2S2: C 56.41, H 5.97, N13.84%. Found: C 57.36, H 6.17, N 13.87%.

Refinement top

All H atoms were positioned geometrically with N—H = 0.86 Å, C—H = 0.93–0.97 Å and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C,N). In the pyrrolidine ring, the two C atoms of the ring not bonded to the N atom displays positional disorder with site-occupation factors of 0.630 (18) and 0.370 (18).

Structure description top

Antipyrine (1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one) was the first pyrazolone derivative used in the management of pain and inflammation, and their derivatives have attracted the attention of several research groups due to their potential activities. In this context, broad spectra of bioactive antipyrine derivatives have been investigated and diversities of bioactivities such as analgesic (Gürsoy et al., 2000), anti-inflammatory (İsmail et al., 2007), anticancer (Sondhi et al., 2001) and antimicrobial activity (Bayrak et al., 2010) have been reported. On the other hand, the dithiocarbamate derivatives have been reported to exhibit antibacterial (Chourasia & Tyagi, 1999), antifungal (Günay et al., 1999), antimycobacterial and antitumor activities (Güzel & Salman, 2006). In view of these observations, we have synthesized the title molecule, (I), (Fig. 1), and we report here its crystal structure.

In the title compound (I), (Fig. 1), all bond lengths and angles are in normal ranges (Allen et al., 1987). The dihedral angle between the connected six- and five-membered rings (C1–C5) and (N1/N2/C7–C9) is 71.68 (11)°.

In the disorder pyrrolidine ring of (I), each component is not planar [the puckering parameters: Q(2) = 0.429 (9) Å, φ(2) = 89.9 (6) ° for major component N4/C16/C17B/C18B/C19, and Q(2) = 0.375 (19) Å, φ(2) = 271.9 (13) ° for minor component N4/C16/C17A/C18A/C19].

The molecular conformation of (I) is stabilized by the intramolecular C—H···O and C—H···S interactions. The molecules are linked together to form a dimer by N3—H3A···O1i and C13—H13···O1i hydrogen bonds [symmetry code: (i) -x + 1, -y + 1, -z + 1] (Table 1 and Fig. 2), producing two R21(6) rings and one R22(10) ring motif (Bernstein et al., 1995). An intermolecular C10—H10C···O2ii hydrogen bond [symmetry code: (ii)x, -y + 3/2, z - 1/2] (Table 1) also connects the dimers to each other.

For general background to and applications of dithiocarbamate derivatives, see: Bayrak et al. (2010); Chourasia & Tyagi (1999); Günay et al. (1999); Gürsoy et al. (2000); Güzel & Salman (2006); Sondhi et al. (2001); İsmail et al. (2007). For reference bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecule with the major component of the disorder. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the dimer interactions between the neighbouring molecules with the major component of the disorder. All H atoms not involved in hydrogen bonding are omitted for clarity.
N-(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)-2-[(pyrrolidin-1-yl)carbothioylsulfanyl]propanamide top
Crystal data top
C19H24N4O2S2F(000) = 856
Mr = 404.56Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 34646 reflections
a = 12.0652 (5) Åθ = 1.7–28.1°
b = 16.0831 (6) ŵ = 0.28 mm1
c = 11.0438 (4) ÅT = 296 K
β = 101.899 (3)°Prism, colourless
V = 2096.96 (14) Å30.53 × 0.39 × 0.18 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
4352 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3699 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.7°
ω scansh = 1515
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2020
Tmin = 0.880, Tmax = 0.952l = 1313
24440 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.4583P]
where P = (Fo2 + 2Fc2)/3
4352 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.45 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H24N4O2S2V = 2096.96 (14) Å3
Mr = 404.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0652 (5) ŵ = 0.28 mm1
b = 16.0831 (6) ÅT = 296 K
c = 11.0438 (4) Å0.53 × 0.39 × 0.18 mm
β = 101.899 (3)°
Data collection top
Stoe IPDS 2
diffractometer
4352 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3699 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.952Rint = 0.042
24440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.45 e Å3
4352 reflectionsΔρmin = 0.24 e Å3
266 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.85182 (4)0.53595 (3)0.83953 (4)0.0541 (2)
S20.61011 (4)0.47743 (3)0.81372 (5)0.0579 (2)
O10.38272 (11)0.58370 (7)0.51187 (12)0.0515 (4)
O20.75522 (13)0.67788 (8)0.66272 (13)0.0642 (5)
N10.38933 (13)0.70694 (8)0.40565 (14)0.0506 (5)
N20.47420 (14)0.76279 (9)0.38716 (15)0.0545 (5)
N30.63560 (12)0.58980 (8)0.53913 (13)0.0462 (4)
N40.74425 (13)0.52899 (10)1.02011 (14)0.0531 (5)
C10.27430 (17)0.73286 (11)0.38683 (18)0.0525 (6)
C20.2427 (2)0.79527 (14)0.4585 (2)0.0742 (8)
C30.1300 (3)0.81841 (17)0.4376 (3)0.0888 (10)
C40.0505 (2)0.78017 (16)0.3476 (3)0.0879 (10)
C50.0838 (2)0.71980 (17)0.2760 (3)0.0915 (10)
C60.1959 (2)0.69566 (14)0.2953 (2)0.0725 (8)
C70.43691 (15)0.63835 (9)0.47052 (15)0.0435 (5)
C80.55651 (15)0.64845 (10)0.48024 (16)0.0443 (5)
C90.57593 (17)0.72163 (11)0.42721 (17)0.0507 (6)
C100.6835 (2)0.75840 (14)0.4081 (2)0.0725 (8)
C110.4516 (2)0.80451 (14)0.2664 (2)0.0764 (9)
C120.72748 (15)0.60750 (11)0.62738 (16)0.0463 (5)
C130.79952 (16)0.53189 (12)0.67347 (17)0.0505 (6)
C140.9026 (2)0.52810 (19)0.6130 (2)0.0815 (9)
C150.72987 (14)0.51382 (10)0.89982 (16)0.0457 (5)
C160.6528 (2)0.51755 (19)1.0884 (2)0.0771 (9)
C17B0.7181 (10)0.5279 (8)1.2222 (8)0.098 (3)0.630 (18)
C18B0.8057 (7)0.5936 (4)1.2131 (7)0.0721 (19)0.630 (18)
C190.84668 (18)0.56364 (16)1.10045 (19)0.0664 (7)
C18A0.8177 (11)0.5526 (18)1.2286 (11)0.104 (6)0.370 (18)
C17A0.6894 (13)0.5621 (18)1.2098 (17)0.122 (7)0.370 (18)
H30.107500.860500.485100.1070*
H20.296000.821200.519600.0890*
H50.030600.694700.213700.1100*
H60.218100.654300.246400.0870*
H10A0.745700.723900.446800.1090*
H10B0.692500.812900.444100.1090*
H10C0.682100.762200.321100.1090*
H3A0.624600.538700.517200.0550*
H40.025300.795400.335600.1050*
H11C0.457000.764900.202900.1150*
H130.754100.481400.652500.0600*
H14A0.877900.529700.524700.1220*
H14B0.943400.477400.636600.1220*
H14C0.951100.574800.639800.1220*
H16A0.641300.458901.102200.0930*
H16B0.582500.540801.042200.0930*
H17C0.668300.546201.275600.1170*0.630 (18)
H17D0.754000.476201.254100.1170*0.630 (18)
H18C0.772200.648501.200400.0860*0.630 (18)
H18D0.866400.594101.286100.0860*0.630 (18)
H19A0.857200.621701.082100.0800*
H19B0.913900.532601.093300.0800*
H11A0.506200.848000.266500.1150*
H11B0.376900.828000.250900.1150*
H17A0.660000.535401.275500.1450*0.370 (18)
H17B0.666600.620001.203900.1450*0.370 (18)
H18A0.841200.498101.261900.1240*0.370 (18)
H18B0.855800.594501.285600.1240*0.370 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0386 (2)0.0738 (3)0.0497 (3)0.0019 (2)0.0086 (2)0.0032 (2)
S20.0453 (3)0.0736 (3)0.0553 (3)0.0103 (2)0.0113 (2)0.0081 (2)
O10.0532 (7)0.0410 (6)0.0591 (7)0.0065 (5)0.0088 (6)0.0045 (5)
O20.0728 (9)0.0548 (8)0.0604 (8)0.0047 (7)0.0034 (7)0.0123 (6)
N10.0549 (9)0.0382 (7)0.0559 (9)0.0007 (6)0.0053 (7)0.0051 (6)
N20.0667 (10)0.0407 (7)0.0561 (9)0.0019 (7)0.0129 (7)0.0111 (6)
N30.0497 (8)0.0385 (7)0.0494 (8)0.0034 (6)0.0078 (6)0.0021 (6)
N40.0438 (8)0.0687 (10)0.0467 (8)0.0023 (7)0.0091 (6)0.0025 (7)
C10.0595 (11)0.0402 (8)0.0557 (10)0.0066 (8)0.0067 (8)0.0033 (7)
C20.0799 (16)0.0648 (13)0.0736 (14)0.0117 (11)0.0059 (12)0.0144 (11)
C30.0901 (19)0.0742 (15)0.103 (2)0.0279 (14)0.0222 (16)0.0119 (14)
C40.0652 (15)0.0737 (15)0.123 (2)0.0174 (12)0.0150 (15)0.0054 (15)
C50.0669 (15)0.0819 (16)0.115 (2)0.0017 (13)0.0059 (15)0.0198 (16)
C60.0668 (14)0.0618 (12)0.0839 (16)0.0044 (10)0.0037 (11)0.0208 (11)
C70.0534 (10)0.0348 (7)0.0407 (8)0.0024 (7)0.0059 (7)0.0027 (6)
C80.0535 (10)0.0382 (8)0.0411 (8)0.0032 (7)0.0099 (7)0.0004 (6)
C90.0630 (11)0.0436 (8)0.0476 (10)0.0050 (8)0.0160 (8)0.0020 (7)
C100.0752 (15)0.0657 (12)0.0816 (15)0.0141 (11)0.0279 (12)0.0143 (11)
C110.0974 (18)0.0623 (12)0.0672 (14)0.0013 (12)0.0120 (12)0.0260 (11)
C120.0479 (9)0.0501 (9)0.0430 (9)0.0038 (7)0.0145 (7)0.0036 (7)
C130.0458 (9)0.0579 (10)0.0485 (10)0.0033 (8)0.0117 (7)0.0015 (8)
C140.0631 (14)0.121 (2)0.0668 (14)0.0209 (13)0.0285 (11)0.0014 (13)
C150.0413 (9)0.0462 (8)0.0499 (10)0.0036 (7)0.0099 (7)0.0010 (7)
C160.0631 (14)0.118 (2)0.0555 (12)0.0157 (13)0.0243 (10)0.0082 (12)
C17B0.090 (7)0.152 (7)0.057 (3)0.016 (5)0.030 (3)0.010 (3)
C18B0.071 (3)0.093 (4)0.049 (3)0.002 (3)0.005 (2)0.014 (2)
C190.0493 (11)0.0894 (15)0.0565 (12)0.0004 (10)0.0017 (9)0.0107 (11)
C18A0.069 (6)0.182 (17)0.056 (5)0.008 (9)0.005 (4)0.005 (8)
C17A0.058 (6)0.23 (2)0.082 (8)0.021 (9)0.025 (5)0.069 (12)
Geometric parameters (Å, º) top
S1—C131.8134 (19)C17B—C18B1.512 (15)
S1—C151.7717 (18)C18A—C191.537 (13)
S2—C151.6637 (18)C18B—C191.509 (8)
O1—C71.238 (2)C2—H20.9300
O2—C121.221 (2)C3—H30.9300
N1—N21.408 (2)C4—H40.9300
N1—C11.423 (3)C5—H50.9300
N1—C71.375 (2)C6—H60.9300
N2—C91.384 (3)C10—H10A0.9600
N2—C111.467 (3)C10—H10B0.9600
N3—C81.403 (2)C10—H10C0.9600
N3—C121.347 (2)C11—H11A0.9600
N4—C151.326 (2)C11—H11B0.9600
N4—C161.471 (3)C11—H11C0.9600
N4—C191.474 (3)C13—H130.9800
N3—H3A0.8600C14—H14A0.9600
C1—C21.380 (3)C14—H14B0.9600
C1—C61.371 (3)C14—H14C0.9600
C2—C31.383 (4)C16—H16A0.9700
C3—C41.376 (4)C16—H16B0.9700
C4—C51.364 (4)C17A—H17B0.9700
C5—C61.381 (4)C17A—H17A0.9700
C7—C81.434 (3)C17B—H17D0.9700
C8—C91.356 (2)C17B—H17C0.9700
C9—C101.480 (3)C18A—H18B0.9700
C12—C131.520 (3)C18A—H18A0.9700
C13—C141.529 (3)C18B—H18D0.9700
C16—C17A1.50 (2)C18B—H18C0.9700
C16—C17B1.534 (9)C19—H19A0.9700
C17A—C18A1.53 (2)C19—H19B0.9700
S1···O23.0730 (14)C10···H11A2.7800
S2···C16i3.557 (2)C11···H10C2.8100
S2···C123.4378 (19)C12···H10A2.7800
S2···C7ii3.5929 (17)C15···H10Bvi2.8800
S2···C17Ai3.625 (17)C16···H16Bi3.0500
S1···H19B2.7500C18A···H14Biv3.0000
S1···H19A3.0000C19···H10Bvi3.0100
S1···H4iii3.1000H2···S2viii3.1800
S1···H19Biv2.9800H3A···H132.1400
S2···H132.7300H3A···O1ii1.9900
S2···H2v3.1800H3A···C7ii2.9500
S2···H16B2.8000H4···S1ix3.1000
S2···H6ii3.1300H5···H19Ax2.5700
S2···H16Bi3.0900H6···H13ii2.4400
S2···H16A3.1400H6···S2ii3.1300
S2···H11Avi3.0800H10A···O22.4800
O1···N33.005 (2)H10A···N32.8300
O1···N3ii2.8463 (17)H10A···C122.7800
O1···C13ii3.260 (2)H10B···N4vii2.7100
O1···C11vi3.296 (3)H10B···H19Avii2.4800
O2···C10vi3.180 (3)H10B···C19vii3.0100
O2···C93.102 (2)H10B···C15vii2.8800
O2···S13.0730 (14)H10C···H11A2.5000
O2···C103.054 (3)H10C···O2vii2.3200
O1···H13ii2.4300H10C···C112.8100
O1···H3Aii1.9900H11A···S2vii3.0800
O2···H10A2.4800H11A···C102.7800
O2···H10Cvi2.3200H11A···H10C2.5000
O2···H18Cvii2.8200H11B···C12.6300
N3···O13.005 (2)H11C···C7vii2.9700
N3···O1ii2.8463 (17)H13···H3A2.1400
N3···H10A2.8300H13···S22.7300
N4···H10Bvi2.7100H13···C7ii3.0900
C7···S2ii3.5929 (17)H13···O1ii2.4300
C7···C11vi3.364 (3)H13···C6ii2.9400
C9···O23.102 (2)H13···H6ii2.4400
C10···O23.054 (3)H14B···H18Div2.5500
C10···C123.392 (3)H14B···C18Aiv3.0000
C10···O2vii3.180 (3)H16A···S23.1400
C11···O1vii3.296 (3)H16B···S22.8000
C11···C7vii3.364 (3)H16B···H16Bi2.4100
C12···C103.392 (3)H16B···S2i3.0900
C12···S23.4378 (19)H16B···C16i3.0500
C13···O1ii3.260 (2)H18C···O2vi2.8200
C16···S2i3.557 (2)H18D···H14Biv2.5500
C17A···S2i3.625 (17)H19A···H5xi2.5700
C1···H11B2.6300H19A···S13.0000
C6···H13ii2.9400H19A···H10Bvi2.4800
C7···H13ii3.0900H19B···S1iv2.9800
C7···H11Cvi2.9700H19B···S12.7500
C7···H3Aii2.9500
C13—S1—C15103.30 (9)C5—C6—H6120.00
N2—N1—C1120.56 (13)C9—C10—H10A109.00
N2—N1—C7110.45 (15)C9—C10—H10B109.00
C1—N1—C7126.95 (15)C9—C10—H10C109.00
N1—N2—C9105.78 (14)H10A—C10—H10B109.00
N1—N2—C11114.77 (16)H10A—C10—H10C109.00
C9—N2—C11119.70 (17)H10B—C10—H10C110.00
C8—N3—C12124.97 (14)N2—C11—H11A109.00
C15—N4—C16122.24 (16)N2—C11—H11B110.00
C15—N4—C19126.35 (16)N2—C11—H11C109.00
C16—N4—C19111.29 (16)H11A—C11—H11B109.00
C8—N3—H3A117.00H11A—C11—H11C110.00
C12—N3—H3A118.00H11B—C11—H11C110.00
C2—C1—C6120.7 (2)S1—C13—H13109.00
N1—C1—C2120.40 (18)C12—C13—H13109.00
N1—C1—C6118.93 (18)C14—C13—H13109.00
C1—C2—C3118.6 (2)C13—C14—H14A109.00
C2—C3—C4121.0 (3)C13—C14—H14B109.00
C3—C4—C5119.5 (3)C13—C14—H14C109.00
C4—C5—C6120.5 (3)H14A—C14—H14B109.00
C1—C6—C5119.7 (2)H14A—C14—H14C110.00
O1—C7—N1124.51 (17)H14B—C14—H14C110.00
O1—C7—C8130.76 (15)N4—C16—H16A110.00
N1—C7—C8104.70 (14)N4—C16—H16B110.00
N3—C8—C7122.44 (14)C17B—C16—H16A91.00
C7—C8—C9109.07 (16)C17B—C16—H16B133.00
N3—C8—C9128.48 (17)H16A—C16—H16B109.00
N2—C9—C10120.60 (17)C17A—C16—H16A110.00
N2—C9—C8109.40 (17)C17A—C16—H16B110.00
C8—C9—C10130.00 (19)C16—C17A—H17B112.00
O2—C12—C13122.30 (17)C18A—C17A—H17A112.00
O2—C12—N3123.88 (17)C16—C17A—H17A112.00
N3—C12—C13113.68 (15)H17A—C17A—H17B109.00
C12—C13—C14110.24 (17)C18A—C17A—H17B112.00
S1—C13—C14107.36 (14)C16—C17B—H17D111.00
S1—C13—C12111.44 (13)C16—C17B—H17C111.00
S1—C15—S2123.13 (10)C18B—C17B—H17C111.00
S1—C15—N4113.09 (13)C18B—C17B—H17D111.00
S2—C15—N4123.78 (14)H17C—C17B—H17D109.00
N4—C16—C17B100.9 (5)C19—C18A—H18A110.00
N4—C16—C17A106.5 (7)C19—C18A—H18B110.00
C16—C17A—C18A100.2 (14)C17A—C18A—H18A111.00
C16—C17B—C18B103.8 (7)C17A—C18A—H18B110.00
C17A—C18A—C19106.3 (10)H18A—C18A—H18B109.00
C17B—C18B—C19100.6 (6)C17B—C18B—H18C112.00
N4—C19—C18B103.9 (3)C19—C18B—H18D112.00
N4—C19—C18A100.9 (6)C17B—C18B—H18D112.00
C1—C2—H2121.00C19—C18B—H18C112.00
C3—C2—H2121.00H18C—C18B—H18D109.00
C2—C3—H3120.00C18B—C19—H19A87.00
C4—C3—H3119.00C18B—C19—H19B131.00
C3—C4—H4120.00C18A—C19—H19A112.00
C5—C4—H4120.00C18A—C19—H19B112.00
C4—C5—H5120.00H19A—C19—H19B109.00
C6—C5—H5120.00N4—C19—H19A112.00
C1—C6—H6120.00N4—C19—H19B112.00
C15—S1—C13—C14165.83 (16)C15—N4—C19—C18B162.2 (3)
C13—S1—C15—S212.21 (13)C16—N4—C15—S22.2 (3)
C15—S1—C13—C1273.36 (14)C19—N4—C15—S2177.92 (16)
C13—S1—C15—N4168.00 (13)C15—N4—C16—C17B170.4 (5)
C1—N1—N2—C9172.98 (16)C2—C1—C6—C51.2 (3)
C1—N1—N2—C1152.8 (2)N1—C1—C2—C3179.8 (2)
N2—N1—C1—C6116.6 (2)N1—C1—C6—C5179.8 (2)
C7—N1—C1—C681.3 (2)C6—C1—C2—C31.2 (3)
N2—N1—C1—C262.5 (2)C1—C2—C3—C40.2 (4)
C7—N1—N2—C98.12 (19)C2—C3—C4—C51.5 (4)
C7—N1—N2—C11142.34 (16)C3—C4—C5—C61.5 (4)
C1—N1—C7—O17.9 (3)C4—C5—C6—C10.2 (4)
C7—N1—C1—C299.7 (2)O1—C7—C8—N33.3 (3)
N2—N1—C7—O1171.58 (15)N1—C7—C8—C92.35 (19)
N2—N1—C7—C86.45 (18)N1—C7—C8—N3178.88 (15)
C1—N1—C7—C8170.10 (16)O1—C7—C8—C9175.50 (18)
N1—N2—C9—C86.5 (2)C7—C8—C9—C10176.69 (19)
C11—N2—C9—C1041.5 (3)C7—C8—C9—N22.7 (2)
C11—N2—C9—C8137.95 (18)N3—C8—C9—C104.6 (3)
N1—N2—C9—C10172.95 (16)N3—C8—C9—N2176.03 (16)
C8—N3—C12—O23.3 (3)O2—C12—C13—C1475.2 (2)
C8—N3—C12—C13179.08 (16)O2—C12—C13—S143.9 (2)
C12—N3—C8—C949.4 (3)N3—C12—C13—S1140.25 (14)
C12—N3—C8—C7129.09 (18)N3—C12—C13—C14100.64 (19)
C16—N4—C19—C18B13.9 (3)N4—C16—C17B—C18B35.6 (8)
C19—N4—C16—C17B13.3 (5)C16—C17B—C18B—C1944.4 (8)
C19—N4—C15—S12.3 (2)C17B—C18B—C19—N435.3 (6)
C16—N4—C15—S1178.00 (17)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+3/2, z+1/2; (iv) x+2, y+1, z+2; (v) x+1, y1/2, z+3/2; (vi) x, y+3/2, z+1/2; (vii) x, y+3/2, z1/2; (viii) x+1, y+1/2, z+3/2; (ix) x1, y+3/2, z1/2; (x) x1, y, z1; (xi) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1ii0.861.992.8463 (17)171
C10—H10A···O20.962.483.054 (3)119
C10—H10C···O2vii0.962.323.180 (3)148
C13—H13···S20.982.733.138 (2)105
C13—H13···O1ii0.982.433.260 (2)143
Symmetry codes: (ii) x+1, y+1, z+1; (vii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H24N4O2S2
Mr404.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.0652 (5), 16.0831 (6), 11.0438 (4)
β (°) 101.899 (3)
V3)2096.96 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.53 × 0.39 × 0.18
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.880, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
24440, 4352, 3699
Rint0.042
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.05
No. of reflections4352
No. of parameters266
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.24

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.861.992.8463 (17)171
C10—H10A···O20.962.483.054 (3)119
C10—H10C···O2ii0.962.323.180 (3)148
C13—H13···O1i0.982.433.260 (2)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBayrak, H., Demirbaş, A., Demirbaş, N. & Karaoğlu, Ş. A. (2010). Eur. J. Med. Chem. 45, 4726–4732.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChourasia, M. R. & Tyagi, D. (1999). Indian J. Phys. Nat. Sci. 15, 15–21.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGünay, N. S., Çapan, G., Ulusoy, N., Ergenç, N., Ötük, G. & Kaya, D. (1999). Farmaco, 54, 826–831.  Web of Science PubMed Google Scholar
First citationGürsoy, A., Demirayak, Ş., Çapan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364.  Web of Science PubMed Google Scholar
First citationGüzel, Ö. & Salman, A. (2006). Bioorg. Med. Chem. 14, 7804–7815.  Web of Science PubMed Google Scholar
First citationİsmail, M. M. F., Ammar, Y. A., El-Zahaby, H. S. A., Eisa, S. I. & Barakat, S. E. (2007). Arch. Pharm. Chem. Life Sci. 340, 476–482.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSondhi, S. M., Singhal, N., Verma, R. P., Arora, S. K. & Dastidar, S. G. (2001). Indian J. Chem. Sect. B, 40, 113–119.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds