organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-[3-(4-Bromo­benzo­yl)-1,3-thia­zolidin-2-yl­­idene]cyanamide

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028043, People's Republic of China, bInner Mongolia Industrial Engineering Research, Center of Universities for Castor, Tongliao 028042, People's Republic of China, cSchool of Public Health, Ningxia Medical University, Yinchuan 750004, People's Republic of China, and dCollege of Life Science, Inner Mongolia University for Nationalities, Tongliao 028043, People's Republic of China
*Correspondence e-mail: lijiuming10@yahoo.cn

(Received 9 November 2010; accepted 10 November 2010; online 17 November 2010)

In the title compound, C11H8BrN3OS, the dihedral angle between the benzene and thia­zolidine rings is 63.4 (2)°. Inter­molecular C—H⋯N inter­actions help to stabilize the crystal structure.

Related literature

For related structures, see: Wang et al. (2008[Wang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321.]); Liu & Li (2009[Liu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645.]); Xie & Li (2010[Xie, Y.-M. & Li, Y.-M. (2010). Acta Cryst. E66, o1158.]). For the biological activity of thia­zolidine-containing compounds, see: Iwata et al. (1988[Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, 3, 261-262.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8BrN3OS

  • Mr = 310.17

  • Monoclinic, P 21 /c

  • a = 16.579 (3) Å

  • b = 5.6471 (11) Å

  • c = 13.611 (3) Å

  • β = 112.91 (3)°

  • V = 1173.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.67 mm−1

  • T = 173 K

  • 0.25 × 0.20 × 0.06 mm

Data collection
  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.461, Tmax = 0.810

  • 8232 measured reflections

  • 2067 independent reflections

  • 1960 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.28

  • 2067 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N3i 0.97 2.51 3.281 (5) 137
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolidine is an important kind of group in organic chemistry. Many compounds containing thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988). Here, we report the crystal structure of (I).

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009; Xie & Li, 2010). The dihedral angle between benzene (C1—C6) and thiazolidine (C8—C10/N1/S2) rings is 63.4 (2) °. The intermolecular C—H···N hydrogen bonds stabilize the structure.

Related literature top

For related structures, see: Wang et al. (2008); Liu & Li (2009); Xie & Li (2010). For the biological activity of thiazolidine-containing compounds, see: Iwata et al. (1988). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of N-cyanoiminothiazolidine 10 mmol (1.27 g), 4-bromobenzoyl chloride (2.19 g, 10 mmol) and (1.01 g, 10 mmol) triethylamine was refluxed in absolute acetone (25 ml) for 3 h. On cooling, the product crystallized, was filtered, and recrystallized from absolute EtOH; yield 2.48 g (80.0%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetonitrile at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Thiazolidine is an important kind of group in organic chemistry. Many compounds containing thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988). Here, we report the crystal structure of (I).

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009; Xie & Li, 2010). The dihedral angle between benzene (C1—C6) and thiazolidine (C8—C10/N1/S2) rings is 63.4 (2) °. The intermolecular C—H···N hydrogen bonds stabilize the structure.

For related structures, see: Wang et al. (2008); Liu & Li (2009); Xie & Li (2010). For the biological activity of thiazolidine-containing compounds, see: Iwata et al. (1988). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
(Z)-N-[3-(4-Bromobenzoyl)-1,3-thiazolidin-2-ylidene]cyanamide top
Crystal data top
C11H8BrN3OSF(000) = 616
Mr = 310.17Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3665 reflections
a = 16.579 (3) Åθ = 1.3–27.5°
b = 5.6471 (11) ŵ = 3.67 mm1
c = 13.611 (3) ÅT = 173 K
β = 112.91 (3)°Plate, colorless
V = 1173.9 (4) Å30.25 × 0.20 × 0.06 mm
Z = 4
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
2067 independent reflections
Radiation source: Sealed Tube1960 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.038
φ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1719
Tmin = 0.461, Tmax = 0.810k = 66
8232 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.054P)2 + 0.437P]
where P = (Fo2 + 2Fc2)/3
2067 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C11H8BrN3OSV = 1173.9 (4) Å3
Mr = 310.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.579 (3) ŵ = 3.67 mm1
b = 5.6471 (11) ÅT = 173 K
c = 13.611 (3) Å0.25 × 0.20 × 0.06 mm
β = 112.91 (3)°
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
2067 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1960 reflections with I > 2σ(I)
Tmin = 0.461, Tmax = 0.810Rint = 0.038
8232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.28Δρmax = 0.46 e Å3
2067 reflectionsΔρmin = 0.35 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.46599 (2)0.71386 (7)0.56642 (3)0.03845 (19)
S10.07775 (6)0.52236 (16)0.83336 (8)0.0307 (2)
O10.26798 (18)1.1823 (4)0.8767 (2)0.0362 (6)
N10.19890 (18)0.8299 (5)0.8536 (2)0.0268 (6)
N20.15701 (19)0.6055 (6)0.6966 (2)0.0316 (7)
N30.0788 (2)0.2687 (6)0.5834 (3)0.0483 (10)
C10.3110 (2)1.0740 (6)0.6926 (3)0.0281 (7)
H1A0.28431.22150.68450.034*
C20.3582 (2)1.0153 (6)0.6309 (3)0.0288 (8)
H2B0.36141.11930.57960.035*
C30.3999 (2)0.7995 (6)0.6478 (3)0.0267 (8)
C40.3960 (2)0.6399 (6)0.7235 (3)0.0280 (8)
H4A0.42610.49690.73470.034*
C50.3469 (2)0.6969 (6)0.7817 (3)0.0274 (8)
H5A0.34270.59030.83150.033*
C60.3036 (2)0.9141 (6)0.7661 (3)0.0251 (7)
C70.2562 (2)0.9906 (6)0.8339 (3)0.0276 (8)
C80.1669 (2)0.8942 (7)0.9375 (3)0.0323 (8)
H8A0.12311.01820.91260.039*
H8B0.21480.94921.00110.039*
C90.1273 (2)0.6690 (7)0.9608 (3)0.0332 (8)
H9A0.08370.70590.98970.040*
H9B0.17230.57021.01140.040*
C100.1498 (2)0.6544 (6)0.7864 (3)0.0259 (7)
C110.1122 (2)0.4235 (7)0.6401 (3)0.0339 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0425 (3)0.0437 (3)0.0358 (3)0.00069 (16)0.0225 (2)0.00648 (16)
S10.0292 (5)0.0296 (5)0.0375 (5)0.0023 (4)0.0175 (4)0.0020 (4)
O10.0422 (15)0.0270 (14)0.0456 (17)0.0066 (11)0.0239 (13)0.0086 (12)
N10.0302 (16)0.0262 (15)0.0266 (16)0.0027 (12)0.0139 (13)0.0015 (12)
N20.0337 (16)0.0340 (17)0.0317 (16)0.0060 (13)0.0178 (14)0.0028 (13)
N30.039 (2)0.053 (2)0.061 (3)0.0111 (17)0.0277 (19)0.0232 (19)
C10.0256 (17)0.0238 (17)0.035 (2)0.0017 (14)0.0117 (15)0.0009 (15)
C20.0318 (18)0.0275 (18)0.0287 (19)0.0046 (14)0.0135 (16)0.0031 (14)
C30.0254 (18)0.0306 (19)0.0246 (19)0.0041 (14)0.0103 (15)0.0045 (14)
C40.0283 (18)0.0237 (17)0.0308 (19)0.0007 (14)0.0101 (15)0.0020 (14)
C50.0295 (19)0.0231 (17)0.0283 (19)0.0017 (14)0.0097 (16)0.0054 (14)
C60.0236 (16)0.0248 (17)0.0261 (18)0.0061 (14)0.0088 (14)0.0043 (14)
C70.0258 (17)0.0257 (18)0.0324 (19)0.0002 (13)0.0125 (15)0.0017 (14)
C80.0360 (19)0.036 (2)0.030 (2)0.0016 (16)0.0185 (16)0.0030 (16)
C90.0301 (19)0.041 (2)0.032 (2)0.0001 (16)0.0158 (17)0.0038 (17)
C100.0239 (17)0.0228 (16)0.0311 (19)0.0013 (14)0.0106 (15)0.0031 (14)
C110.0310 (19)0.035 (2)0.043 (2)0.0043 (16)0.0229 (17)0.0055 (18)
Geometric parameters (Å, º) top
Br1—C31.899 (4)C2—C31.376 (5)
S1—C101.729 (3)C2—H2B0.9300
S1—C91.806 (4)C3—C41.389 (5)
O1—C71.208 (4)C4—C51.375 (5)
N1—C101.379 (4)C4—H4A0.9300
N1—C71.412 (4)C5—C61.396 (5)
N1—C81.480 (4)C5—H5A0.9300
N2—C101.302 (5)C6—C71.491 (5)
N2—C111.325 (5)C8—C91.520 (5)
N3—C111.154 (5)C8—H8A0.9700
C1—C61.388 (5)C8—H8B0.9700
C1—C21.392 (5)C9—H9A0.9700
C1—H1A0.9300C9—H9B0.9700
C10—S1—C992.05 (17)C1—C6—C7118.3 (3)
C10—N1—C7127.0 (3)C5—C6—C7121.7 (3)
C10—N1—C8113.1 (3)O1—C7—N1118.7 (3)
C7—N1—C8117.3 (3)O1—C7—C6122.1 (3)
C10—N2—C11118.3 (3)N1—C7—C6119.1 (3)
C6—C1—C2120.5 (3)N1—C8—C9105.6 (3)
C6—C1—H1A119.7N1—C8—H8A110.6
C2—C1—H1A119.7C9—C8—H8A110.6
C3—C2—C1118.3 (3)N1—C8—H8B110.6
C3—C2—H2B120.8C9—C8—H8B110.6
C1—C2—H2B120.8H8A—C8—H8B108.7
C2—C3—C4122.2 (3)C8—C9—S1104.8 (3)
C2—C3—Br1119.7 (3)C8—C9—H9A110.8
C4—C3—Br1118.1 (3)S1—C9—H9A110.8
C5—C4—C3118.9 (3)C8—C9—H9B110.8
C5—C4—H4A120.5S1—C9—H9B110.8
C3—C4—H4A120.5H9A—C9—H9B108.9
C4—C5—C6120.2 (3)N2—C10—N1122.0 (3)
C4—C5—H5A119.9N2—C10—S1125.7 (3)
C6—C5—H5A119.9N1—C10—S1112.2 (2)
C1—C6—C5119.8 (3)N3—C11—N2171.8 (4)
C6—C1—C2—C32.6 (5)C1—C6—C7—N1138.8 (3)
C1—C2—C3—C40.3 (5)C5—C6—C7—N147.2 (4)
C1—C2—C3—Br1179.3 (2)C10—N1—C8—C930.9 (4)
C2—C3—C4—C51.7 (5)C7—N1—C8—C9165.9 (3)
Br1—C3—C4—C5178.7 (2)N1—C8—C9—S135.6 (3)
C3—C4—C5—C61.4 (5)C10—S1—C9—C826.6 (3)
C2—C1—C6—C52.9 (5)C11—N2—C10—N1175.3 (3)
C2—C1—C6—C7177.0 (3)C11—N2—C10—S17.3 (5)
C4—C5—C6—C10.8 (5)C7—N1—C10—N25.6 (5)
C4—C5—C6—C7174.7 (3)C8—N1—C10—N2166.7 (3)
C10—N1—C7—O1151.9 (3)C7—N1—C10—S1172.1 (3)
C8—N1—C7—O18.6 (5)C8—N1—C10—S111.0 (4)
C10—N1—C7—C631.3 (5)C9—S1—C10—N2172.4 (3)
C8—N1—C7—C6168.2 (3)C9—S1—C10—N110.0 (3)
C1—C6—C7—O144.6 (5)C10—N2—C11—N3171 (3)
C5—C6—C7—O1129.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N3i0.972.513.281 (5)137
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H8BrN3OS
Mr310.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.579 (3), 5.6471 (11), 13.611 (3)
β (°) 112.91 (3)
V3)1173.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.67
Crystal size (mm)0.25 × 0.20 × 0.06
Data collection
DiffractometerRigaku Mercury CCD/AFC
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.461, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
8232, 2067, 1960
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.28
No. of reflections2067
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.35

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N3i0.972.513.281 (5)136.5
Symmetry code: (i) x, y+1/2, z+3/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationIwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, 3, 261–262.  Google Scholar
First citationLiu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y.-M. & Li, Y.-M. (2010). Acta Cryst. E66, o1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds