metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-chloro­pyridine){2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}cobalt(III) perchlorate methanol monosolvate

aCollege of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
*Correspondence e-mail: dpzhang73@126.com

(Received 4 November 2010; accepted 17 November 2010; online 24 November 2010)

In the title complex, [Co(C16H14N2O2)(C5H4ClN)2]ClO4·CH3OH, the CoIII ion is in a slightly distorted octa­hedral CoN4O2 coordination environment with the two 4-chloro­pyridine ligands in a trans arrangement.

Related literature

For related structures, see: Chen (2008[Chen, Y.-T. (2008). Acta Cryst. E64, m1377-m1378.]); Kitaura et al. (1987[Kitaura, E., Nishida, Y., Okawa, H. & Kida, S. (1987). J. Chem. Soc. Dalton Trans. pp. 3055-3059.]); Shi et al. (1995[Shi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206-207.]); Zhou (2009[Zhou, L.-W. (2009). Acta Cryst. E65, m226.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C16H14N2O2)(C5H4ClN)2]ClO4·CH4O

  • Mr = 683.80

  • Triclinic, [P \overline 1]

  • a = 9.0244 (12) Å

  • b = 11.2625 (16) Å

  • c = 15.052 (2) Å

  • α = 92.757 (2)°

  • β = 103.843 (2)°

  • γ = 95.396 (2)°

  • V = 1474.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 0.31 × 0.29 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.767, Tmax = 0.805

  • 7378 measured reflections

  • 5144 independent reflections

  • 4213 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.160

  • S = 1.05

  • 5144 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetradentate Schiff-base ligands, due to their excellent chelating ability for metal atoms, have been widely used to synthsize transition metal complexes. Here, we report the crystal structure of a CoIII complex based on tetradentate Schiff base ligand N,N'-bis(salicylidene)-1,2-diphenyl-1,2-ethanediamine.

The cation structure of the title complex is shown in Fig. 1. The CoIII ion is six coordinated by a N4O2 unit, in which the four equational sites are occupied by two N atoms and two O atoms from the tetradentate Schiff base ligand and the two axial sites are occupied by the N atoms of two 4-chloro-pyridine ligands, therefore forming a slightly distorted octahedral coordination environment. The Co—O, Co—NSchiff-base and Co—Npyridinebond lengths are 1.891 (2), 1.898 (2),1.892 (3), 1.897 (3), 1.977 (3) and 1.995 (3)A%, respectively, which are all comparable to the corresponding bond lengths found in the previously reported CoIII Schiff-base complexes (Chen, 2008; Kitaura, et al., 1987; Shi, et al., 1995; Zhou, 2009).

Related literature top

For related structures, see: Chen (2008); Kitaura et al. (1987); Shi et al. (1995); Zhou (2009).

Experimental top

The synthesis of the title complex was carried out by mixing Co(ClO4)2.6H2O (0.1 mmol, 36.6 mg), 4-chloro-pyridine (0.2 mm mol, 22.8 mg) and the Schiff-base ligand (0.1 mmol, 26.8 mg) in methanol. After the mixture was stirred for about half an hour at room temperature in air, it was filtered, and the filtrate was allowed to partially evaporate for one week to produce crystals suitable for X-ray diffraction with an yield about 51%. Anal. Calcd for C27H26Cl3CoN4O7: C, 47.42; H, 3.83; N, 8.19. Found: C, 47.54; H, 3.75; N, 8.095. Main IR bands (cm-1): 3020 (s, C—H),1618 (m, C=N), 1093 (s, Cl=O).

Refinement top

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97 with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C), respectively. For the H atoms bonded to O atom, it was found from difference Fourier maps with the bond lengths restrained to 0.82 Å, and was allowed for as riding atoms with Uiso(H) = 1.5Ueq(O).

Structure description top

Tetradentate Schiff-base ligands, due to their excellent chelating ability for metal atoms, have been widely used to synthsize transition metal complexes. Here, we report the crystal structure of a CoIII complex based on tetradentate Schiff base ligand N,N'-bis(salicylidene)-1,2-diphenyl-1,2-ethanediamine.

The cation structure of the title complex is shown in Fig. 1. The CoIII ion is six coordinated by a N4O2 unit, in which the four equational sites are occupied by two N atoms and two O atoms from the tetradentate Schiff base ligand and the two axial sites are occupied by the N atoms of two 4-chloro-pyridine ligands, therefore forming a slightly distorted octahedral coordination environment. The Co—O, Co—NSchiff-base and Co—Npyridinebond lengths are 1.891 (2), 1.898 (2),1.892 (3), 1.897 (3), 1.977 (3) and 1.995 (3)A%, respectively, which are all comparable to the corresponding bond lengths found in the previously reported CoIII Schiff-base complexes (Chen, 2008; Kitaura, et al., 1987; Shi, et al., 1995; Zhou, 2009).

For related structures, see: Chen (2008); Kitaura et al. (1987); Shi et al. (1995); Zhou (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The cation of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All the H atoms, the balanced ClO4- anion and the solvent methanol are not shown.
Bis(4-chloropyridine){2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}cobalt(III) perchlorate methanol monosolvate top
Crystal data top
[Co(C16H14N2O2)(C5H4ClN)2]ClO4·CH4OZ = 2
Mr = 683.80F(000) = 700
Triclinic, P1Dx = 1.540 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0244 (12) ÅCell parameters from 1564 reflections
b = 11.2625 (16) Åθ = 2.7–27.9°
c = 15.052 (2) ŵ = 0.91 mm1
α = 92.757 (2)°T = 293 K
β = 103.843 (2)°Block, red-brown
γ = 95.396 (2)°0.31 × 0.29 × 0.25 mm
V = 1474.9 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5144 independent reflections
Radiation source: fine-focus sealed tube4213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1010
Tmin = 0.767, Tmax = 0.805k = 1213
7378 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0871P)2 + 1.6441P]
where P = (Fo2 + 2Fc2)/3
5144 reflections(Δ/σ)max < 0.001
380 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Co(C16H14N2O2)(C5H4ClN)2]ClO4·CH4Oγ = 95.396 (2)°
Mr = 683.80V = 1474.9 (3) Å3
Triclinic, P1Z = 2
a = 9.0244 (12) ÅMo Kα radiation
b = 11.2625 (16) ŵ = 0.91 mm1
c = 15.052 (2) ÅT = 293 K
α = 92.757 (2)°0.31 × 0.29 × 0.25 mm
β = 103.843 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5144 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4213 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.805Rint = 0.016
7378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.05Δρmax = 1.21 e Å3
5144 reflectionsΔρmin = 0.49 e Å3
380 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.86908 (5)0.11688 (4)0.27546 (3)0.03389 (18)
Cl10.7528 (2)0.42638 (12)0.38879 (11)0.0922 (5)
Cl21.12614 (17)0.66668 (11)0.25101 (11)0.0786 (4)
Cl30.18397 (16)0.27636 (12)0.02468 (9)0.0665 (3)
O11.0710 (3)0.1026 (2)0.34504 (16)0.0395 (6)
O20.8300 (3)0.1686 (2)0.38825 (16)0.0390 (6)
O30.0318 (7)0.2275 (8)0.0063 (5)0.186 (3)
O40.2366 (8)0.3413 (8)0.0360 (5)0.178 (3)
O50.2650 (11)0.1777 (7)0.0309 (7)0.222 (4)
O60.2264 (10)0.3178 (9)0.1133 (4)0.205 (4)
O70.5606 (10)0.2638 (9)0.9505 (7)0.221 (5)
H70.54170.27681.00050.332*
N10.9058 (4)0.0653 (3)0.1619 (2)0.0401 (7)
N20.6671 (3)0.1307 (3)0.2060 (2)0.0374 (7)
N30.8215 (3)0.0521 (3)0.3026 (2)0.0384 (7)
N40.9340 (3)0.2864 (3)0.2621 (2)0.0390 (7)
C11.1544 (4)0.0002 (3)0.2244 (3)0.0397 (8)
C21.1695 (4)0.0401 (3)0.3167 (2)0.0357 (8)
C31.2979 (4)0.0125 (4)0.3825 (3)0.0471 (9)
H31.30990.03750.44380.056*
C41.4067 (5)0.0514 (4)0.3574 (3)0.0563 (11)
H41.49090.06870.40220.068*
C51.3924 (5)0.0902 (4)0.2664 (3)0.0554 (11)
H51.46670.13270.25020.066*
C61.2690 (5)0.0655 (4)0.2015 (3)0.0511 (10)
H61.25900.09180.14070.061*
C71.0261 (5)0.0194 (4)0.1520 (3)0.0448 (9)
H7A1.03030.00310.09240.054*
C80.5817 (4)0.2362 (3)0.3251 (3)0.0392 (8)
C90.7113 (4)0.2225 (3)0.3977 (2)0.0358 (8)
C100.7089 (5)0.2673 (4)0.4864 (3)0.0456 (9)
H100.79150.25890.53540.055*
C110.5884 (5)0.3226 (4)0.5022 (3)0.0516 (10)
H110.59000.35040.56160.062*
C120.4637 (5)0.3381 (4)0.4310 (3)0.0577 (11)
H120.38310.37730.44230.069*
C130.4607 (5)0.2947 (4)0.3435 (3)0.0509 (10)
H130.37680.30430.29570.061*
C140.5654 (4)0.1835 (3)0.2337 (3)0.0413 (9)
H140.47290.18840.19120.050*
C150.7786 (5)0.0764 (4)0.0805 (3)0.0520 (11)
H15A0.77190.01100.03480.062*
H15B0.79670.15110.05330.062*
C160.6310 (5)0.0731 (4)0.1120 (3)0.0495 (10)
H16A0.55710.11530.07110.059*
H16B0.58700.00900.11140.059*
C170.7805 (5)0.1467 (4)0.2413 (3)0.0454 (9)
H170.76670.13330.17950.055*
C180.7576 (5)0.2624 (4)0.2642 (3)0.0541 (11)
H180.72780.32530.21920.065*
C190.7798 (5)0.2828 (4)0.3555 (3)0.0534 (11)
C200.8241 (6)0.1875 (4)0.4200 (3)0.0570 (11)
H200.83990.19920.48220.068*
C210.8445 (5)0.0751 (4)0.3914 (3)0.0470 (9)
H210.87600.01130.43560.056*
C220.8877 (5)0.3475 (4)0.1886 (3)0.0533 (11)
H220.81440.30900.13880.064*
C230.9419 (6)0.4633 (4)0.1823 (3)0.0620 (12)
H230.90670.50220.12940.074*
C241.0492 (5)0.5210 (4)0.2553 (3)0.0522 (10)
C251.0946 (5)0.4621 (4)0.3331 (3)0.0609 (12)
H251.16420.50030.38460.073*
C261.0355 (5)0.3463 (4)0.3333 (3)0.0548 (11)
H261.06760.30660.38620.066*
C270.6289 (12)0.3621 (9)0.9273 (7)0.150 (4)
H27A0.61900.42890.96660.225*
H27B0.58190.37520.86470.225*
H27C0.73570.35370.93350.225*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0333 (3)0.0412 (3)0.0266 (3)0.0087 (2)0.00415 (19)0.0042 (2)
Cl10.1540 (16)0.0488 (7)0.0981 (11)0.0199 (8)0.0718 (11)0.0204 (7)
Cl20.0851 (9)0.0531 (7)0.0944 (10)0.0081 (6)0.0192 (8)0.0193 (7)
Cl30.0745 (8)0.0669 (8)0.0580 (7)0.0084 (6)0.0148 (6)0.0113 (6)
O10.0356 (13)0.0489 (15)0.0327 (13)0.0113 (11)0.0038 (10)0.0019 (11)
O20.0367 (13)0.0500 (15)0.0303 (13)0.0143 (11)0.0048 (10)0.0017 (11)
O30.092 (4)0.272 (9)0.165 (6)0.034 (5)0.003 (4)0.019 (6)
O40.154 (6)0.236 (8)0.141 (5)0.011 (5)0.026 (4)0.103 (5)
O50.214 (8)0.129 (6)0.277 (10)0.069 (6)0.044 (7)0.029 (6)
O60.208 (8)0.300 (11)0.093 (4)0.056 (7)0.013 (5)0.048 (5)
O70.202 (8)0.219 (9)0.301 (12)0.090 (7)0.123 (8)0.146 (9)
N10.0430 (17)0.0515 (19)0.0262 (15)0.0089 (15)0.0073 (13)0.0070 (13)
N20.0361 (16)0.0439 (17)0.0302 (15)0.0077 (13)0.0028 (12)0.0022 (13)
N30.0360 (16)0.0485 (18)0.0307 (16)0.0098 (14)0.0061 (13)0.0040 (14)
N40.0352 (16)0.0464 (18)0.0351 (16)0.0082 (13)0.0062 (13)0.0068 (14)
C10.041 (2)0.042 (2)0.041 (2)0.0057 (16)0.0176 (17)0.0097 (16)
C20.0358 (19)0.0339 (18)0.0392 (19)0.0043 (15)0.0116 (15)0.0068 (15)
C30.039 (2)0.056 (2)0.047 (2)0.0102 (18)0.0079 (17)0.0071 (19)
C40.036 (2)0.066 (3)0.068 (3)0.017 (2)0.009 (2)0.013 (2)
C50.041 (2)0.055 (3)0.079 (3)0.0165 (19)0.027 (2)0.014 (2)
C60.054 (2)0.054 (2)0.054 (2)0.011 (2)0.028 (2)0.009 (2)
C70.053 (2)0.053 (2)0.0327 (19)0.0087 (19)0.0177 (17)0.0069 (17)
C80.0362 (19)0.038 (2)0.044 (2)0.0060 (15)0.0088 (16)0.0048 (16)
C90.0383 (19)0.0320 (18)0.0374 (19)0.0025 (15)0.0101 (15)0.0024 (15)
C100.048 (2)0.048 (2)0.041 (2)0.0070 (18)0.0107 (18)0.0025 (17)
C110.055 (2)0.053 (2)0.050 (2)0.006 (2)0.020 (2)0.0059 (19)
C120.048 (2)0.060 (3)0.071 (3)0.016 (2)0.023 (2)0.005 (2)
C130.041 (2)0.053 (2)0.057 (3)0.0109 (19)0.0073 (19)0.001 (2)
C140.0317 (18)0.046 (2)0.042 (2)0.0060 (16)0.0003 (16)0.0062 (17)
C150.055 (2)0.073 (3)0.0266 (19)0.019 (2)0.0024 (17)0.0043 (19)
C160.048 (2)0.062 (3)0.033 (2)0.0135 (19)0.0048 (17)0.0018 (18)
C170.050 (2)0.049 (2)0.038 (2)0.0106 (18)0.0089 (17)0.0044 (18)
C180.064 (3)0.047 (2)0.054 (3)0.009 (2)0.018 (2)0.002 (2)
C190.065 (3)0.041 (2)0.066 (3)0.016 (2)0.032 (2)0.012 (2)
C200.077 (3)0.057 (3)0.043 (2)0.018 (2)0.021 (2)0.014 (2)
C210.057 (2)0.048 (2)0.036 (2)0.0127 (19)0.0097 (18)0.0051 (17)
C220.064 (3)0.052 (2)0.040 (2)0.003 (2)0.0029 (19)0.0099 (19)
C230.079 (3)0.061 (3)0.046 (3)0.008 (2)0.012 (2)0.019 (2)
C240.045 (2)0.048 (2)0.066 (3)0.0067 (19)0.017 (2)0.013 (2)
C250.053 (3)0.050 (3)0.067 (3)0.001 (2)0.009 (2)0.007 (2)
C260.053 (2)0.053 (3)0.048 (2)0.006 (2)0.008 (2)0.011 (2)
C270.172 (10)0.128 (7)0.158 (9)0.036 (7)0.078 (8)0.001 (7)
Geometric parameters (Å, º) top
Co1—O21.891 (2)C8—C131.402 (5)
Co1—N11.892 (3)C8—C91.423 (5)
Co1—N21.897 (3)C8—C141.440 (5)
Co1—O11.898 (2)C9—C101.410 (5)
Co1—N41.977 (3)C10—C111.365 (6)
Co1—N31.995 (3)C10—H100.9300
Cl1—C191.728 (4)C11—C121.387 (6)
Cl2—C241.730 (4)C11—H110.9300
Cl3—O41.342 (6)C12—C131.376 (6)
Cl3—O61.344 (6)C12—H120.9300
Cl3—O51.382 (7)C13—H130.9300
Cl3—O31.391 (6)C14—H140.9300
O1—C21.318 (4)C15—C161.515 (6)
O2—C91.312 (4)C15—H15A0.9700
O7—C271.319 (10)C15—H15B0.9700
O7—H70.8200C16—H16A0.9700
N1—C71.282 (5)C16—H16B0.9700
N1—C151.485 (5)C17—C181.373 (6)
N2—C141.278 (5)C17—H170.9300
N2—C161.477 (5)C18—C191.374 (6)
N3—C171.339 (5)C18—H180.9300
N3—C211.344 (5)C19—C201.375 (6)
N4—C221.334 (5)C20—C211.366 (6)
N4—C261.337 (5)C20—H200.9300
C1—C21.412 (5)C21—H210.9300
C1—C61.420 (5)C22—C231.365 (6)
C1—C71.430 (5)C22—H220.9300
C2—C31.403 (5)C23—C241.369 (6)
C3—C41.381 (6)C23—H230.9300
C3—H30.9300C24—C251.369 (6)
C4—C51.390 (7)C25—C261.363 (6)
C4—H40.9300C25—H250.9300
C5—C61.355 (6)C26—H260.9300
C5—H50.9300C27—H27A0.9600
C6—H60.9300C27—H27B0.9600
C7—H7A0.9300C27—H27C0.9600
O2—Co1—N1179.33 (12)C11—C10—C9121.7 (4)
O2—Co1—N294.28 (12)C11—C10—H10119.2
N1—Co1—N285.06 (13)C9—C10—H10119.2
O2—Co1—O185.71 (10)C10—C11—C12121.1 (4)
N1—Co1—O194.95 (12)C10—C11—H11119.5
N2—Co1—O1179.83 (13)C12—C11—H11119.5
O2—Co1—N487.07 (12)C13—C12—C11119.2 (4)
N1—Co1—N492.94 (13)C13—C12—H12120.4
N2—Co1—N491.30 (13)C11—C12—H12120.4
O1—Co1—N488.86 (12)C12—C13—C8121.3 (4)
O2—Co1—N389.24 (12)C12—C13—H13119.4
N1—Co1—N390.81 (13)C8—C13—H13119.4
N2—Co1—N394.37 (13)N2—C14—C8125.6 (3)
O1—Co1—N385.46 (12)N2—C14—H14117.2
N4—Co1—N3173.45 (12)C8—C14—H14117.2
O4—Cl3—O6117.6 (6)N1—C15—C16107.9 (3)
O4—Cl3—O5104.2 (7)N1—C15—H15A110.1
O6—Cl3—O598.6 (6)C16—C15—H15A110.1
O4—Cl3—O3114.2 (5)N1—C15—H15B110.1
O6—Cl3—O3115.2 (5)C16—C15—H15B110.1
O5—Cl3—O3103.6 (6)H15A—C15—H15B108.4
C2—O1—Co1124.5 (2)N2—C16—C15108.2 (3)
C9—O2—Co1125.6 (2)N2—C16—H16A110.1
C27—O7—H7109.5C15—C16—H16A110.1
C7—N1—C15119.9 (3)N2—C16—H16B110.1
C7—N1—Co1125.3 (3)C15—C16—H16B110.1
C15—N1—Co1114.8 (2)H16A—C16—H16B108.4
C14—N2—C16119.9 (3)N3—C17—C18123.9 (4)
C14—N2—Co1126.0 (3)N3—C17—H17118.1
C16—N2—Co1114.1 (2)C18—C17—H17118.1
C17—N3—C21116.5 (3)C17—C18—C19118.3 (4)
C17—N3—Co1126.2 (3)C17—C18—H18120.8
C21—N3—Co1117.1 (3)C19—C18—H18120.8
C22—N4—C26116.2 (4)C18—C19—C20119.0 (4)
C22—N4—Co1126.6 (3)C18—C19—Cl1120.5 (4)
C26—N4—Co1117.2 (3)C20—C19—Cl1120.4 (4)
C2—C1—C6119.3 (4)C21—C20—C19119.0 (4)
C2—C1—C7122.9 (3)C21—C20—H20120.5
C6—C1—C7117.8 (4)C19—C20—H20120.5
O1—C2—C3117.9 (3)N3—C21—C20123.3 (4)
O1—C2—C1124.1 (3)N3—C21—H21118.3
C3—C2—C1118.0 (3)C20—C21—H21118.3
C4—C3—C2120.9 (4)N4—C22—C23123.7 (4)
C4—C3—H3119.5N4—C22—H22118.1
C2—C3—H3119.5C23—C22—H22118.1
C3—C4—C5121.1 (4)C22—C23—C24118.7 (4)
C3—C4—H4119.5C22—C23—H23120.7
C5—C4—H4119.5C24—C23—H23120.7
C6—C5—C4119.2 (4)C23—C24—C25119.0 (4)
C6—C5—H5120.4C23—C24—Cl2121.1 (3)
C4—C5—H5120.4C25—C24—Cl2119.9 (4)
C5—C6—C1121.5 (4)C26—C25—C24118.5 (4)
C5—C6—H6119.3C26—C25—H25120.7
C1—C6—H6119.3C24—C25—H25120.7
N1—C7—C1125.7 (3)N4—C26—C25123.9 (4)
N1—C7—H7A117.2N4—C26—H26118.1
C1—C7—H7A117.2C25—C26—H26118.1
C13—C8—C9119.7 (4)O7—C27—H27A109.5
C13—C8—C14118.4 (3)O7—C27—H27B109.5
C9—C8—C14121.7 (3)H27A—C27—H27B109.5
O2—C9—C10118.1 (3)O7—C27—H27C109.5
O2—C9—C8124.7 (3)H27A—C27—H27C109.5
C10—C9—C8117.2 (3)H27B—C27—H27C109.5

Experimental details

Crystal data
Chemical formula[Co(C16H14N2O2)(C5H4ClN)2]ClO4·CH4O
Mr683.80
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0244 (12), 11.2625 (16), 15.052 (2)
α, β, γ (°)92.757 (2), 103.843 (2), 95.396 (2)
V3)1474.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.31 × 0.29 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.767, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
7378, 5144, 4213
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.160, 1.05
No. of reflections5144
No. of parameters380
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 0.49

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

The author thanks the Doctoral Starting Fund of Shandong University of Technology for support.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-T. (2008). Acta Cryst. E64, m1377–m1378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitaura, E., Nishida, Y., Okawa, H. & Kida, S. (1987). J. Chem. Soc. Dalton Trans. pp. 3055–3059.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206–207.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhou, L.-W. (2009). Acta Cryst. E65, m226.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds