organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(9H-Carbazol-9-ylmeth­yl)di­ethyl­amine

aDepartment of Applied Chemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China
*Correspondence e-mail: guweijin2010@163.com

(Received 9 November 2010; accepted 15 November 2010; online 20 November 2010)

The asymmetric unit of the title compound, C17H20N2, contains two mol­ecules, whose bond lengths and angles differ only slightly. In the crystal, neighbouring mol­ecules form pillar structures via edge-to-face ππ stacking inter­actions [edge-to-face distances = 3.538 (3) and 3.496 (3)Å].

Related literature

Carbazole-based compounds are widely used in OLEDs as emitters because of their intense luminescence, see: Adhikari et al. (2007[Adhikari, R. M., Mondal, R., Shah, B. K. & Neckers, D. C. (2007). J. Org. Chem. 72, 4727-4732.]); Liu et al. (2006[Liu, Y., Nishiura, M., Wang, Y. & Hou, Z. (2006). J. Am. Chem. Soc. 128, 5592-5593.]); Palayangoda et al. (2008[Palayangoda, S. S., Cai, X., Adhikari, R. M. & Neckers, D. C. (2008). Org. Lett. 10, 281-284.]) and as organic fluorescence probes, see: Hao et al. (2010[Hao, L.-L., Li, J.-F., Lin, P.-H., Dong, R.-F., Li, D.-X., Shuang, S.-M. & Dong, C. (2010). Chin. Chem. Lett. 21, 9-12.]); Pappayee & Mishra, (2000[Pappayee, N. & Mishra, A. K. (2000). Spectrochim. Acta Part A, 56, 1027-1034.]). For our studies of organic fluorescence probes, see: Shen et al. (2006[Shen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651-653.], 2008[Shen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916-918.]). For the preparation of the title compound, see: Gu et al. (1997[Gu, W., Pan, Y., Shen, Y., Huang, X., Sun, H. & Sun, X. (1997). Acta Cryst. C53, 190-191.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2

  • Mr = 252.35

  • Monoclinic, P 21 /c

  • a = 24.338 (2) Å

  • b = 6.3216 (11) Å

  • c = 19.133 (2) Å

  • β = 104.109 (2)°

  • V = 2854.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.985

  • 13429 measured reflections

  • 5463 independent reflections

  • 3052 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.120

  • S = 1.06

  • 5463 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbazole-based compounds are known for their intense luminescence and widely used in OLEDs as emitters (Adhikari et al., 2007; Liu et al., 2006; Palayangoda et al., 2008). They can also be used as organic fluorescence probes (Hao et al., 2010; Pappayee et al., 2000). In our continuing studies in organic fluorescence probes (Shen et al., 2008; Shen et al., 2006), the 9-diethylaminomethyl carbazole(I) was synthesized.

The crystal structure of the title compound, C17H20N2, reveals that all the bond lengths and angles have normal values. Each asymmetric unit contains two title molecules, which are similar to each other with only slightly difference in their bond lengths and angles (Figure 1 and Table 1).

In the crystal packing the edge-to-face ππ stacking interactions were observed. The distance from the edge of the molecular plane B (N1i/C1i/C2i/C3i/C4i/C5i/C6i/C7i/C8i/C9i/ C10i/C11i/C12i)(i: 1 - x,-1/2 + y,0.5 - z) to the face of the molecular plane A(N1/C1/C2/C3/C4/C5/C6/C7/C8/C9/C10/C11/C12) is 3.538 (3) Å, and the dihedral angle between plane A and B is 62.06 (3)°. Similar relationships were observed with the molecular plane C and D. The edge-to-face distance of the molecular plane D(N3ii/C18ii/C19ii/C20ii/C21ii/C22ii/C23ii/ C24ii/C25ii/C26ii/C27ii/C28ii/C29ii)(ii: -x,1/2 + y,0.5 - z) to the molecular plane C(N3/C18/C19/C20/C21/C22/C23/C24/C25/C26/C27 /C28/C29) is 3.496 (3) Å, and the dihedral angle between plane C and D is 61.41 (3)° (Figure 2).Through these edge-to-face ππ stacking interactions, the neighbouring molecules form pillar structures (Figure 3).

Related literature top

Carbazole-based compounds are widely used in OLEDs as emitters because of their intense luminescence, see: Adhikari et al. (2007); Liu et al. (2006); Palayangoda et al. (2008) and as organic fluorescence probes, see: Hao et al. (2010); Pappayee & Mishra, (2000). For our studies of organic fluorescence probes, see: Shen et al. (2006, 2008). For the preparation of the title compound, see: Gu et al. (1997).

Experimental top

9-Diethylaminomethyl carbazole was prepared according to a procedure described in the literature (Gu, et al., 1997). Colorless crystals were obtained by recrystallized from ethanol at room temperature.

1H-NMR (CDCl3, 400 MHz) δ: 1.07 (t, 6H, 2-CH3), 2.68 (q, 4H, 2-CH2-), 4.98 (s, 2H, –CH2-), 7.22 (t, 2H, ArH), 7.44 (t, 2H, ArH), 7.54 (d, 2H, ArH), 8.06 (d, 2H, ArH).

Refinement top

The H atoms were placed in calculated positions and included as part of a riding model, with C—H = 0.93–0.97 Å, and with Uequiv values set at 1.2 Uequiv of the parent atoms.

Structure description top

Carbazole-based compounds are known for their intense luminescence and widely used in OLEDs as emitters (Adhikari et al., 2007; Liu et al., 2006; Palayangoda et al., 2008). They can also be used as organic fluorescence probes (Hao et al., 2010; Pappayee et al., 2000). In our continuing studies in organic fluorescence probes (Shen et al., 2008; Shen et al., 2006), the 9-diethylaminomethyl carbazole(I) was synthesized.

The crystal structure of the title compound, C17H20N2, reveals that all the bond lengths and angles have normal values. Each asymmetric unit contains two title molecules, which are similar to each other with only slightly difference in their bond lengths and angles (Figure 1 and Table 1).

In the crystal packing the edge-to-face ππ stacking interactions were observed. The distance from the edge of the molecular plane B (N1i/C1i/C2i/C3i/C4i/C5i/C6i/C7i/C8i/C9i/ C10i/C11i/C12i)(i: 1 - x,-1/2 + y,0.5 - z) to the face of the molecular plane A(N1/C1/C2/C3/C4/C5/C6/C7/C8/C9/C10/C11/C12) is 3.538 (3) Å, and the dihedral angle between plane A and B is 62.06 (3)°. Similar relationships were observed with the molecular plane C and D. The edge-to-face distance of the molecular plane D(N3ii/C18ii/C19ii/C20ii/C21ii/C22ii/C23ii/ C24ii/C25ii/C26ii/C27ii/C28ii/C29ii)(ii: -x,1/2 + y,0.5 - z) to the molecular plane C(N3/C18/C19/C20/C21/C22/C23/C24/C25/C26/C27 /C28/C29) is 3.496 (3) Å, and the dihedral angle between plane C and D is 61.41 (3)° (Figure 2).Through these edge-to-face ππ stacking interactions, the neighbouring molecules form pillar structures (Figure 3).

Carbazole-based compounds are widely used in OLEDs as emitters because of their intense luminescence, see: Adhikari et al. (2007); Liu et al. (2006); Palayangoda et al. (2008) and as organic fluorescence probes, see: Hao et al. (2010); Pappayee & Mishra, (2000). For our studies of organic fluorescence probes, see: Shen et al. (2006, 2008). For the preparation of the title compound, see: Gu et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 30% probability level. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the edge-to-face ππ stacking interactions. Dashed lines indicate weqk edge-to-face ππ stacking interactions and all H atoms have been omitted for clarity. (i: 1 - x,-1/2 + y,0.5 - z ii: -x,1/2 + y,0.5 - z)
[Figure 3] Fig. 3. A view of the pillar structure. Dashed lines indicate weak edge-to-face ππ stacking interactions. All H atoms have been omitted for clarity. (i: 1 - x,-1/2 + y,0.5 - z ii: -x,1/2 + y,0.5 - z)
(9H-Carbazol-9-ylmethyl)diethylamine top
Crystal data top
C17H20N2F(000) = 1088
Mr = 252.35Dx = 1.174 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1470 reflections
a = 24.338 (2) Åθ = 2.2–21.0°
b = 6.3216 (11) ŵ = 0.07 mm1
c = 19.133 (2) ÅT = 291 K
β = 104.109 (2)°Block, colourless
V = 2854.9 (6) Å30.28 × 0.24 × 0.22 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
5463 independent reflections
Radiation source: sealed tube3052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 26.0°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2529
Tmin = 0.981, Tmax = 0.985k = 77
13429 measured reflectionsl = 2218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
5463 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H20N2V = 2854.9 (6) Å3
Mr = 252.35Z = 8
Monoclinic, P21/cMo Kα radiation
a = 24.338 (2) ŵ = 0.07 mm1
b = 6.3216 (11) ÅT = 291 K
c = 19.133 (2) Å0.28 × 0.24 × 0.22 mm
β = 104.109 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5463 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3052 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.039
13429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
5463 reflectionsΔρmin = 0.18 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.9285(0.0063)x - 3.2585(0.0028)y + 12.6587(0.0061)z = 2.4983(0.0046)

* -0.0251 (0.0014) N1 * -0.0167 (0.0017) C1 * 0.0499 (0.0017) C2 * 0.0607 (0.0018) C3 * -0.0014 (0.0018) C4 * -0.0354 (0.0017) C5 * -0.0486 (0.0017) C6 * -0.0407 (0.0017) C7 * 0.0096 (0.0017) C8 * 0.0577 (0.0017) C9 * 0.0343 (0.0017) C10 * -0.0110 (0.0016) C11 * -0.0333 (0.0017) C12

Rms deviation of fitted atoms = 0.0374

8.9285(0.0063)x + 3.2585(0.0028)y + 12.6588(0.0061)z = 11.1303(0.0032)

Angle to previous plane (with approximate e.s.d.) = 62.06 (0.03)

* 0.0251 (0.0014) N1_$1 * 0.0167 (0.0017) C1_$1 * -0.0499 (0.0017) C2_$1 * -0.0607 (0.0018) C3_$1 * 0.0014 (0.0018) C4_$1 * 0.0354 (0.0017) C5_$1 * 0.0486 (0.0017) C6_$1 * 0.0407 (0.0017) C7_$1 * -0.0096 (0.0017) C8_$1 * -0.0577 (0.0017) C9_$1 * -0.0343 (0.0017) C10_$1 * 0.0110 (0.0016) C11_$1 * 0.0333 (0.0017) C12_$1

Rms deviation of fitted atoms = 0.0374

-17.1148(0.0065)x + 3.2280(0.0027)y + 12.4596(0.0056)z = 1.3402(0.0013)

Angle to previous plane (with approximate e.s.d.) = 67.15 (0.03)

* -0.0095 (0.0014) N3 * -0.0154 (0.0016) C18 * -0.0081 (0.0017) C19 * 0.0048 (0.0018) C20 * 0.0356 (0.0017) C21 * 0.0196 (0.0016) C22 * -0.0218 (0.0017) C23 * -0.0287 (0.0017) C24 * -0.0272 (0.0016) C25 * -0.0051 (0.0017) C26 * 0.0333 (0.0018) C27 * 0.0347 (0.0016) C28 * -0.0123 (0.0016) C29

Rms deviation of fitted atoms = 0.0225

-17.1148(0.0065)x - 3.2280(0.0027)y + 12.4596(0.0056)z = 3.2755(0.0028)

Angle to previous plane (with approximate e.s.d.) = 61.41 (0.03)

* 0.0095 (0.0014) N3_$2 * 0.0154 (0.0016) C18_$2 * 0.0081 (0.0017) C19_$2 * -0.0048 (0.0018) C20_$2 * -0.0356 (0.0017) C21_$2 * -0.0196 (0.0016) C22_$2 * 0.0218 (0.0017) C23_$2 * 0.0287 (0.0017) C24_$2 * 0.0272 (0.0016) C25_$2 * 0.0051 (0.0017) C26_$2 * -0.0333 (0.0018) C27_$2 * -0.0347 (0.0016) C28_$2 * 0.0123 (0.0016) C29_$2

Rms deviation of fitted atoms = 0.0225

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36426 (8)0.9208 (3)0.17614 (10)0.0376 (4)
C20.31632 (9)0.8391 (4)0.19419 (11)0.0458 (5)
H20.30060.71120.17520.055*
C30.29289 (10)0.9544 (4)0.24125 (11)0.0539 (6)
H30.26100.90270.25430.065*
C40.31618 (11)1.1462 (4)0.26928 (12)0.0580 (6)
H40.29901.22260.29960.070*
C50.36412 (10)1.2249 (3)0.25303 (10)0.0469 (5)
H50.37991.35130.27330.056*
C60.38897 (8)1.1136 (3)0.20581 (10)0.0395 (5)
C70.43876 (9)1.1426 (3)0.17880 (10)0.0380 (5)
C80.48144 (10)1.2920 (3)0.19114 (11)0.0440 (5)
H80.48041.40630.22140.053*
C90.52563 (9)1.2705 (3)0.15822 (12)0.0489 (6)
H90.55471.36980.16710.059*
C100.52730 (9)1.1005 (3)0.11143 (12)0.0471 (5)
H100.55701.09000.08890.057*
C110.48519 (9)0.9490 (3)0.09856 (10)0.0413 (5)
H110.48600.83600.06770.050*
C120.44188 (8)0.9704 (3)0.13283 (10)0.0363 (4)
C130.38250 (9)0.6526 (3)0.08628 (10)0.0390 (5)
H13A0.35190.57590.09930.047*
H13B0.41530.56010.09460.047*
C140.31317 (9)0.8340 (3)0.00586 (11)0.0422 (5)
H14A0.31630.94320.03050.051*
H14B0.28170.74310.00280.051*
C150.30047 (10)0.9368 (3)0.07941 (11)0.0494 (5)
H15A0.33291.01610.08460.074*
H15B0.26861.02990.08440.074*
H15C0.29190.82950.11600.074*
C160.35944 (9)0.5149 (3)0.03411 (11)0.0446 (5)
H16A0.34320.55230.08410.054*
H16B0.33310.42050.01900.054*
C170.41427 (9)0.3987 (3)0.02917 (12)0.0468 (5)
H17A0.44360.49850.03110.070*
H17B0.40980.30160.06870.070*
H17C0.42440.32200.01540.070*
C180.04584 (8)0.0516 (3)0.15594 (10)0.0351 (4)
C190.00476 (9)0.0810 (4)0.09248 (11)0.0446 (5)
H190.00560.19760.06310.053*
C200.03736 (9)0.0685 (4)0.07439 (12)0.0520 (6)
H200.06500.05310.03150.062*
C210.04000 (9)0.2432 (4)0.11849 (12)0.0522 (6)
H210.06960.33970.10530.063*
C220.00128 (8)0.2722 (3)0.18142 (11)0.0436 (5)
H220.00010.38810.21090.052*
C230.04508 (8)0.1255 (3)0.20027 (10)0.0364 (4)
C240.09355 (8)0.1064 (3)0.26133 (10)0.0365 (4)
C250.11486 (9)0.2287 (4)0.32240 (11)0.0446 (5)
H250.09710.35440.32950.054*
C260.16223 (9)0.1619 (4)0.37195 (11)0.0503 (6)
H260.17680.24430.41250.060*
C270.18903 (9)0.0279 (4)0.36267 (11)0.0494 (5)
H270.22090.07080.39730.059*
C280.16878 (9)0.1523 (3)0.30273 (11)0.0431 (5)
H280.18650.27910.29680.052*
C290.12153 (8)0.0847 (3)0.25158 (10)0.0343 (4)
C300.10458 (9)0.3792 (3)0.15881 (11)0.0409 (5)
H30A0.12890.46080.19710.049*
H30B0.06940.45690.14220.049*
C310.12229 (10)0.5486 (4)0.05375 (12)0.0543 (6)
H31A0.08190.57570.03970.065*
H31B0.13450.51860.01010.065*
C320.15171 (11)0.7484 (3)0.08706 (14)0.0623 (7)
H32A0.14100.77850.13110.093*
H32B0.14080.86430.05420.093*
H32C0.19200.72920.09700.093*
C330.19210 (9)0.3007 (3)0.12612 (12)0.0464 (5)
H33A0.19460.17250.15460.056*
H33B0.21130.41220.15760.056*
C340.22266 (11)0.2653 (4)0.06688 (14)0.0658 (7)
H34A0.20160.16670.03240.099*
H34B0.25980.20940.08740.099*
H34C0.22590.39720.04340.099*
N10.39612 (7)0.8375 (2)0.13156 (8)0.0365 (4)
N20.36559 (6)0.7080 (2)0.00993 (8)0.0359 (4)
N30.09245 (7)0.1786 (2)0.18752 (8)0.0353 (4)
N40.13199 (7)0.3584 (2)0.09955 (9)0.0391 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0431 (11)0.0382 (10)0.0286 (9)0.0088 (9)0.0031 (8)0.0040 (8)
C20.0447 (12)0.0515 (13)0.0404 (11)0.0040 (10)0.0085 (10)0.0047 (10)
C30.0502 (13)0.0698 (16)0.0412 (12)0.0061 (12)0.0100 (11)0.0061 (11)
C40.0629 (15)0.0736 (17)0.0377 (12)0.0200 (14)0.0129 (11)0.0067 (12)
C50.0649 (15)0.0367 (11)0.0328 (10)0.0090 (10)0.0003 (11)0.0009 (9)
C60.0433 (11)0.0376 (11)0.0311 (9)0.0080 (9)0.0037 (9)0.0007 (8)
C70.0425 (11)0.0332 (10)0.0303 (10)0.0068 (9)0.0062 (8)0.0003 (8)
C80.0568 (13)0.0342 (10)0.0335 (10)0.0041 (10)0.0032 (10)0.0009 (8)
C90.0454 (12)0.0396 (11)0.0527 (13)0.0095 (10)0.0056 (11)0.0034 (10)
C100.0382 (11)0.0453 (12)0.0540 (13)0.0005 (10)0.0036 (10)0.0018 (10)
C110.0440 (11)0.0342 (11)0.0423 (11)0.0037 (9)0.0038 (10)0.0023 (9)
C120.0346 (10)0.0307 (10)0.0384 (10)0.0082 (8)0.0011 (8)0.0021 (8)
C130.0434 (11)0.0300 (9)0.0415 (11)0.0006 (9)0.0059 (9)0.0054 (9)
C140.0420 (11)0.0409 (11)0.0405 (11)0.0065 (9)0.0039 (10)0.0005 (9)
C150.0531 (13)0.0404 (11)0.0490 (12)0.0012 (10)0.0015 (10)0.0074 (9)
C160.0457 (12)0.0346 (10)0.0504 (11)0.0004 (9)0.0057 (10)0.0151 (9)
C170.0482 (13)0.0360 (11)0.0533 (13)0.0020 (9)0.0071 (10)0.0125 (9)
C180.0368 (10)0.0385 (10)0.0329 (9)0.0014 (8)0.0144 (9)0.0014 (8)
C190.0453 (12)0.0541 (12)0.0358 (10)0.0013 (11)0.0126 (9)0.0022 (9)
C200.0386 (12)0.0752 (16)0.0411 (11)0.0002 (11)0.0074 (10)0.0129 (11)
C210.0415 (12)0.0636 (15)0.0562 (13)0.0151 (11)0.0209 (11)0.0211 (12)
C220.0447 (12)0.0429 (11)0.0499 (12)0.0078 (10)0.0246 (11)0.0083 (9)
C230.0372 (10)0.0412 (11)0.0350 (10)0.0002 (9)0.0168 (9)0.0025 (9)
C240.0407 (11)0.0371 (10)0.0360 (10)0.0031 (9)0.0175 (9)0.0021 (9)
C250.0480 (13)0.0478 (12)0.0436 (11)0.0107 (10)0.0216 (11)0.0070 (10)
C260.0487 (13)0.0693 (15)0.0370 (12)0.0180 (12)0.0180 (10)0.0081 (10)
C270.0374 (11)0.0752 (16)0.0353 (10)0.0007 (11)0.0080 (9)0.0005 (11)
C280.0456 (12)0.0472 (12)0.0405 (11)0.0020 (10)0.0180 (10)0.0077 (9)
C290.0363 (10)0.0382 (10)0.0314 (9)0.0026 (8)0.0139 (8)0.0008 (8)
C300.0459 (11)0.0278 (10)0.0530 (12)0.0014 (9)0.0194 (10)0.0005 (9)
C310.0524 (13)0.0558 (14)0.0514 (13)0.0038 (11)0.0060 (11)0.0236 (11)
C320.0694 (17)0.0346 (12)0.0866 (18)0.0006 (11)0.0263 (14)0.0193 (12)
C330.0524 (13)0.0381 (11)0.0531 (13)0.0045 (10)0.0214 (11)0.0052 (9)
C340.0804 (19)0.0502 (14)0.0831 (18)0.0030 (13)0.0516 (16)0.0091 (13)
N10.0406 (9)0.0327 (8)0.0347 (9)0.0007 (7)0.0065 (7)0.0038 (7)
N20.0356 (8)0.0309 (8)0.0367 (9)0.0040 (7)0.0003 (7)0.0064 (7)
N30.0428 (9)0.0309 (8)0.0344 (8)0.0010 (7)0.0135 (7)0.0030 (6)
N40.0481 (10)0.0327 (9)0.0389 (9)0.0014 (7)0.0151 (8)0.0065 (7)
Geometric parameters (Å, º) top
C1—N11.389 (2)C18—C191.384 (3)
C1—C21.394 (3)C18—N31.401 (2)
C1—C61.415 (3)C18—C231.408 (3)
C2—C31.385 (3)C19—C201.375 (3)
C2—H20.9300C19—H190.9300
C3—C41.389 (3)C20—C211.401 (3)
C3—H30.9300C20—H200.9300
C4—C51.372 (3)C21—C221.380 (3)
C4—H40.9300C21—H210.9300
C5—C61.394 (3)C22—C231.392 (3)
C5—H50.9300C22—H220.9300
C6—C71.440 (3)C23—C241.449 (3)
C7—C81.381 (3)C24—C251.392 (3)
C7—C121.413 (3)C24—C291.421 (3)
C8—C91.379 (3)C25—C261.369 (3)
C8—H80.9300C25—H250.9300
C9—C101.406 (3)C26—C271.398 (3)
C9—H90.9300C26—H260.9300
C10—C111.380 (3)C27—C281.379 (3)
C10—H100.9300C27—H270.9300
C11—C121.377 (3)C28—C291.384 (3)
C11—H110.9300C28—H280.9300
C12—N11.390 (2)C29—N31.390 (2)
C13—N11.445 (2)C30—N31.440 (2)
C13—N21.460 (2)C30—N41.455 (2)
C13—H13A0.9700C30—H30A0.9700
C13—H13B0.9700C30—H30B0.9700
C14—N21.471 (2)C31—N41.473 (3)
C14—C151.512 (3)C31—C321.514 (3)
C14—H14A0.9700C31—H31A0.9700
C14—H14B0.9700C31—H31B0.9700
C15—H15A0.9600C32—H32A0.9600
C15—H15B0.9600C32—H32B0.9600
C15—H15C0.9600C32—H32C0.9600
C16—N21.470 (2)C33—N41.473 (3)
C16—C171.506 (3)C33—C341.516 (3)
C16—H16A0.9700C33—H33A0.9700
C16—H16B0.9700C33—H33B0.9700
C17—H17A0.9600C34—H34A0.9600
C17—H17B0.9600C34—H34B0.9600
C17—H17C0.9600C34—H34C0.9600
N1—C1—C2129.63 (19)C19—C20—C21122.1 (2)
N1—C1—C6109.08 (18)C19—C20—H20119.0
C2—C1—C6121.27 (19)C21—C20—H20119.0
C3—C2—C1117.9 (2)C22—C21—C20120.0 (2)
C3—C2—H2121.0C22—C21—H21120.0
C1—C2—H2121.0C20—C21—H21120.0
C2—C3—C4121.1 (2)C21—C22—C23119.1 (2)
C2—C3—H3119.5C21—C22—H22120.4
C4—C3—H3119.5C23—C22—H22120.4
C5—C4—C3121.2 (2)C22—C23—C18119.69 (18)
C5—C4—H4119.4C22—C23—C24133.32 (19)
C3—C4—H4119.4C18—C23—C24106.96 (17)
C4—C5—C6119.4 (2)C25—C24—C29119.35 (19)
C4—C5—H5120.3C25—C24—C23133.94 (19)
C6—C5—H5120.3C29—C24—C23106.69 (17)
C5—C6—C1119.1 (2)C26—C25—C24119.3 (2)
C5—C6—C7134.7 (2)C26—C25—H25120.4
C1—C6—C7106.15 (17)C24—C25—H25120.4
C8—C7—C12118.8 (2)C25—C26—C27121.1 (2)
C8—C7—C6133.57 (19)C25—C26—H26119.4
C12—C7—C6107.61 (17)C27—C26—H26119.4
C9—C8—C7119.48 (19)C28—C27—C26120.8 (2)
C9—C8—H8120.3C28—C27—H27119.6
C7—C8—H8120.3C26—C27—H27119.6
C8—C9—C10120.9 (2)C27—C28—C29118.6 (2)
C8—C9—H9119.6C27—C28—H28120.7
C10—C9—H9119.6C29—C28—H28120.7
C11—C10—C9120.6 (2)C28—C29—N3130.39 (18)
C11—C10—H10119.7C28—C29—C24120.81 (18)
C9—C10—H10119.7N3—C29—C24108.77 (16)
C12—C11—C10117.93 (19)N3—C30—N4113.15 (15)
C12—C11—H11121.0N3—C30—H30A108.9
C10—C11—H11121.0N4—C30—H30A108.9
C11—C12—N1129.44 (17)N3—C30—H30B108.9
C11—C12—C7122.36 (19)N4—C30—H30B108.9
N1—C12—C7108.18 (17)H30A—C30—H30B107.8
N1—C13—N2111.93 (15)N4—C31—C32116.10 (18)
N1—C13—H13A109.2N4—C31—H31A108.3
N2—C13—H13A109.2C32—C31—H31A108.3
N1—C13—H13B109.2N4—C31—H31B108.3
N2—C13—H13B109.2C32—C31—H31B108.3
H13A—C13—H13B107.9H31A—C31—H31B107.4
N2—C14—C15113.21 (17)C31—C32—H32A109.5
N2—C14—H14A108.9C31—C32—H32B109.5
C15—C14—H14A108.9H32A—C32—H32B109.5
N2—C14—H14B108.9C31—C32—H32C109.5
C15—C14—H14B108.9H32A—C32—H32C109.5
H14A—C14—H14B107.7H32B—C32—H32C109.5
C14—C15—H15A109.5N4—C33—C34113.93 (19)
C14—C15—H15B109.5N4—C33—H33A108.8
H15A—C15—H15B109.5C34—C33—H33A108.8
C14—C15—H15C109.5N4—C33—H33B108.8
H15A—C15—H15C109.5C34—C33—H33B108.8
H15B—C15—H15C109.5H33A—C33—H33B107.7
N2—C16—C17113.83 (16)C33—C34—H34A109.5
N2—C16—H16A108.8C33—C34—H34B109.5
C17—C16—H16A108.8H34A—C34—H34B109.5
N2—C16—H16B108.8C33—C34—H34C109.5
C17—C16—H16B108.8H34A—C34—H34C109.5
H16A—C16—H16B107.7H34B—C34—H34C109.5
C16—C17—H17A109.5C1—N1—C12108.96 (15)
C16—C17—H17B109.5C1—N1—C13126.47 (17)
H17A—C17—H17B109.5C12—N1—C13124.41 (16)
C16—C17—H17C109.5C13—N2—C16109.79 (15)
H17A—C17—H17C109.5C13—N2—C14110.73 (15)
H17B—C17—H17C109.5C16—N2—C14111.71 (15)
C19—C18—N3129.58 (18)C29—N3—C18108.65 (15)
C19—C18—C23121.49 (18)C29—N3—C30127.21 (17)
N3—C18—C23108.92 (16)C18—N3—C30124.03 (16)
C20—C19—C18117.6 (2)C30—N4—C33111.05 (16)
C20—C19—H19121.2C30—N4—C31110.64 (16)
C18—C19—H19121.2C33—N4—C31114.16 (17)
N1—C1—C2—C3179.13 (19)C23—C24—C25—C26178.5 (2)
C6—C1—C2—C31.1 (3)C24—C25—C26—C270.8 (3)
C1—C2—C3—C40.4 (3)C25—C26—C27—C280.7 (3)
C2—C3—C4—C52.0 (3)C26—C27—C28—C290.4 (3)
C3—C4—C5—C61.9 (3)C27—C28—C29—N3179.32 (19)
C4—C5—C6—C10.4 (3)C27—C28—C29—C241.5 (3)
C4—C5—C6—C7177.7 (2)C25—C24—C29—C281.4 (3)
N1—C1—C6—C5179.48 (17)C23—C24—C29—C28177.65 (17)
C2—C1—C6—C51.1 (3)C25—C24—C29—N3179.67 (16)
N1—C1—C6—C71.5 (2)C23—C24—C29—N30.6 (2)
C2—C1—C6—C7176.88 (18)C2—C1—N1—C12176.97 (19)
C5—C6—C7—C81.5 (4)C6—C1—N1—C121.2 (2)
C1—C6—C7—C8176.0 (2)C2—C1—N1—C137.6 (3)
C5—C6—C7—C12178.7 (2)C6—C1—N1—C13174.21 (16)
C1—C6—C7—C121.2 (2)C11—C12—N1—C1178.27 (19)
C12—C7—C8—C90.4 (3)C7—C12—N1—C10.5 (2)
C6—C7—C8—C9177.3 (2)C11—C12—N1—C136.2 (3)
C7—C8—C9—C101.0 (3)C7—C12—N1—C13175.11 (16)
C8—C9—C10—C111.3 (3)N2—C13—N1—C1108.6 (2)
C9—C10—C11—C120.1 (3)N2—C13—N1—C1266.2 (2)
C10—C11—C12—N1177.16 (18)N1—C13—N2—C16172.62 (17)
C10—C11—C12—C71.4 (3)N1—C13—N2—C1463.6 (2)
C8—C7—C12—C111.6 (3)C17—C16—N2—C1366.3 (2)
C6—C7—C12—C11179.32 (17)C17—C16—N2—C14170.45 (18)
C8—C7—C12—N1177.19 (17)C15—C14—N2—C13167.25 (16)
C6—C7—C12—N10.5 (2)C15—C14—N2—C1670.0 (2)
N3—C18—C19—C20178.99 (19)C28—C29—N3—C18177.64 (19)
C23—C18—C19—C200.6 (3)C24—C29—N3—C180.4 (2)
C18—C19—C20—C211.2 (3)C28—C29—N3—C301.4 (3)
C19—C20—C21—C221.6 (3)C24—C29—N3—C30176.64 (16)
C20—C21—C22—C230.2 (3)C19—C18—N3—C29179.61 (19)
C21—C22—C23—C181.5 (3)C23—C18—N3—C290.0 (2)
C21—C22—C23—C24179.0 (2)C19—C18—N3—C303.2 (3)
C19—C18—C23—C221.9 (3)C23—C18—N3—C30176.41 (16)
N3—C18—C23—C22177.72 (16)N4—C30—N3—C29104.2 (2)
C19—C18—C23—C24179.99 (17)N4—C30—N3—C1880.1 (2)
N3—C18—C23—C240.4 (2)N3—C30—N4—C3375.7 (2)
C22—C23—C24—C251.7 (4)N3—C30—N4—C31156.47 (18)
C18—C23—C24—C25179.5 (2)C34—C33—N4—C30177.03 (18)
C22—C23—C24—C29177.1 (2)C34—C33—N4—C3157.1 (2)
C18—C23—C24—C290.6 (2)C32—C31—N4—C3069.2 (3)
C29—C24—C25—C260.2 (3)C32—C31—N4—C3356.9 (3)

Experimental details

Crystal data
Chemical formulaC17H20N2
Mr252.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)24.338 (2), 6.3216 (11), 19.133 (2)
β (°) 104.109 (2)
V3)2854.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
13429, 5463, 3052
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 1.06
No. of reflections5463
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Natural Science Foundation of Jiangsu Province, China (grant No. BK2008435) and the National Natural Science Foundation of China (grant No. 20771060) for financial support.

References

First citationAdhikari, R. M., Mondal, R., Shah, B. K. & Neckers, D. C. (2007). J. Org. Chem. 72, 4727–4732.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGu, W., Pan, Y., Shen, Y., Huang, X., Sun, H. & Sun, X. (1997). Acta Cryst. C53, 190–191.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHao, L.-L., Li, J.-F., Lin, P.-H., Dong, R.-F., Li, D.-X., Shuang, S.-M. & Dong, C. (2010). Chin. Chem. Lett. 21, 9–12.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y., Nishiura, M., Wang, Y. & Hou, Z. (2006). J. Am. Chem. Soc. 128, 5592–5593.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalayangoda, S. S., Cai, X., Adhikari, R. M. & Neckers, D. C. (2008). Org. Lett. 10, 281–284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPappayee, N. & Mishra, A. K. (2000). Spectrochim. Acta Part A, 56, 1027–1034.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651–653.  CAS Google Scholar
First citationShen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916–918.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds