organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-[(3,4-Di­methyl­phen­yl)(eth­yl)sulfamo­yl]phen­yl}-N-ethyl­acetamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College, University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 November 2010; accepted 7 November 2010; online 13 November 2010)

When viewed down the central S⋯N axis of the title compound, C20H26N2O3S, it is apparent that the mol­ecule adopts a gauche conformation with all O atoms lying to one side of the central benzene ring; the carbonyl O atom is directed away from the central ring and the N-bound ethyl groups lie to one side of the mol­ecule. Supra­molecular helical chains aligned along the b axis and sustained by C—H⋯O contacts feature in the crystal packing. These are consolidated in the three-dimensional structure by C—H⋯π inter­actions.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: Graw-Hill.]). For related structures, see: Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]); Khan et al. (2010[Khan, I. U., Sharif, S., Batool, S., Mumtaz, A. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2641.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N2O3S

  • Mr = 374.51

  • Monoclinic, P 21 /c

  • a = 8.0882 (2) Å

  • b = 11.5978 (3) Å

  • c = 21.2717 (5) Å

  • β = 97.194 (1)°

  • V = 1979.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.28 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.692, Tmax = 0.895

  • 16612 measured reflections

  • 4079 independent reflections

  • 3325 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.122

  • S = 1.01

  • 4079 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.54 3.455 (2) 170
C10—H10a⋯Cg1ii 0.96 2.93 3.728 (2) 142
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with on-going structural studies of sulfonamides (Sharif et al., 2010; Khan et al., 2010), of interest owing to their biological properties (Korolkovas, 1988; Mandell & Sande, 1992), the title compound, (I), was investigated.

With reference to the central benzene ring in (I), Fig. 1, the S1 [deviation = -0.068 (1) Å] and N2 [-0.005 (1) Å] atoms are co-planar. Both sulfonamide-O atoms lie to the same side of the plane as does the carbonyl-O atom, which is directed away from the ring, with the remaining substituents lying to the other side. When viewed down the S1···N2 vector, both N-bound ethyl groups lie to the same side of the molecule. Similarly, when viewed down the S1···N2 vector, the molecule has a gauche conformation.

In the crystal packing, molecules are connected into a helical supramolecular chain along the b axis via C—H···O contacts occurring between benzene-H and sulfonamide-O atoms, Table 1 and Fig. 2. The chains are consolidated in the crystal packing by C—H···π interactions, Table 1 and Fig. 3.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).

Experimental top

A mixture of N-{4-[(3,4-dimethylphenyl)sulfamoyl]phenyl}acetamide 100 mg (0.314 mmol) and sodium hydride 85 mg (0.78 mmol) in N,N-dimethylformamide (10 ml) was stirred at room temperature for 30 min. followed by addition of ethyl iodide 199 µl (0.785 mmol). Stirring was continued for a further 3 h and the contents were poured over crushed ice. The precipitate that formed was isolated, washed and crystallized from methanol solution by slow evaporation; M.pt. 472 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). In the final refinement four low angle reflections evidently effected by the beam stop were omitted, i.e. (100), (002), (011) and (111).

Structure description top

In connection with on-going structural studies of sulfonamides (Sharif et al., 2010; Khan et al., 2010), of interest owing to their biological properties (Korolkovas, 1988; Mandell & Sande, 1992), the title compound, (I), was investigated.

With reference to the central benzene ring in (I), Fig. 1, the S1 [deviation = -0.068 (1) Å] and N2 [-0.005 (1) Å] atoms are co-planar. Both sulfonamide-O atoms lie to the same side of the plane as does the carbonyl-O atom, which is directed away from the ring, with the remaining substituents lying to the other side. When viewed down the S1···N2 vector, both N-bound ethyl groups lie to the same side of the molecule. Similarly, when viewed down the S1···N2 vector, the molecule has a gauche conformation.

In the crystal packing, molecules are connected into a helical supramolecular chain along the b axis via C—H···O contacts occurring between benzene-H and sulfonamide-O atoms, Table 1 and Fig. 2. The chains are consolidated in the crystal packing by C—H···π interactions, Table 1 and Fig. 3.

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain along the b axis in (I). The C—H···O contacts sustaining this chain are shown as orange dashed lines.
[Figure 3] Fig. 3. View in projection down the b axis of the unit-cell contents for (I). The C—H···O and C—H···π contacts are shown as orange and purple dashed lines, respectively.
N-{4-[(3,4-Dimethylphenyl)(ethyl)sulfamoyl]phenyl}-N- ethylacetamide top
Crystal data top
C20H26N2O3SF(000) = 800
Mr = 374.51Dx = 1.257 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7015 reflections
a = 8.0882 (2) Åθ = 3.0–27.8°
b = 11.5978 (3) ŵ = 0.19 mm1
c = 21.2717 (5) ÅT = 293 K
β = 97.194 (1)°Block, colourless
V = 1979.69 (8) Å30.28 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4079 independent reflections
Radiation source: fine-focus sealed tube3325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.692, Tmax = 0.895k = 1411
16612 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.4585P]
where P = (Fo2 + 2Fc2)/3
4079 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H26N2O3SV = 1979.69 (8) Å3
Mr = 374.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0882 (2) ŵ = 0.19 mm1
b = 11.5978 (3) ÅT = 293 K
c = 21.2717 (5) Å0.28 × 0.14 × 0.08 mm
β = 97.194 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4079 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3325 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.895Rint = 0.029
16612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
4079 reflectionsΔρmin = 0.26 e Å3
240 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.12740 (5)0.72075 (4)0.249229 (18)0.03937 (14)
O11.07590 (16)0.82013 (10)0.28110 (6)0.0509 (3)
O21.25922 (15)0.73062 (12)0.21059 (6)0.0536 (3)
O30.27644 (17)0.53664 (14)0.04014 (7)0.0694 (4)
N11.18549 (16)0.62329 (11)0.30379 (6)0.0376 (3)
N20.52634 (17)0.52003 (13)0.09842 (7)0.0475 (4)
C11.2726 (2)0.52088 (16)0.28259 (8)0.0476 (4)
H1A1.19130.46200.26830.057*
H1B1.33060.54190.24700.057*
C21.3933 (3)0.4738 (2)0.33407 (12)0.0874 (8)
H2A1.46860.53370.35050.131*
H2B1.45510.41230.31780.131*
H2C1.33470.44500.36730.131*
C31.06969 (18)0.60395 (13)0.34975 (7)0.0339 (3)
C41.06258 (19)0.68223 (14)0.39837 (7)0.0389 (3)
H41.13360.74560.40150.047*
C50.9517 (2)0.66828 (15)0.44270 (7)0.0422 (4)
C60.8482 (2)0.57149 (16)0.43848 (8)0.0442 (4)
C70.8584 (2)0.49348 (15)0.39000 (8)0.0488 (4)
H70.79020.42860.38730.059*
C80.9669 (2)0.50905 (14)0.34545 (8)0.0440 (4)
H80.97040.45590.31290.053*
C90.9443 (3)0.7571 (2)0.49396 (9)0.0631 (5)
H9A1.02650.81550.49030.095*
H9B0.96600.72070.53470.095*
H9C0.83550.79160.48960.095*
C100.7272 (3)0.5500 (2)0.48570 (10)0.0673 (6)
H10A0.78680.54680.52760.101*
H10B0.67080.47810.47610.101*
H10C0.64710.61140.48340.101*
C110.95077 (19)0.66426 (14)0.20256 (7)0.0377 (3)
C120.7959 (2)0.68032 (16)0.22264 (8)0.0454 (4)
H120.78590.72310.25890.055*
C130.6567 (2)0.63238 (16)0.18843 (8)0.0477 (4)
H130.55260.64210.20200.057*
C140.67146 (19)0.56991 (14)0.13400 (8)0.0410 (4)
C150.8263 (2)0.55379 (15)0.11401 (8)0.0435 (4)
H150.83590.51150.07750.052*
C160.96666 (19)0.60077 (15)0.14841 (7)0.0422 (4)
H161.07100.58980.13530.051*
C170.5128 (2)0.39364 (17)0.09782 (10)0.0592 (5)
H17A0.62370.36080.10010.071*
H17B0.45100.36970.05790.071*
C180.4287 (4)0.3465 (2)0.15098 (12)0.0839 (7)
H18A0.49040.36840.19070.126*
H18B0.42410.26390.14800.126*
H18C0.31770.37680.14840.126*
C190.4017 (2)0.58325 (17)0.06710 (8)0.0485 (4)
C200.4223 (3)0.71197 (17)0.06548 (9)0.0564 (5)
H20A0.35880.74230.02800.085*
H20B0.53790.73050.06520.085*
H20C0.38340.74540.10220.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0372 (2)0.0426 (3)0.0387 (2)0.00274 (16)0.00612 (16)0.00737 (16)
O10.0619 (8)0.0375 (6)0.0527 (7)0.0004 (6)0.0049 (6)0.0032 (5)
O20.0408 (6)0.0717 (9)0.0498 (7)0.0092 (6)0.0114 (5)0.0127 (6)
O30.0518 (8)0.0747 (10)0.0762 (9)0.0066 (7)0.0140 (7)0.0079 (8)
N10.0376 (7)0.0394 (7)0.0365 (6)0.0037 (5)0.0071 (5)0.0036 (5)
N20.0397 (7)0.0436 (8)0.0584 (9)0.0001 (6)0.0028 (6)0.0044 (7)
C10.0457 (9)0.0479 (10)0.0514 (9)0.0085 (8)0.0142 (8)0.0004 (8)
C20.0891 (17)0.0869 (18)0.0821 (16)0.0473 (14)0.0048 (13)0.0050 (14)
C30.0342 (7)0.0354 (8)0.0323 (7)0.0006 (6)0.0043 (6)0.0021 (6)
C40.0388 (8)0.0380 (8)0.0392 (8)0.0052 (7)0.0018 (6)0.0018 (6)
C50.0413 (8)0.0477 (9)0.0367 (8)0.0048 (7)0.0021 (7)0.0035 (7)
C60.0393 (8)0.0528 (10)0.0416 (8)0.0021 (7)0.0086 (7)0.0060 (7)
C70.0494 (10)0.0434 (9)0.0544 (10)0.0142 (8)0.0095 (8)0.0013 (8)
C80.0530 (10)0.0379 (9)0.0416 (8)0.0073 (7)0.0082 (7)0.0068 (7)
C90.0642 (12)0.0715 (13)0.0544 (11)0.0027 (10)0.0107 (10)0.0209 (10)
C100.0596 (12)0.0847 (16)0.0622 (11)0.0031 (11)0.0254 (10)0.0073 (11)
C110.0340 (8)0.0451 (9)0.0343 (7)0.0036 (7)0.0061 (6)0.0065 (7)
C120.0404 (9)0.0559 (10)0.0414 (8)0.0047 (8)0.0104 (7)0.0042 (8)
C130.0339 (8)0.0619 (11)0.0490 (9)0.0029 (8)0.0122 (7)0.0034 (8)
C140.0351 (8)0.0438 (9)0.0439 (8)0.0014 (7)0.0038 (7)0.0027 (7)
C150.0428 (9)0.0504 (10)0.0380 (8)0.0055 (7)0.0080 (7)0.0016 (7)
C160.0344 (8)0.0541 (10)0.0396 (8)0.0058 (7)0.0110 (6)0.0046 (7)
C170.0519 (11)0.0488 (11)0.0774 (13)0.0015 (8)0.0105 (9)0.0121 (10)
C180.112 (2)0.0563 (13)0.0870 (16)0.0039 (13)0.0250 (15)0.0065 (12)
C190.0429 (9)0.0578 (11)0.0445 (9)0.0004 (8)0.0043 (7)0.0042 (8)
C200.0589 (11)0.0538 (11)0.0549 (10)0.0054 (9)0.0002 (9)0.0030 (9)
Geometric parameters (Å, º) top
S1—O11.4256 (13)C9—H9A0.9600
S1—O21.4301 (12)C9—H9B0.9600
S1—N11.6458 (13)C9—H9C0.9600
S1—C111.7608 (16)C10—H10A0.9600
O3—C191.226 (2)C10—H10B0.9600
N1—C31.4534 (18)C10—H10C0.9600
N1—C11.480 (2)C11—C121.386 (2)
N2—C191.352 (2)C11—C161.386 (2)
N2—C141.436 (2)C12—C131.379 (2)
N2—C171.470 (2)C12—H120.9300
C1—C21.478 (3)C13—C141.384 (2)
C1—H1A0.9700C13—H130.9300
C1—H1B0.9700C14—C151.385 (2)
C2—H2A0.9600C15—C161.383 (2)
C2—H2B0.9600C15—H150.9300
C2—H2C0.9600C16—H160.9300
C3—C81.376 (2)C17—C181.494 (3)
C3—C41.383 (2)C17—H17A0.9700
C4—C51.390 (2)C17—H17B0.9700
C4—H40.9300C18—H18A0.9600
C5—C61.396 (2)C18—H18B0.9600
C5—C91.506 (2)C18—H18C0.9600
C6—C71.382 (2)C19—C201.503 (3)
C6—C101.508 (2)C20—H20A0.9600
C7—C81.382 (2)C20—H20B0.9600
C7—H70.9300C20—H20C0.9600
C8—H80.9300
O1—S1—O2119.46 (8)H9B—C9—H9C109.5
O1—S1—N1107.13 (7)C6—C10—H10A109.5
O2—S1—N1107.03 (7)C6—C10—H10B109.5
O1—S1—C11107.71 (8)H10A—C10—H10B109.5
O2—S1—C11108.45 (7)C6—C10—H10C109.5
N1—S1—C11106.37 (7)H10A—C10—H10C109.5
C3—N1—C1116.91 (12)H10B—C10—H10C109.5
C3—N1—S1115.41 (10)C12—C11—C16120.59 (15)
C1—N1—S1116.17 (10)C12—C11—S1118.50 (12)
C19—N2—C14123.41 (15)C16—C11—S1120.86 (12)
C19—N2—C17119.09 (15)C13—C12—C11119.53 (15)
C14—N2—C17117.48 (15)C13—C12—H12120.2
C2—C1—N1111.47 (16)C11—C12—H12120.2
C2—C1—H1A109.3C12—C13—C14120.17 (15)
N1—C1—H1A109.3C12—C13—H13119.9
C2—C1—H1B109.3C14—C13—H13119.9
N1—C1—H1B109.3C15—C14—C13120.26 (15)
H1A—C1—H1B108.0C15—C14—N2119.64 (15)
C1—C2—H2A109.5C13—C14—N2120.09 (14)
C1—C2—H2B109.5C16—C15—C14119.88 (15)
H2A—C2—H2B109.5C16—C15—H15120.1
C1—C2—H2C109.5C14—C15—H15120.1
H2A—C2—H2C109.5C15—C16—C11119.56 (14)
H2B—C2—H2C109.5C15—C16—H16120.2
C8—C3—C4119.57 (14)C11—C16—H16120.2
C8—C3—N1120.92 (13)N2—C17—C18113.53 (17)
C4—C3—N1119.50 (13)N2—C17—H17A108.9
C3—C4—C5121.45 (14)C18—C17—H17A108.9
C3—C4—H4119.3N2—C17—H17B108.9
C5—C4—H4119.3C18—C17—H17B108.9
C4—C5—C6118.84 (15)H17A—C17—H17B107.7
C4—C5—C9119.93 (16)C17—C18—H18A109.5
C6—C5—C9121.23 (16)C17—C18—H18B109.5
C7—C6—C5118.90 (15)H18A—C18—H18B109.5
C7—C6—C10119.53 (17)C17—C18—H18C109.5
C5—C6—C10121.57 (16)H18A—C18—H18C109.5
C8—C7—C6121.90 (15)H18B—C18—H18C109.5
C8—C7—H7119.0O3—C19—N2120.85 (18)
C6—C7—H7119.0O3—C19—C20120.99 (18)
C3—C8—C7119.31 (15)N2—C19—C20118.16 (16)
C3—C8—H8120.3C19—C20—H20A109.5
C7—C8—H8120.3C19—C20—H20B109.5
C5—C9—H9A109.5H20A—C20—H20B109.5
C5—C9—H9B109.5C19—C20—H20C109.5
H9A—C9—H9B109.5H20A—C20—H20C109.5
C5—C9—H9C109.5H20B—C20—H20C109.5
H9A—C9—H9C109.5
O1—S1—N1—C348.43 (12)O2—S1—C11—C12159.96 (14)
O2—S1—N1—C3177.67 (10)N1—S1—C11—C1285.22 (14)
C11—S1—N1—C366.55 (12)O1—S1—C11—C16153.43 (13)
O1—S1—N1—C1169.22 (12)O2—S1—C11—C1622.83 (16)
O2—S1—N1—C139.98 (14)N1—S1—C11—C1691.99 (14)
C11—S1—N1—C175.80 (13)C16—C11—C12—C130.2 (3)
C3—N1—C1—C268.9 (2)S1—C11—C12—C13177.06 (13)
S1—N1—C1—C2149.37 (17)C11—C12—C13—C140.8 (3)
C1—N1—C3—C839.7 (2)C12—C13—C14—C150.9 (3)
S1—N1—C3—C8102.32 (16)C12—C13—C14—N2180.00 (16)
C1—N1—C3—C4140.40 (15)C19—N2—C14—C15114.12 (19)
S1—N1—C3—C477.54 (16)C17—N2—C14—C1567.4 (2)
C8—C3—C4—C51.0 (2)C19—N2—C14—C1366.8 (2)
N1—C3—C4—C5178.83 (13)C17—N2—C14—C13111.71 (19)
C3—C4—C5—C61.4 (2)C13—C14—C15—C160.3 (3)
C3—C4—C5—C9178.33 (16)N2—C14—C15—C16179.42 (15)
C4—C5—C6—C70.7 (2)C14—C15—C16—C110.4 (3)
C9—C5—C6—C7179.10 (17)C12—C11—C16—C150.4 (2)
C4—C5—C6—C10178.90 (16)S1—C11—C16—C15177.57 (13)
C9—C5—C6—C101.3 (3)C19—N2—C17—C1889.7 (2)
C5—C6—C7—C80.5 (3)C14—N2—C17—C1888.9 (2)
C10—C6—C7—C8179.92 (17)C14—N2—C19—O3176.18 (16)
C4—C3—C8—C70.2 (2)C17—N2—C19—O32.3 (3)
N1—C3—C8—C7179.99 (15)C14—N2—C19—C204.7 (2)
C6—C7—C8—C30.9 (3)C17—N2—C19—C20176.83 (17)
O1—S1—C11—C1229.36 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.543.455 (2)170
C10—H10a···Cg1ii0.962.933.728 (2)142
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H26N2O3S
Mr374.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.0882 (2), 11.5978 (3), 21.2717 (5)
β (°) 97.194 (1)
V3)1979.69 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.28 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.692, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
16612, 4079, 3325
Rint0.029
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.122, 1.01
No. of reflections4079
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.543.455 (2)170
C10—H10a···Cg1ii0.962.933.728 (2)142
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Batool, S., Mumtaz, A. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: Graw–Hill.  Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds