metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ4O:O′;κ3O,O′:O;κ3O:O,O′-bis­­[(acetato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)europium(III)]

aDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, People's Republic of China
*Correspondence e-mail: fanruiqing@163.com

(Received 23 September 2010; accepted 9 November 2010; online 13 November 2010)

In the title centrosymmetric dinuclear complex, [Eu2(CH3CO2)6(C12H8N2)2], the EuIII atom is nine-coordinated by two N atoms from a 1,10-phenanthroline ligand and seven O atoms from five acetate ligands (two bidentate, three monodentate). The crystal structure is stabilized by ππ stacking inter­actions between the pyridine and benzene rings of adjacent mol­ecules, with a centroid–centroid distance of 3.829 (2) Å.

Related literature

For general background to lanthanide complexes based on nitro­gen-containing organic ligands, see: Lima et al. (2009[Lima, P. P., Paz, F. A. A., Ferreira, R. A. S., Bermudez, V. de Z. & Carlos, L. D. (2009). Chem. Mater. 21, 5099-5111.]); Prasad & Rajasekharan (2009[Prasad, T. K. & Rajasekharan, M. V. (2009). Inorg. Chem. 48, 11543-11550.]); Xiang et al. (2009[Xiang, S., Hu, S., Sheng, T., Chen, J. & Wu, X. (2009). Chem. Eur. J. 15, 12496-12502.]); Yang et al. (2009[Yang, P., Wu, J.-Z. & Yu, Y. (2009). Inorg. Chim. Acta, 362, 1907-1912.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C2H3O2)6(C12H8N2)2]

  • Mr = 1018.59

  • Monoclinic, P 21 /c

  • a = 9.7249 (19) Å

  • b = 23.670 (5) Å

  • c = 8.2984 (17) Å

  • β = 90.32 (3)°

  • V = 1910.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.559, Tmax = 0.789

  • 18210 measured reflections

  • 4324 independent reflections

  • 2668 reflections with I > 2σ(I)

  • Rint = 0.125

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.101

  • S = 0.99

  • 4324 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O1 2.465 (5)
Eu1—O2 2.443 (5)
Eu1—O3 2.509 (5)
Eu1—O4 2.380 (5)
Eu1—O5i 2.387 (4)
Eu1—O6 2.372 (4)
Eu1—O6i 2.630 (5)
Eu1—N1 2.639 (6)
Eu1—N2 2.613 (6)
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Luminescent coordination compounds of lanthanide based on nitrogen-containing organic ligands have attracted intensive attention due to their potential applications in areas of sensor technologies and electro-luminescent devices (Xiang et al., 2009; Yang et al., 2009). In order to explore potential luminescent complexes of this type, a series of the lanthanide metal complexes with nitrogen-containing organic ligands have been studied (Lima et al., 2009; Prasad & Rajasekharan, 2009). Here, we report the crystal structure of a dinuclear europium(III) complex with 1,10-phenanthroline ligand.

The title dinuclear complex consists of two EuIII ions, two 1,10-phenanthroline ligands and six acetate anions (Fig. 1). The Eu atom is nine-coordinated by two N atoms from a phenanthroline ligand and seven O atoms from five acetate anions (Table 1).

There are three different linking fashions between acetates and Eu atoms. Each Eu atom is bonded to two O atoms from a chelating acetate (O2, O3), three O atoms from two chelating and bridging acetates (O1, O6, O6i) and two O atoms from two bridging acetates [O4, O5i; symmetry code: (i) -x, -y, 2-z]. Two nine-coordinated Eu atoms are linked by edge-sharing to form a dinuclear structure. It is noteworthy that ππ stacking interactions between adjacent phenanthroline ligands play a significant role in stabilizing the structure, with a centroid–centroid distance of 3.829 (2) Å (Fig. 2).

Related literature top

For general background to lanthanide complexes based on nitrogen-containing organic ligands, see: Lima et al. (2009); Prasad & Rajasekharan (2009); Xiang et al. (2009); Yang et al. (2009).

Experimental top

The title complex was prepared under mild conditions by allowing Eu(NO3)3 (0.043 g, 0.1 mmol) and 1,10-phenanthroline (0.059 g, 0.3 mmol) to react in a mixed solution of N,N-dimethylformamide (10 ml) and acetic acid (2.0 ml) at 338 K for 4 d. Colorless block crystals were obtained in a 47% yield based on Eu atom.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found 0.92 Å from Eu1 and the deepest hole 0.95 Å from Eu1.

Structure description top

Luminescent coordination compounds of lanthanide based on nitrogen-containing organic ligands have attracted intensive attention due to their potential applications in areas of sensor technologies and electro-luminescent devices (Xiang et al., 2009; Yang et al., 2009). In order to explore potential luminescent complexes of this type, a series of the lanthanide metal complexes with nitrogen-containing organic ligands have been studied (Lima et al., 2009; Prasad & Rajasekharan, 2009). Here, we report the crystal structure of a dinuclear europium(III) complex with 1,10-phenanthroline ligand.

The title dinuclear complex consists of two EuIII ions, two 1,10-phenanthroline ligands and six acetate anions (Fig. 1). The Eu atom is nine-coordinated by two N atoms from a phenanthroline ligand and seven O atoms from five acetate anions (Table 1).

There are three different linking fashions between acetates and Eu atoms. Each Eu atom is bonded to two O atoms from a chelating acetate (O2, O3), three O atoms from two chelating and bridging acetates (O1, O6, O6i) and two O atoms from two bridging acetates [O4, O5i; symmetry code: (i) -x, -y, 2-z]. Two nine-coordinated Eu atoms are linked by edge-sharing to form a dinuclear structure. It is noteworthy that ππ stacking interactions between adjacent phenanthroline ligands play a significant role in stabilizing the structure, with a centroid–centroid distance of 3.829 (2) Å (Fig. 2).

For general background to lanthanide complexes based on nitrogen-containing organic ligands, see: Lima et al. (2009); Prasad & Rajasekharan (2009); Xiang et al. (2009); Yang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (A) -x, -y, 2-z.]
[Figure 2] Fig. 2. Packing diagram of the title compound along the a axis.
Tetra-µ-acetato-κ4O:O';κ3O,O': O;κ3O:O,O'- bis[(acetato-κ2O,O')(1,10-phenanthroline- κ2N,N')europium(III)] bis(µ-acetato-κ3O,O':O')bis(µ-acetato-κ2O:O') top
Crystal data top
[Eu2(C2H3O2)6(C12H8N2)2]F(000) = 1000
Mr = 1018.59Dx = 1.771 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3465 reflections
a = 9.7249 (19) Åθ = 3.3–27.5°
b = 23.670 (5) ŵ = 3.32 mm1
c = 8.2984 (17) ÅT = 293 K
β = 90.32 (3)°Block, colorless
V = 1910.2 (7) Å30.20 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
4324 independent reflections
Radiation source: fine-focus sealed tube2668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
φ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.559, Tmax = 0.789k = 3030
18210 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0299P)2]
where P = (Fo2 + 2Fc2)/3
4324 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Eu2(C2H3O2)6(C12H8N2)2]V = 1910.2 (7) Å3
Mr = 1018.59Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.7249 (19) ŵ = 3.32 mm1
b = 23.670 (5) ÅT = 293 K
c = 8.2984 (17) Å0.20 × 0.10 × 0.08 mm
β = 90.32 (3)°
Data collection top
Bruker APEX CCD
diffractometer
4324 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2668 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.789Rint = 0.125
18210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.99Δρmax = 1.02 e Å3
4324 reflectionsΔρmin = 0.90 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.13542 (4)0.060026 (13)0.95103 (4)0.03528 (13)
O10.0766 (5)0.0993 (2)1.2170 (5)0.0495 (14)
O20.1771 (6)0.0886 (2)0.6727 (6)0.0517 (14)
O30.3281 (5)0.0295 (2)0.7710 (6)0.0507 (14)
O40.0904 (5)0.08694 (18)0.8702 (6)0.0472 (13)
O50.2383 (5)0.01441 (19)0.8964 (6)0.0458 (13)
O60.0405 (5)0.02279 (18)0.8341 (5)0.0423 (12)
N10.1482 (7)0.1713 (2)0.9431 (8)0.0511 (16)
N20.3590 (6)0.1076 (2)1.0623 (7)0.0408 (14)
C10.4668 (7)0.0771 (3)1.1138 (8)0.0431 (19)
H1A0.46220.03801.10350.052*
C20.5841 (8)0.1002 (3)1.1811 (9)0.053 (2)
H2A0.65660.07721.21330.063*
C30.5921 (9)0.1571 (3)1.1996 (10)0.066 (3)
H3A0.67020.17331.24540.079*
C40.4818 (8)0.1915 (3)1.1492 (10)0.055 (2)
C50.4823 (11)0.2517 (4)1.1624 (12)0.084 (3)
H5A0.55650.26941.21240.101*
C60.3792 (11)0.2832 (4)1.1049 (12)0.086 (3)
H6A0.38300.32221.11620.103*
C70.2628 (9)0.2580 (3)1.0260 (10)0.064 (2)
C80.1551 (10)0.2892 (3)0.9555 (11)0.075 (3)
H8A0.15690.32850.95960.090*
C90.0499 (11)0.2627 (3)0.8825 (12)0.083 (3)
H9A0.02140.28310.83520.100*
C100.0503 (10)0.2035 (3)0.8793 (10)0.067 (3)
H10A0.02330.18550.82890.081*
C110.2555 (8)0.1984 (3)1.0144 (9)0.049 (2)
C120.3674 (8)0.1641 (3)1.0785 (8)0.0447 (19)
C130.0119 (7)0.0640 (3)1.2593 (8)0.0391 (16)
C140.0864 (8)0.0707 (3)1.4136 (8)0.055 (2)
H14A0.10520.03421.45850.083*
H14B0.17140.09031.39440.083*
H14C0.03090.09211.48770.083*
C150.2801 (8)0.0583 (3)0.6569 (9)0.0431 (17)
C160.3468 (9)0.0548 (4)0.4946 (9)0.063 (2)
H16A0.43430.07360.49820.095*
H16B0.28890.07270.41560.095*
H16C0.36000.01590.46610.095*
C170.2064 (8)0.0637 (3)0.8529 (8)0.0422 (17)
C180.3164 (8)0.0977 (3)0.7682 (9)0.056 (2)
H18A0.39950.07590.76170.084*
H18B0.28620.10710.66150.084*
H18C0.33340.13180.82750.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0401 (2)0.02511 (17)0.0406 (2)0.00140 (19)0.00452 (14)0.00032 (19)
O10.061 (4)0.044 (3)0.044 (3)0.015 (3)0.004 (3)0.011 (2)
O20.061 (4)0.045 (3)0.049 (3)0.014 (3)0.002 (3)0.005 (2)
O30.046 (3)0.056 (3)0.049 (3)0.011 (3)0.004 (3)0.002 (3)
O40.041 (3)0.036 (3)0.064 (3)0.003 (2)0.009 (3)0.007 (3)
O50.047 (3)0.030 (3)0.059 (3)0.000 (2)0.014 (3)0.008 (2)
O60.055 (3)0.027 (3)0.044 (3)0.005 (2)0.002 (2)0.011 (2)
N10.059 (4)0.033 (3)0.061 (4)0.001 (3)0.008 (3)0.001 (3)
N20.047 (4)0.033 (3)0.042 (3)0.006 (3)0.001 (3)0.001 (3)
C10.039 (5)0.035 (4)0.055 (5)0.002 (3)0.004 (4)0.003 (3)
C20.048 (5)0.049 (5)0.062 (5)0.003 (4)0.012 (4)0.006 (4)
C30.064 (6)0.055 (5)0.077 (6)0.007 (5)0.019 (5)0.014 (5)
C40.051 (5)0.039 (4)0.075 (6)0.008 (4)0.007 (4)0.002 (4)
C50.092 (8)0.046 (5)0.114 (8)0.016 (5)0.034 (7)0.012 (6)
C60.106 (9)0.033 (5)0.118 (9)0.011 (5)0.021 (7)0.015 (5)
C70.075 (7)0.035 (4)0.081 (6)0.002 (4)0.008 (5)0.003 (4)
C80.096 (8)0.031 (4)0.099 (7)0.010 (5)0.017 (6)0.005 (5)
C90.101 (8)0.038 (5)0.110 (8)0.014 (5)0.037 (7)0.006 (5)
C100.071 (7)0.045 (5)0.086 (6)0.002 (4)0.027 (5)0.006 (5)
C110.057 (5)0.028 (4)0.061 (5)0.009 (4)0.003 (4)0.003 (4)
C120.055 (5)0.031 (4)0.048 (4)0.006 (4)0.002 (4)0.001 (3)
C130.035 (4)0.037 (4)0.046 (4)0.000 (4)0.001 (3)0.000 (4)
C140.051 (5)0.073 (6)0.042 (4)0.006 (4)0.009 (4)0.015 (4)
C150.040 (4)0.031 (4)0.059 (5)0.007 (4)0.007 (4)0.003 (4)
C160.065 (6)0.074 (6)0.052 (5)0.001 (5)0.004 (4)0.001 (4)
C170.043 (4)0.038 (4)0.046 (4)0.009 (4)0.002 (3)0.001 (4)
C180.052 (6)0.059 (5)0.057 (5)0.003 (4)0.007 (4)0.011 (4)
Geometric parameters (Å, º) top
Eu1—O12.465 (5)C4—C121.412 (9)
Eu1—O22.443 (5)C4—C51.428 (10)
Eu1—O32.509 (5)C5—C61.335 (11)
Eu1—O42.380 (5)C5—H5A0.9300
Eu1—O5i2.387 (4)C6—C71.434 (11)
Eu1—O62.372 (4)C6—H6A0.9300
Eu1—O6i2.630 (5)C7—C81.407 (10)
Eu1—N12.639 (6)C7—C111.414 (9)
Eu1—N22.613 (6)C8—C91.342 (11)
O1—C131.251 (8)C8—H8A0.9300
O2—C151.240 (8)C9—C101.401 (10)
O3—C151.254 (8)C9—H9A0.9300
O4—C171.262 (8)C10—H10A0.9300
O5—C171.261 (8)C11—C121.456 (10)
O5—Eu1i2.387 (4)C13—O6i1.276 (7)
O6—C13i1.276 (7)C13—C141.484 (10)
O6—Eu1i2.630 (5)C14—H14A0.9600
N1—C101.328 (9)C14—H14B0.9600
N1—C111.358 (8)C14—H14C0.9600
N2—C11.342 (8)C15—C161.501 (11)
N2—C121.346 (8)C16—H16A0.9600
C1—C21.381 (9)C16—H16B0.9600
C1—H1A0.9300C16—H16C0.9600
C2—C31.356 (10)C17—C181.509 (9)
C2—H2A0.9300C18—H18A0.9600
C3—C41.409 (11)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
O6—Eu1—O475.50 (15)C2—C3—H3A120.1
O6—Eu1—O5i76.58 (15)C4—C3—H3A120.1
O4—Eu1—O5i136.96 (17)C3—C4—C12117.0 (7)
O6—Eu1—O284.76 (16)C3—C4—C5123.5 (7)
O4—Eu1—O279.46 (18)C12—C4—C5119.5 (7)
O5i—Eu1—O2129.42 (18)C6—C5—C4121.8 (8)
O6—Eu1—O1125.90 (17)C6—C5—H5A119.1
O4—Eu1—O186.14 (18)C4—C5—H5A119.1
O5i—Eu1—O184.40 (17)C5—C6—C7121.3 (8)
O2—Eu1—O1141.47 (16)C5—C6—H6A119.3
O6—Eu1—O378.98 (17)C7—C6—H6A119.3
O4—Eu1—O3126.90 (16)C8—C7—C11117.3 (8)
O5i—Eu1—O377.95 (17)C8—C7—C6123.7 (8)
O2—Eu1—O352.29 (16)C11—C7—C6119.0 (8)
O1—Eu1—O3145.03 (16)C9—C8—C7120.4 (8)
O6—Eu1—N2145.30 (17)C9—C8—H8A119.8
O4—Eu1—N2138.49 (16)C7—C8—H8A119.8
O5i—Eu1—N277.60 (16)C8—C9—C10118.3 (8)
O2—Eu1—N294.15 (18)C8—C9—H9A120.9
O1—Eu1—N273.60 (18)C10—C9—H9A120.9
O3—Eu1—N273.25 (18)N1—C10—C9124.7 (8)
O6—Eu1—O6i75.36 (17)N1—C10—H10A117.7
O4—Eu1—O6i71.21 (16)C9—C10—H10A117.7
O5i—Eu1—O6i70.45 (16)N1—C11—C7122.6 (7)
O2—Eu1—O6i147.77 (16)N1—C11—C12117.8 (6)
O1—Eu1—O6i50.54 (15)C7—C11—C12119.6 (7)
O3—Eu1—O6i142.95 (15)N2—C12—C4123.0 (7)
N2—Eu1—O6i116.62 (16)N2—C12—C11118.2 (6)
O6—Eu1—N1146.45 (16)C4—C12—C11118.7 (6)
O4—Eu1—N176.66 (18)O1—C13—O6i119.3 (7)
O5i—Eu1—N1136.95 (16)O1—C13—C14120.7 (6)
O2—Eu1—N172.03 (18)O6i—C13—C14120.0 (7)
O1—Eu1—N169.92 (18)C13—C14—H14A109.5
O3—Eu1—N1103.7 (2)C13—C14—H14B109.5
N2—Eu1—N162.53 (18)H14A—C14—H14B109.5
O6i—Eu1—N1112.49 (18)C13—C14—H14C109.5
C13—O1—Eu199.3 (4)H14A—C14—H14C109.5
C15—O2—Eu194.4 (4)H14B—C14—H14C109.5
C15—O3—Eu191.0 (5)O2—C15—O3122.2 (7)
C17—O4—Eu1137.6 (4)O2—C15—C16118.7 (7)
C17—O5—Eu1i137.0 (4)O3—C15—C16119.1 (7)
C13i—O6—Eu1164.5 (5)C15—C16—H16A109.5
C13i—O6—Eu1i90.8 (4)C15—C16—H16B109.5
Eu1—O6—Eu1i104.64 (16)H16A—C16—H16B109.5
C10—N1—C11116.8 (7)C15—C16—H16C109.5
C10—N1—Eu1123.3 (5)H16A—C16—H16C109.5
C11—N1—Eu1119.8 (4)H16B—C16—H16C109.5
C1—N2—C12117.2 (6)O4—C17—O5126.3 (6)
C1—N2—Eu1121.8 (4)O4—C17—C18116.8 (7)
C12—N2—Eu1120.9 (5)O5—C17—C18116.9 (7)
N2—C1—C2123.9 (7)C17—C18—H18A109.5
N2—C1—H1A118.1C17—C18—H18B109.5
C2—C1—H1A118.1H18A—C18—H18B109.5
C3—C2—C1119.1 (7)C17—C18—H18C109.5
C3—C2—H2A120.5H18A—C18—H18C109.5
C1—C2—H2A120.5H18B—C18—H18C109.5
C2—C3—C4119.9 (7)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Eu2(C2H3O2)6(C12H8N2)2]
Mr1018.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.7249 (19), 23.670 (5), 8.2984 (17)
β (°) 90.32 (3)
V3)1910.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.559, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
18210, 4324, 2668
Rint0.125
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.101, 0.99
No. of reflections4324
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.90

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Eu1—O12.465 (5)Eu1—O62.372 (4)
Eu1—O22.443 (5)Eu1—O6i2.630 (5)
Eu1—O32.509 (5)Eu1—N12.639 (6)
Eu1—O42.380 (5)Eu1—N22.613 (6)
Eu1—O5i2.387 (4)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21071035, 20771030 and 20971031), the Science Innovation Special Foundation of Harbin City in China (2010RFQXG017) and the Research Fund for the Doctoral Program of Higher Education (20070213005).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLima, P. P., Paz, F. A. A., Ferreira, R. A. S., Bermudez, V. de Z. & Carlos, L. D. (2009). Chem. Mater. 21, 5099–5111.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrasad, T. K. & Rajasekharan, M. V. (2009). Inorg. Chem. 48, 11543–11550.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, S., Hu, S., Sheng, T., Chen, J. & Wu, X. (2009). Chem. Eur. J. 15, 12496–12502.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, P., Wu, J.-Z. & Yu, Y. (2009). Inorg. Chim. Acta, 362, 1907–1912.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds