metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­methyl­ammonium [tris­­(μ2-formato-κ2O:O′)cadmate(II)]]

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 November 2010; accepted 12 November 2010; online 20 November 2010)

In the coordination polymer, {(C2H8N)[Cd(CHO2)3]}n, the CdII atom lies on a special position of [\overline{3}] site symmetry in an octa­hedron of O atoms. The formate unit bridges the metal atoms, generating a three-dimensional polyanionic framework. The disordered cations occupy the cavities within the framework, and are N—H⋯O hydrogen-bonded to the framework.

Related literature

For the tris­(formato)zincate cation, see; Fortier & Creber (1985[Fortier, S. & Creber, K. A. M. (1985). Acta Cryst. C41, 1763-1765.]); Marsh (1986[Marsh, R. E. (1986). Acta Cryst. C42, 1327-1328.]). Tris(formato)cadmate is not isotypic to the aforementioned Zn structures.

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)[Cd(CHO2)3]

  • Mr = 293.55

  • Trigonal, [R \overline 3c ]

  • a = 8.5121 (4) Å

  • c = 23.0022 (9) Å

  • V = 1443.36 (9) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Program for Absorption Correction, Tokyo, Japan.]) Tmin = 0.635, Tmax = 0.727

  • 4250 measured reflections

  • 370 independent reflections

  • 352 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.09

  • 370 reflections

  • 33 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.99 2.84 (7) 163

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

For some hydrothermal syntheses involving carboxylic acids, the N,N-dimethylformamide that is used as solvent is partially converted to the dimethylammonium cation, whose charge is balanced by the carboxylate ion. In the present study, the attempt to synthesize a coordination compound of a cadmium carboxylate yielded the tris(formato)cadmate anion (Scheme I). In the salt (Fig. 1), the cadmium atom lies on a special position of 3 site symmetry in an octahedron of O atoms. The formate unit bridges the metal atoms to generate a three-dimensional polyanionic framework, whose cavities are occupied by disordered cations.

A similar tris(formato)zincate(II) has been reported; the compound was synthesized directly from a zinc salt and formic acid in DMF medium (Fortier & Creber, 1985; Marsh, 1986). The later study has assumed the cation to be the formamidine cation, (NH2)CH(NH2)+. Possibly, the cation is the dimethylammonium cation.

Related literature top

For the tris(formato)zincate cation, see; Fortier & Creber (1985); Marsh (1986). Tris(formato)cadmate is not isotypic.

Experimental top

N,N-Dimethylformamide (10 ml), water (1 ml), ethanol (1 ml), formic acid (0.1 ml), cadmium nitrate (5 mmol), 1,10-phenanthroline (5 mmol) and benzoic acid (5 mmol) were heated in a 23-ml Teflon-lined autoclave at 383 K for 3 days. After slow cooling the autoclave to room temperature, colorless crystals were obtained.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C,N).

The dimethylammonium cation was allowed to refine off the special position; the two N–C distances were restrained to 1.50±0.01 Å and the C···C distance to 2.35±0.01 Å. The anisotropic temperature factors of the carbon atoms were restrained to be nearly isotropic.

Structure description top

For some hydrothermal syntheses involving carboxylic acids, the N,N-dimethylformamide that is used as solvent is partially converted to the dimethylammonium cation, whose charge is balanced by the carboxylate ion. In the present study, the attempt to synthesize a coordination compound of a cadmium carboxylate yielded the tris(formato)cadmate anion (Scheme I). In the salt (Fig. 1), the cadmium atom lies on a special position of 3 site symmetry in an octahedron of O atoms. The formate unit bridges the metal atoms to generate a three-dimensional polyanionic framework, whose cavities are occupied by disordered cations.

A similar tris(formato)zincate(II) has been reported; the compound was synthesized directly from a zinc salt and formic acid in DMF medium (Fortier & Creber, 1985; Marsh, 1986). The later study has assumed the cation to be the formamidine cation, (NH2)CH(NH2)+. Possibly, the cation is the dimethylammonium cation.

For the tris(formato)zincate cation, see; Fortier & Creber (1985); Marsh (1986). Tris(formato)cadmate is not isotypic.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of poly[dimethylammonium tris(formato)cadmate] at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Poly[dimethylammonium [tris(µ2-formato-κ2O:O')cadmate(II)]] top
Crystal data top
(C2H8N)[Cd(CHO2)3]Dx = 2.026 Mg m3
Mr = 293.55Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 3921 reflections
Hall symbol: -R 3 2" cθ = 3.3–37.5°
a = 8.5121 (4) ŵ = 2.27 mm1
c = 23.0022 (9) ÅT = 293 K
V = 1443.36 (9) Å3Prism, colorless
Z = 60.22 × 0.19 × 0.15 mm
F(000) = 864
Data collection top
Rigaku R-AXIS RAPID
diffractometer
370 independent reflections
Radiation source: fine-focus sealed tube352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 119
Tmin = 0.635, Tmax = 0.727l = 2929
4250 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.5666P]
where P = (Fo2 + 2Fc2)/3
370 reflections(Δ/σ)max = 0.001
33 parametersΔρmax = 0.73 e Å3
9 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C2H8N)[Cd(CHO2)3]Z = 6
Mr = 293.55Mo Kα radiation
Trigonal, R3cµ = 2.27 mm1
a = 8.5121 (4) ÅT = 293 K
c = 23.0022 (9) Å0.22 × 0.19 × 0.15 mm
V = 1443.36 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
370 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
352 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.727Rint = 0.024
4250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0229 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.09Δρmax = 0.73 e Å3
370 reflectionsΔρmin = 0.36 e Å3
33 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.00000.00000.00000.02669 (17)
O10.23112 (15)0.21016 (15)0.05612 (5)0.0452 (3)
C10.2265 (2)0.33330.08330.0328 (4)
H1A0.11730.33330.08330.039*
N10.578 (6)0.252 (5)0.0797 (17)0.040 (4)0.167
H1B0.57880.14890.07980.048*0.167
H10.46460.22770.07920.048*0.167
C20.680 (5)0.365 (4)0.0282 (14)0.041 (4)*0.167
H2A0.60610.31810.00610.062*0.167
H2B0.78990.36190.02320.062*0.167
H2C0.70790.48810.03440.062*0.167
C30.676 (7)0.364 (4)0.1320 (15)0.041 (4)*0.167
H3A0.62100.29610.16670.062*0.167
H3B0.66870.47320.13220.062*0.167
H3C0.80100.39520.13060.062*0.167
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02630 (19)0.02630 (19)0.0275 (2)0.01315 (10)0.0000.000
O10.0397 (6)0.0420 (6)0.0554 (7)0.0215 (5)0.0121 (5)0.0206 (5)
C10.0301 (8)0.0326 (11)0.0367 (10)0.0163 (5)0.0006 (4)0.0011 (8)
N10.040 (8)0.028 (6)0.055 (8)0.019 (4)0.006 (7)0.002 (7)
Geometric parameters (Å, º) top
Cd1—O1i2.2841 (10)N1—C31.505 (10)
Cd1—O12.2841 (10)N1—H1B0.8800
Cd1—O1ii2.2841 (10)N1—H10.8800
Cd1—O1iii2.2841 (10)C2—H2A0.9600
Cd1—O1iv2.2841 (10)C2—H2B0.9600
Cd1—O1v2.2841 (10)C2—H2C0.9600
O1—C11.2384 (14)C3—H3A0.9600
C1—O1vi1.2383 (14)C3—H3B0.9600
C1—H1A0.9300C3—H3C0.9600
N1—C21.499 (10)
O1i—Cd1—O1180.00 (5)C2—N1—C3105.3 (8)
O1i—Cd1—O1ii91.20 (4)C2—N1—H1B110.7
O1—Cd1—O1ii88.80 (4)C3—N1—H1B110.7
O1i—Cd1—O1iii91.20 (4)C2—N1—H1110.7
O1—Cd1—O1iii88.80 (4)C3—N1—H1110.7
O1ii—Cd1—O1iii91.20 (4)H1B—N1—H1108.8
O1i—Cd1—O1iv88.80 (4)N1—C2—H2A109.5
O1—Cd1—O1iv91.20 (4)N1—C2—H2B109.5
O1ii—Cd1—O1iv88.80 (4)H2A—C2—H2B109.5
O1iii—Cd1—O1iv180.00 (7)N1—C2—H2C109.5
O1i—Cd1—O1v88.80 (4)H2A—C2—H2C109.5
O1—Cd1—O1v91.20 (4)H2B—C2—H2C109.5
O1ii—Cd1—O1v180.00 (5)N1—C3—H3A109.5
O1iii—Cd1—O1v88.80 (4)N1—C3—H3B109.5
O1iv—Cd1—O1v91.20 (4)H3A—C3—H3B109.5
C1—O1—Cd1124.71 (11)N1—C3—H3C109.5
O1vi—C1—O1125.90 (19)H3A—C3—H3C109.5
O1vi—C1—H1A117.1H3B—C3—H3C109.5
O1—C1—H1A117.1
O1ii—Cd1—O1—C1151.34 (11)O1v—Cd1—O1—C128.66 (11)
O1iii—Cd1—O1—C160.11 (7)Cd1—O1—C1—O1vi174.40 (11)
O1iv—Cd1—O1—C1119.89 (7)
Symmetry codes: (i) x, y, z; (ii) y, x+y, z; (iii) xy, x, z; (iv) x+y, x, z; (v) y, xy, z; (vi) xy+1/3, y+2/3, z+1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.992.84 (7)163

Experimental details

Crystal data
Chemical formula(C2H8N)[Cd(CHO2)3]
Mr293.55
Crystal system, space groupTrigonal, R3c
Temperature (K)293
a, c (Å)8.5121 (4), 23.0022 (9)
V3)1443.36 (9)
Z6
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.22 × 0.19 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.635, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
4250, 370, 352
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.09
No. of reflections370
No. of parameters33
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.36

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO (Rigaku, 1998, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.992.84 (7)163.3
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903) and the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFortier, S. & Creber, K. A. M. (1985). Acta Cryst. C41, 1763–1765.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Program for Absorption Correction, Tokyo, Japan.  Google Scholar
First citationMarsh, R. E. (1986). Acta Cryst. C42, 1327–1328.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds