metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic modification of di-n-butyl­di­chlorido(1,10-phenanthroline-κ2N,N′)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 November 2010; accepted 19 November 2010; online 27 November 2010)

The Sn(IV) atom in the title compound, [Sn(C4H9)2Cl2(C12H8N2)], is chelated by the N-heterocycle; the n-butyl groups are trans to each other whereas the Cl atoms are cis to each other. The crystal studied was a non-merohedral twin with the minor domain being in a 15.8 (1)% proportion.

Related literature

For the ortho­rhom­bic modification, see: Ganis et al. (1983[Ganis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem. 256, 245-250.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2Cl2(C12H8N2)]

  • Mr = 484.02

  • Monoclinic, P 21 /c

  • a = 11.1400 (2) Å

  • b = 10.4566 (2) Å

  • c = 17.9375 (4) Å

  • β = 92.125 (2)°

  • V = 2088.04 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 12.12 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.02 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.196, Tmax = 0.794

  • 15170 measured reflections

  • 11290 independent reflections

  • 10561 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.185

  • S = 1.08

  • 11290 reflections

  • 227 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 2.11 e Å−3

  • Δρmin = −1.95 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The di-n-butyltin dichloride adduct with 1,10-phenanthroline (Scheme I) belongs to the P212121 space group (Ganis et al., 1983). The complexation of the organotin halide with the N-heterocycle in ethanol solvent yielded a monoclinic modification as plate-like crystals that grew over one another. The molecule has the tin atom in an octahedral geometry (Fig. 1). The n-butyl groups are trans to each other whereas the chlorine atoms are cis to each other. The crystal studied is a non-merohedral twin with the minor domain being in a 15.8 (1)% proportion; the nature of the twin led to a moderately satisfactory weighting scheme in the refinement.

Related literature top

For the orthorhombic modification, see: Ganis et al. (1983).

Experimental top

Di-n-butyltin dichloride (0.15 g, 0.5 mmol) and 1,10-phenanthroline hydrate (0.10, 0.5 mmol) were dissolved in boiling ethanol (10 mol). Colorless plates separated from solution after several days. A tiny platelet was prized from a lump of larger blocked that grew on top of each other.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The anisotropic temperature factors of the C9 atom were restrained to be nearly isotropic so as to prevent the atom from being too oblate.

The final difference Fourier map had a peak and a hole in the vicinity of Cl2.

The crystal studied is a non-merohedral twin; the minor component refined to a 15.8 (1)% proportion.

Structure description top

The di-n-butyltin dichloride adduct with 1,10-phenanthroline (Scheme I) belongs to the P212121 space group (Ganis et al., 1983). The complexation of the organotin halide with the N-heterocycle in ethanol solvent yielded a monoclinic modification as plate-like crystals that grew over one another. The molecule has the tin atom in an octahedral geometry (Fig. 1). The n-butyl groups are trans to each other whereas the chlorine atoms are cis to each other. The crystal studied is a non-merohedral twin with the minor domain being in a 15.8 (1)% proportion; the nature of the twin led to a moderately satisfactory weighting scheme in the refinement.

For the orthorhombic modification, see: Ganis et al. (1983).

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of SnCl2(C4H9)2(C12H8N2)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
di-n-butyldichlorido(1,10-phenanthroline-κ2N,N')tin(IV) top
Crystal data top
[Sn(C4H9)2Cl2(C12H8N2)]F(000) = 976
Mr = 484.02Dx = 1.540 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 13483 reflections
a = 11.1400 (2) Åθ = 4.0–74.1°
b = 10.4566 (2) ŵ = 12.12 mm1
c = 17.9375 (4) ÅT = 100 K
β = 92.125 (2)°Plate, colorless
V = 2088.04 (7) Å30.20 × 0.10 × 0.02 mm
Z = 4
Data collection top
Agilent SuperNova
diffractometer
11290 independent reflections
Radiation source: fine-focus sealed tube10561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.4041 pixels mm-1θmax = 74.2°, θmin = 4.0°
ω scansh = 1311
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1313
Tmin = 0.196, Tmax = 0.794l = 2222
15170 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1271P)2 + 6.6598P]
where P = (Fo2 + 2Fc2)/3
11290 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 2.11 e Å3
6 restraintsΔρmin = 1.95 e Å3
Crystal data top
[Sn(C4H9)2Cl2(C12H8N2)]V = 2088.04 (7) Å3
Mr = 484.02Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.1400 (2) ŵ = 12.12 mm1
b = 10.4566 (2) ÅT = 100 K
c = 17.9375 (4) Å0.20 × 0.10 × 0.02 mm
β = 92.125 (2)°
Data collection top
Agilent SuperNova
diffractometer
11290 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
10561 reflections with I > 2σ(I)
Tmin = 0.196, Tmax = 0.794Rint = 0.046
15170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0626 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.08Δρmax = 2.11 e Å3
11290 reflectionsΔρmin = 1.95 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.850086 (19)0.57324 (2)0.236808 (12)0.00995 (12)
Cl10.77760 (8)0.43243 (8)0.12497 (5)0.0141 (2)
Cl21.07589 (8)0.55970 (9)0.24257 (5)0.0181 (2)
N10.6455 (3)0.6191 (3)0.26722 (16)0.0131 (7)
N20.8463 (3)0.7174 (3)0.33789 (17)0.0132 (6)
C10.8297 (4)0.4069 (4)0.3057 (2)0.0167 (8)
H1A0.74860.37110.29530.020*
H1B0.88860.34190.29060.020*
C20.8459 (4)0.4277 (4)0.3895 (2)0.0204 (9)
H2A0.78510.48990.40560.024*
H2B0.92620.46500.40050.024*
C30.8336 (5)0.3035 (5)0.4346 (3)0.0290 (10)
H3A0.89840.24410.42100.035*
H3B0.84550.32380.48830.035*
C40.7140 (5)0.2362 (5)0.4229 (3)0.0308 (11)
H4A0.71340.15820.45310.046*
H4B0.70200.21380.37010.046*
H4C0.64920.29310.43780.046*
C50.8563 (4)0.7339 (4)0.1626 (2)0.0147 (7)
H5A0.90060.80370.18890.018*
H5B0.90390.70880.11940.018*
C60.7366 (4)0.7876 (4)0.1328 (2)0.0170 (8)
H6A0.68830.81480.17520.020*
H6B0.69160.71960.10540.020*
C70.7538 (4)0.9014 (4)0.0808 (2)0.0193 (8)
H7A0.80730.87600.04050.023*
H7B0.79330.97190.10920.023*
C80.6344 (4)0.9490 (4)0.0463 (2)0.0232 (9)
H8A0.64931.02150.01320.035*
H8B0.58190.97620.08590.035*
H8C0.59560.87990.01750.035*
C90.5485 (3)0.5678 (4)0.2335 (2)0.0143 (8)
H90.55880.51090.19290.017*
C100.4306 (3)0.5949 (4)0.2560 (2)0.0165 (8)
H100.36300.55610.23130.020*
C110.4158 (4)0.6779 (4)0.3140 (2)0.0185 (8)
H110.33730.69810.32930.022*
C120.5168 (4)0.7337 (4)0.3512 (2)0.0146 (8)
C130.6310 (3)0.7008 (4)0.3260 (2)0.0129 (7)
C140.5086 (4)0.8193 (4)0.4132 (2)0.0178 (8)
H140.43180.84090.43090.021*
C150.6084 (4)0.8701 (4)0.4470 (2)0.0176 (8)
H150.60060.92740.48770.021*
C160.7249 (4)0.8387 (4)0.4224 (2)0.0144 (8)
C170.7368 (4)0.7535 (4)0.3623 (2)0.0127 (7)
C180.8308 (4)0.8872 (4)0.4573 (2)0.0163 (8)
H180.82650.94450.49820.020*
C190.9403 (4)0.8510 (4)0.4316 (2)0.0178 (8)
H191.01260.88320.45430.021*
C200.9440 (4)0.7658 (4)0.3714 (2)0.0154 (8)
H201.02010.74160.35380.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01113 (16)0.00941 (16)0.00932 (16)0.00028 (9)0.00064 (10)0.00029 (7)
Cl10.0165 (4)0.0137 (5)0.0122 (4)0.0033 (3)0.0011 (3)0.0012 (3)
Cl20.0148 (4)0.0177 (5)0.0218 (5)0.0010 (4)0.0015 (4)0.0016 (3)
N10.0161 (18)0.0099 (16)0.0135 (15)0.0038 (12)0.0006 (13)0.0013 (11)
N20.0169 (17)0.0113 (15)0.0113 (14)0.0026 (13)0.0013 (12)0.0023 (11)
C10.023 (2)0.0127 (17)0.0148 (18)0.0005 (16)0.0005 (15)0.0012 (14)
C20.026 (2)0.021 (2)0.0139 (19)0.0023 (17)0.0005 (16)0.0048 (14)
C30.035 (3)0.031 (3)0.021 (2)0.011 (2)0.0071 (19)0.0113 (18)
C40.050 (3)0.017 (2)0.025 (2)0.001 (2)0.010 (2)0.0013 (17)
C50.0162 (18)0.0140 (18)0.0138 (16)0.0022 (15)0.0006 (14)0.0018 (13)
C60.0164 (19)0.0157 (19)0.0189 (18)0.0007 (16)0.0001 (15)0.0024 (15)
C70.024 (2)0.0156 (18)0.0183 (18)0.0009 (17)0.0046 (16)0.0022 (16)
C80.029 (2)0.019 (2)0.022 (2)0.0066 (18)0.0054 (17)0.0017 (16)
C90.0026 (16)0.018 (2)0.0218 (19)0.0003 (14)0.0025 (14)0.0012 (14)
C100.0059 (18)0.0191 (19)0.024 (2)0.0057 (15)0.0003 (14)0.0005 (15)
C110.0122 (18)0.022 (2)0.0215 (18)0.0017 (16)0.0012 (15)0.0043 (16)
C120.0131 (19)0.0135 (18)0.0171 (17)0.0030 (15)0.0006 (14)0.0031 (14)
C130.0123 (19)0.0141 (18)0.0121 (16)0.0076 (15)0.0005 (14)0.0030 (13)
C140.0169 (19)0.020 (2)0.0160 (17)0.0069 (16)0.0030 (14)0.0007 (15)
C150.021 (2)0.018 (2)0.0141 (17)0.0063 (16)0.0021 (15)0.0023 (14)
C160.019 (2)0.0119 (19)0.0125 (16)0.0018 (15)0.0023 (14)0.0024 (14)
C170.0144 (19)0.0112 (18)0.0122 (16)0.0006 (14)0.0025 (13)0.0042 (14)
C180.023 (2)0.0127 (19)0.0136 (16)0.0016 (16)0.0001 (15)0.0011 (14)
C190.019 (2)0.020 (2)0.0144 (17)0.0057 (17)0.0001 (15)0.0028 (15)
C200.0112 (18)0.017 (2)0.0173 (17)0.0018 (15)0.0008 (14)0.0009 (15)
Geometric parameters (Å, º) top
Sn1—C52.146 (4)C6—H6B0.9900
Sn1—C12.150 (4)C7—C81.530 (6)
Sn1—N22.360 (3)C7—H7A0.9900
Sn1—N12.412 (3)C7—H7B0.9900
Sn1—Cl22.5177 (9)C8—H8A0.9800
Sn1—Cl12.5931 (9)C8—H8B0.9800
N1—C91.331 (5)C8—H8C0.9800
N1—C131.371 (5)C9—C101.417 (5)
N2—C201.323 (5)C9—H90.9500
N2—C171.365 (5)C10—C111.371 (6)
C1—C21.523 (6)C10—H100.9500
C1—H1A0.9900C11—C121.413 (6)
C1—H1B0.9900C11—H110.9500
C2—C31.538 (6)C12—C131.408 (5)
C2—H2A0.9900C12—C141.434 (6)
C2—H2B0.9900C13—C171.435 (5)
C3—C41.515 (7)C14—C151.355 (6)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C15—C161.424 (5)
C4—H4A0.9800C15—H150.9500
C4—H4B0.9800C16—C171.409 (5)
C4—H4C0.9800C16—C181.409 (6)
C5—C61.525 (5)C18—C191.373 (6)
C5—H5A0.9900C18—H180.9500
C5—H5B0.9900C19—C201.402 (5)
C6—C71.528 (6)C19—H190.9500
C6—H6A0.9900C20—H200.9500
C5—Sn1—C1174.93 (15)C7—C6—H6A109.2
C5—Sn1—N288.76 (13)C5—C6—H6B109.2
C1—Sn1—N294.01 (13)C7—C6—H6B109.2
C5—Sn1—N192.13 (13)H6A—C6—H6B107.9
C1—Sn1—N184.85 (14)C6—C7—C8112.0 (4)
N2—Sn1—N169.83 (11)C6—C7—H7A109.2
C5—Sn1—Cl290.81 (11)C8—C7—H7A109.2
C1—Sn1—Cl293.29 (12)C6—C7—H7B109.2
N2—Sn1—Cl292.90 (9)C8—C7—H7B109.2
N1—Sn1—Cl2162.40 (8)H7A—C7—H7B107.9
C5—Sn1—Cl188.91 (10)C7—C8—H8A109.5
C1—Sn1—Cl187.07 (11)C7—C8—H8B109.5
N2—Sn1—Cl1160.62 (9)H8A—C8—H8B109.5
N1—Sn1—Cl191.04 (8)C7—C8—H8C109.5
Cl2—Sn1—Cl1106.37 (3)H8A—C8—H8C109.5
C9—N1—C13118.9 (3)H8B—C8—H8C109.5
C9—N1—Sn1125.1 (3)N1—C9—C10122.4 (4)
C13—N1—Sn1115.9 (2)N1—C9—H9118.8
C20—N2—C17118.6 (3)C10—C9—H9118.8
C20—N2—Sn1123.7 (3)C11—C10—C9118.8 (4)
C17—N2—Sn1117.7 (3)C11—C10—H10120.6
C2—C1—Sn1116.2 (3)C9—C10—H10120.6
C2—C1—H1A108.2C10—C11—C12120.3 (4)
Sn1—C1—H1A108.2C10—C11—H11119.9
C2—C1—H1B108.2C12—C11—H11119.9
Sn1—C1—H1B108.2C13—C12—C11117.5 (4)
H1A—C1—H1B107.4C13—C12—C14119.1 (4)
C1—C2—C3112.9 (4)C11—C12—C14123.4 (4)
C1—C2—H2A109.0N1—C13—C12122.2 (4)
C3—C2—H2A109.0N1—C13—C17118.0 (3)
C1—C2—H2B109.0C12—C13—C17119.8 (4)
C3—C2—H2B109.0C15—C14—C12121.1 (4)
H2A—C2—H2B107.8C15—C14—H14119.4
C4—C3—C2114.4 (4)C12—C14—H14119.4
C4—C3—H3A108.6C14—C15—C16120.9 (4)
C2—C3—H3A108.6C14—C15—H15119.6
C4—C3—H3B108.6C16—C15—H15119.6
C2—C3—H3B108.6C17—C16—C18117.8 (4)
H3A—C3—H3B107.6C17—C16—C15119.7 (4)
C3—C4—H4A109.5C18—C16—C15122.5 (4)
C3—C4—H4B109.5N2—C17—C16122.1 (4)
H4A—C4—H4B109.5N2—C17—C13118.5 (4)
C3—C4—H4C109.5C16—C17—C13119.4 (4)
H4A—C4—H4C109.5C19—C18—C16119.4 (4)
H4B—C4—H4C109.5C19—C18—H18120.3
C6—C5—Sn1117.2 (3)C16—C18—H18120.3
C6—C5—H5A108.0C18—C19—C20119.0 (4)
Sn1—C5—H5A108.0C18—C19—H19120.5
C6—C5—H5B108.0C20—C19—H19120.5
Sn1—C5—H5B108.0N2—C20—C19123.1 (4)
H5A—C5—H5B107.2N2—C20—H20118.5
C5—C6—C7111.9 (3)C19—C20—H20118.5
C5—C6—H6A109.2
C5—Sn1—N1—C994.0 (3)C9—C10—C11—C120.9 (6)
C1—Sn1—N1—C981.9 (3)C10—C11—C12—C130.2 (6)
N2—Sn1—N1—C9178.1 (3)C10—C11—C12—C14178.7 (4)
Cl2—Sn1—N1—C9166.5 (2)C9—N1—C13—C121.0 (5)
Cl1—Sn1—N1—C95.1 (3)Sn1—N1—C13—C12178.4 (3)
C5—Sn1—N1—C1388.8 (3)C9—N1—C13—C17179.0 (3)
C1—Sn1—N1—C1395.3 (3)Sn1—N1—C13—C171.7 (4)
N2—Sn1—N1—C130.9 (3)C11—C12—C13—N10.8 (5)
Cl2—Sn1—N1—C1310.6 (5)C14—C12—C13—N1179.8 (4)
Cl1—Sn1—N1—C13177.7 (3)C11—C12—C13—C17179.3 (3)
C5—Sn1—N2—C2086.5 (3)C14—C12—C13—C170.3 (5)
C1—Sn1—N2—C2097.7 (3)C13—C12—C14—C150.9 (6)
N1—Sn1—N2—C20179.2 (3)C11—C12—C14—C15179.9 (4)
Cl2—Sn1—N2—C204.2 (3)C12—C14—C15—C160.7 (6)
Cl1—Sn1—N2—C20169.7 (2)C14—C15—C16—C170.1 (6)
C5—Sn1—N2—C1792.7 (3)C14—C15—C16—C18178.5 (4)
C1—Sn1—N2—C1783.0 (3)C20—N2—C17—C161.0 (5)
N1—Sn1—N2—C170.0 (2)Sn1—N2—C17—C16179.7 (3)
Cl2—Sn1—N2—C17176.5 (2)C20—N2—C17—C13179.9 (3)
Cl1—Sn1—N2—C179.6 (4)Sn1—N2—C17—C130.8 (4)
N2—Sn1—C1—C212.1 (3)C18—C16—C17—N20.4 (5)
N1—Sn1—C1—C281.4 (3)C15—C16—C17—N2178.1 (3)
Cl2—Sn1—C1—C281.1 (3)C18—C16—C17—C13179.2 (3)
Cl1—Sn1—C1—C2172.7 (3)C15—C16—C17—C130.7 (5)
Sn1—C1—C2—C3178.3 (3)N1—C13—C17—N21.7 (5)
C1—C2—C3—C458.7 (5)C12—C13—C17—N2178.4 (3)
N2—Sn1—C5—C690.3 (3)N1—C13—C17—C16179.4 (3)
N1—Sn1—C5—C620.5 (3)C12—C13—C17—C160.5 (5)
Cl2—Sn1—C5—C6176.9 (3)C17—C16—C18—C190.3 (5)
Cl1—Sn1—C5—C670.5 (3)C15—C16—C18—C19178.7 (4)
Sn1—C5—C6—C7180.0 (3)C16—C18—C19—C200.3 (6)
C5—C6—C7—C8175.7 (3)C17—N2—C20—C191.0 (6)
C13—N1—C9—C100.3 (6)Sn1—N2—C20—C19179.7 (3)
Sn1—N1—C9—C10177.4 (3)C18—C19—C20—N20.4 (6)
N1—C9—C10—C110.7 (6)

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2Cl2(C12H8N2)]
Mr484.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.1400 (2), 10.4566 (2), 17.9375 (4)
β (°) 92.125 (2)
V3)2088.04 (7)
Z4
Radiation typeCu Kα
µ (mm1)12.12
Crystal size (mm)0.20 × 0.10 × 0.02
Data collection
DiffractometerAgilent SuperNova
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.196, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
15170, 11290, 10561
Rint0.046
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.185, 1.08
No. of reflections11290
No. of parameters227
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.11, 1.95

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGanis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem. 256, 245–250.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds