metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Methyl­phen­yl)-2,10-dioxo-3,9-dioxa-6-aza-1(1,1′)-ferrocena­cyclo­deca­phane

aKey Laboratory of Synthetic and Natural Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University of Xi'an, Taibai Bei Avenue 229, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: yangbq@nwu.edu.cn

(Received 30 September 2010; accepted 23 October 2010; online 6 November 2010)

In the title compound, [Fe(C23H23NO4)], the two cyclo­penta­dienyl (Cp) rings are nearly parallel, with a dihedral angle of 2.1 (1)°. The distance between the centroids of the Cp rings is 3.277 (8) Å. The relative orientation of the two Cp rings is characterized by a torsion angle of −64.3 (3)° defined by the two centroids and two substituted atoms.

Related literature

For the definition of ferrocenophanes, see: Otón et al. (2005[Otón, F., Tarraga, A., Espinosa, A., Velasco, M. D., Bautista, D. & Molina, P. (2005). J. Org. Chem. 70, 6603-6608.]). For the properties of ferrocenophanes, see: Cayuela et al. (2004[Cayuela, E., Jalon, F. A., Manzano, B. R., Espino, G., Weissensteiner, W. & Mereiter, K. (2004). J. Am. Chem. Soc. 126, 7049-7062.]); Kulbaba & Manners (2001[Kulbaba, K. & Manners, I. (2001). Macromol. Rapid Commun. 22, 711-724.]); Lu et al. (2006[Lu, J., Baker, M. V. & Brown, D. H. (2006). Inorg. Chim. Acta, 359, 1299-1302.]); Mizuta et al. (2003[Mizuta, T., Imamura, Y. & Miyoshi, K. (2003). J. Am. Chem. Soc. 125, 2068-2069.]); Nguyen et al. (1999[Nguyen, P., Gómez-Elipe, P. & Manners, I. (1999). Chem. Rev. 99, 1515-1548.]); Otón et al. (2006a[Otón, F., Tarraga, A., Espinosa, A., Velasco, M. D. & Molina, P. (2006a). J. Org. Chem. 71, 4590-4598.],b[Otón, F., Tarraga, A. & Molina, P. (2006b). Org. Lett. 8, 2107-2110.]); Suzaki et al. (2006[Suzaki, Y., Horie, M., Sakano, T. & Osakada, K. (2006). J. Organomet. Chem. 691, 3403-3407.]). For a related structure, see: Gao et al. (2009[Gao, B., Yang, B., Li, T. & Zhang, B. (2009). Synth. Commun. 39, 2973-2981.]). For the synthesis, see: Abd-Alla et al. (1993[Abd-Alla, M. M., El-Zohry, M. F., Aly, K. I. & Abd-El-Wahab, M. M. M. (1993). J. Appl. Polym. Sci. 47, 323-329.]); Shivarkar et al. (2008[Shivarkar, A. B., Gupte, S. P. & Chaudhari, R. V. (2008). Ind. Eng. Chem. Res. 47, 2484-2494.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C23H23NO4)]

  • Mr = 433.27

  • Orthorhombic, P b c a

  • a = 15.028 (2) Å

  • b = 11.7488 (17) Å

  • c = 22.765 (3) Å

  • V = 4019.3 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.33 × 0.25 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.784, Tmax = 0.894

  • 19079 measured reflections

  • 3568 independent reflections

  • 2357 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.128

  • S = 1.00

  • 3568 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ferrocenophanes, in which the two cyclopentadienyl (Cp) rings are joined by an atomic or molecular bridge (Otón et al., 2005), are found to be aromatic, highly stable and generally non-toxic, and have reversible redox characteristics (Mizuta et al., 2003). In particular, ferrocenophanes are useful precursors to poly-ferrocenyl materials (Kulbaba & Manners, 2001; Nguyen et al., 1999) and act as potential receptor towards cation or anion recognition (Cayuela et al., 2004; Lu et al., 2006; Suzaki et al., 2006; Otón et al., 2006a,b). As a part of our ongoing investigation of ferrocenophanes, the title compound has been prepared and we report here its crystal structure. Despite of the fact that structually characterized ferrocenophanes are well presented in the Cambridge Structural Database (Allen, 2002; Version 5.27, release February 2009), there is only one analogous compound structurally characterized (Gao et al., 2009). From this viewpoint, X-ray single-crystal study of the title compound presents a certain descriptive interest.

The structure of the title compound is show in Fig. 1. The two Cp rings are nearly parallel, making a dihedral angle of 2.1 (1)°. The distance between the centroids of the Cp rings is 3.277 (8) Å. The angle formed between the two centroids and Fe1 is 177.67 (16)°. The relative orientation of the two Cp rings is characterized by the C10—Cg1—Cg2—C13 torsion angle of -64.3 (3)° (Cg1 and Cg2 are the centroids of C14–C18 ring and C19–C23 ring, respectively). The Fe—C distances range from 2.005 (3) to 2.045 (4) Å. The exocyclic bond lengths C13—C19 and C10—C14 are 1.453 (4) and 1.467 (5) Å, respectively.

Related literature top

For the definition of ferrocenophanes, see: Otón et al. (2005). For the properties of ferrocenophanes, see: Cayuela et al. (2004); Kulbaba & Manners (2001); Lu et al. (2006); Mizuta et al. (2003); Nguyen et al. (1999); Otón et al. (2006a,b); Suzaki et al. (2006). For a related structure, see: Gao et al. (2009). For the synthesis, see: Abd-Alla et al. (1993); Shivarkar et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

2,2'-(p-Tolylazanediyl)diethanol was prepared as described by Shivarkar et al. (2008). 1,1'-Ferrocenedi(carbonyl chloride) was prepared as described by Abd-Alla et al. (1993). For the preparation of ferrocenophane, a mixture of 1,1'-ferrocenedi(carbonyl chloride) (2 g, 0.006 mol), dry dichloromethane (500 ml) and pyridine (1 ml, 0.012 mol) was stirred in dark. To this solution 2,2'-(p-tolylazanediyl)diethanol (0.006 mol) in dichloromethane was added dropwise over 1 h. The mixture was stirred for 24 h and then refluxed for another 8 h (monitored by TLC). The solvent was removed under atmospheric pressure. The residue was then purified by column chromatography on silica gel, eluting with ethyl acetate/petroleum ether (1:2) (yield: 38%). Melting point and NMR spectra confirmed identity and purity of the prepared compound.

Dark-red crystals of the title compound were obtained by slow concentration of a dichloromethane solution at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

Ferrocenophanes, in which the two cyclopentadienyl (Cp) rings are joined by an atomic or molecular bridge (Otón et al., 2005), are found to be aromatic, highly stable and generally non-toxic, and have reversible redox characteristics (Mizuta et al., 2003). In particular, ferrocenophanes are useful precursors to poly-ferrocenyl materials (Kulbaba & Manners, 2001; Nguyen et al., 1999) and act as potential receptor towards cation or anion recognition (Cayuela et al., 2004; Lu et al., 2006; Suzaki et al., 2006; Otón et al., 2006a,b). As a part of our ongoing investigation of ferrocenophanes, the title compound has been prepared and we report here its crystal structure. Despite of the fact that structually characterized ferrocenophanes are well presented in the Cambridge Structural Database (Allen, 2002; Version 5.27, release February 2009), there is only one analogous compound structurally characterized (Gao et al., 2009). From this viewpoint, X-ray single-crystal study of the title compound presents a certain descriptive interest.

The structure of the title compound is show in Fig. 1. The two Cp rings are nearly parallel, making a dihedral angle of 2.1 (1)°. The distance between the centroids of the Cp rings is 3.277 (8) Å. The angle formed between the two centroids and Fe1 is 177.67 (16)°. The relative orientation of the two Cp rings is characterized by the C10—Cg1—Cg2—C13 torsion angle of -64.3 (3)° (Cg1 and Cg2 are the centroids of C14–C18 ring and C19–C23 ring, respectively). The Fe—C distances range from 2.005 (3) to 2.045 (4) Å. The exocyclic bond lengths C13—C19 and C10—C14 are 1.453 (4) and 1.467 (5) Å, respectively.

For the definition of ferrocenophanes, see: Otón et al. (2005). For the properties of ferrocenophanes, see: Cayuela et al. (2004); Kulbaba & Manners (2001); Lu et al. (2006); Mizuta et al. (2003); Nguyen et al. (1999); Otón et al. (2006a,b); Suzaki et al. (2006). For a related structure, see: Gao et al. (2009). For the synthesis, see: Abd-Alla et al. (1993); Shivarkar et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
6-(4-Methylphenyl)-2,10-dioxo-3,9-dioxa-6-aza-1(1,1')-ferrocenacyclodecaphane top
Crystal data top
[Fe(C23H23NO4)]Dx = 1.432 Mg m3
Mr = 433.27Melting point: 407(8) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2477 reflections
a = 15.028 (2) Åθ = 2.4–19.6°
b = 11.7488 (17) ŵ = 0.78 mm1
c = 22.765 (3) ÅT = 296 K
V = 4019.3 (10) Å3Block, dark-red
Z = 80.33 × 0.25 × 0.15 mm
F(000) = 1808
Data collection top
Bruker APEXII CCD
diffractometer
3568 independent reflections
Radiation source: fine-focus sealed tube2357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.784, Tmax = 0.894k = 1412
19079 measured reflectionsl = 2724
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0623P)2 + 1.0856P]
where P = (Fo2 + 2Fc2)/3
3568 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Fe(C23H23NO4)]V = 4019.3 (10) Å3
Mr = 433.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.028 (2) ŵ = 0.78 mm1
b = 11.7488 (17) ÅT = 296 K
c = 22.765 (3) Å0.33 × 0.25 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3568 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2357 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.894Rint = 0.057
19079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
3568 reflectionsΔρmin = 0.43 e Å3
263 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.12595 (3)1.22967 (4)0.052251 (19)0.05457 (19)
N10.00836 (17)0.8972 (2)0.20855 (11)0.0599 (7)
O10.16563 (14)0.9967 (2)0.15793 (9)0.0653 (6)
O20.26745 (17)1.1325 (3)0.17458 (12)0.1046 (10)
O30.03453 (13)1.13781 (17)0.17171 (9)0.0586 (6)
O40.11312 (18)1.1282 (3)0.08862 (13)0.1183 (12)
C10.1716 (3)0.5112 (3)0.10871 (16)0.0796 (11)
H1A0.20310.47260.13950.119*
H1B0.12850.46040.09180.119*
H1C0.21280.53490.07900.119*
C20.1247 (2)0.6140 (3)0.13363 (14)0.0589 (8)
C30.0345 (2)0.6298 (3)0.12735 (14)0.0673 (9)
H30.00170.57610.10650.081*
C40.0090 (2)0.7224 (3)0.15085 (14)0.0629 (9)
H40.06980.73080.14450.075*
C50.0357 (2)0.8035 (3)0.18383 (13)0.0506 (7)
C60.1279 (2)0.7883 (3)0.18891 (14)0.0598 (9)
H60.16130.84160.20960.072*
C70.1698 (2)0.6964 (3)0.16399 (14)0.0616 (9)
H70.23120.68980.16790.074*
C80.0986 (2)0.8793 (3)0.23124 (16)0.0692 (10)
H8A0.12370.81200.21290.083*
H8B0.09550.86540.27320.083*
C90.1598 (2)0.9792 (3)0.22014 (15)0.0716 (10)
H9A0.13641.04690.23900.086*
H9B0.21830.96380.23620.086*
C100.2191 (2)1.0829 (4)0.14117 (17)0.0723 (10)
C110.0434 (2)0.9829 (3)0.23940 (14)0.0659 (9)
H11A0.00351.02870.26310.079*
H11B0.08440.94490.26580.079*
C120.0951 (2)1.0596 (3)0.20000 (15)0.0644 (9)
H12A0.12621.01500.17060.077*
H12B0.13881.10150.22270.077*
C130.0522 (2)1.1668 (3)0.11655 (15)0.0624 (9)
C140.2097 (2)1.1067 (3)0.07820 (16)0.0707 (10)
C150.1458 (3)1.0613 (3)0.03878 (16)0.0754 (11)
H150.10350.99980.04700.091*
C160.1557 (4)1.1210 (4)0.01512 (17)0.0932 (14)
H160.11971.10930.05050.112*
C170.2232 (3)1.2012 (4)0.0088 (2)0.0953 (14)
H170.24251.25530.03900.114*
C180.2579 (3)1.1935 (4)0.04834 (19)0.0934 (14)
H180.30631.23960.06470.112*
C190.0083 (2)1.2533 (3)0.09438 (14)0.0550 (8)
C200.0773 (3)1.3066 (3)0.12548 (15)0.0713 (10)
H200.09501.29090.16610.086*
C210.1165 (3)1.3873 (3)0.0874 (2)0.0986 (14)
H210.16681.43680.09720.118*
C220.0727 (3)1.3847 (4)0.0337 (2)0.0963 (14)
H220.08661.43180.00060.116*
C230.0055 (3)1.3034 (4)0.03710 (17)0.0786 (11)
H230.03601.28320.00560.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0526 (3)0.0578 (3)0.0533 (3)0.0040 (2)0.0076 (2)0.0010 (2)
N10.0557 (16)0.0556 (17)0.0683 (17)0.0009 (13)0.0075 (13)0.0035 (14)
O10.0595 (13)0.0737 (17)0.0626 (15)0.0009 (12)0.0063 (11)0.0061 (12)
O20.0675 (17)0.139 (3)0.107 (2)0.0402 (17)0.0299 (16)0.040 (2)
O30.0619 (13)0.0543 (14)0.0596 (13)0.0074 (10)0.0036 (10)0.0053 (11)
O40.084 (2)0.181 (4)0.090 (2)0.056 (2)0.0187 (16)0.031 (2)
C10.086 (3)0.076 (3)0.077 (3)0.006 (2)0.001 (2)0.006 (2)
C20.060 (2)0.060 (2)0.0558 (19)0.0012 (17)0.0036 (15)0.0005 (16)
C30.061 (2)0.074 (3)0.066 (2)0.0120 (18)0.0029 (16)0.0155 (18)
C40.0422 (17)0.079 (2)0.068 (2)0.0032 (17)0.0019 (15)0.0058 (19)
C50.0497 (17)0.0499 (19)0.0522 (17)0.0038 (15)0.0003 (14)0.0093 (15)
C60.0491 (18)0.057 (2)0.073 (2)0.0069 (16)0.0139 (16)0.0020 (17)
C70.0476 (18)0.063 (2)0.074 (2)0.0057 (16)0.0036 (16)0.0035 (18)
C80.066 (2)0.066 (2)0.076 (2)0.0091 (18)0.0226 (18)0.0185 (19)
C90.068 (2)0.080 (3)0.067 (2)0.0086 (19)0.0201 (18)0.0114 (19)
C100.0417 (18)0.095 (3)0.081 (3)0.006 (2)0.0005 (18)0.018 (2)
C110.076 (2)0.063 (2)0.059 (2)0.0052 (18)0.0068 (17)0.0044 (17)
C120.0600 (19)0.054 (2)0.079 (2)0.0017 (17)0.0174 (17)0.0076 (18)
C130.0496 (19)0.074 (2)0.064 (2)0.0004 (17)0.0087 (17)0.0032 (18)
C140.053 (2)0.086 (3)0.073 (2)0.0204 (18)0.0110 (18)0.011 (2)
C150.097 (3)0.062 (2)0.067 (2)0.024 (2)0.006 (2)0.0123 (19)
C160.128 (4)0.096 (3)0.056 (2)0.047 (3)0.011 (2)0.013 (2)
C170.085 (3)0.117 (4)0.084 (3)0.034 (3)0.035 (2)0.020 (3)
C180.053 (2)0.128 (4)0.100 (3)0.010 (2)0.017 (2)0.041 (3)
C190.0543 (18)0.054 (2)0.0570 (19)0.0107 (15)0.0090 (15)0.0019 (15)
C200.094 (3)0.057 (2)0.063 (2)0.011 (2)0.020 (2)0.0145 (17)
C210.123 (4)0.060 (3)0.113 (4)0.029 (2)0.040 (3)0.019 (3)
C220.128 (4)0.061 (3)0.100 (3)0.018 (3)0.046 (3)0.014 (2)
C230.071 (2)0.089 (3)0.075 (2)0.031 (2)0.0124 (19)0.022 (2)
Geometric parameters (Å, º) top
Fe1—C142.005 (3)C7—H70.9300
Fe1—C212.022 (4)C8—C91.512 (4)
Fe1—C152.024 (4)C8—H8A0.9700
Fe1—C182.030 (4)C8—H8B0.9700
Fe1—C192.031 (3)C9—H9A0.9700
Fe1—C202.033 (3)C9—H9B0.9700
Fe1—C222.034 (4)C10—C141.467 (5)
Fe1—C232.036 (4)C11—C121.489 (4)
Fe1—C172.045 (4)C11—H11A0.9700
Fe1—C162.045 (4)C11—H11B0.9700
N1—C51.402 (4)C12—H12A0.9700
N1—C111.453 (4)C12—H12B0.9700
N1—C81.467 (4)C13—C191.453 (4)
O1—C101.348 (4)C14—C151.418 (5)
O1—C91.434 (4)C14—C181.424 (5)
O2—C101.203 (4)C15—C161.421 (5)
O3—C131.328 (4)C15—H150.9800
O3—C121.445 (4)C16—C171.392 (6)
O4—C131.204 (4)C16—H160.9800
C1—C21.509 (5)C17—C181.405 (6)
C1—H1A0.9600C17—H170.9800
C1—H1B0.9600C18—H180.9800
C1—H1C0.9600C19—C201.404 (5)
C2—C71.368 (5)C19—C231.432 (5)
C2—C31.377 (4)C20—C211.413 (5)
C3—C41.377 (4)C20—H200.9800
C3—H30.9300C21—C221.389 (6)
C4—C51.387 (4)C21—H210.9800
C4—H40.9300C22—C231.392 (6)
C5—C61.401 (4)C22—H220.9800
C6—C71.374 (4)C23—H230.9800
C6—H60.9300
C14—Fe1—C21126.0 (2)C8—C9—H9A110.0
C14—Fe1—C1541.22 (15)O1—C9—H9B110.0
C21—Fe1—C15164.88 (19)C8—C9—H9B110.0
C14—Fe1—C1841.32 (15)H9A—C9—H9B108.4
C21—Fe1—C18106.1 (2)O2—C10—O1123.1 (3)
C15—Fe1—C1869.19 (19)O2—C10—C14125.7 (4)
C14—Fe1—C19120.38 (14)O1—C10—C14111.3 (3)
C21—Fe1—C1968.10 (15)N1—C11—C12114.0 (3)
C15—Fe1—C19109.48 (15)N1—C11—H11A108.7
C18—Fe1—C19154.15 (15)C12—C11—H11A108.7
C14—Fe1—C20107.74 (16)N1—C11—H11B108.7
C21—Fe1—C2040.79 (15)C12—C11—H11B108.7
C15—Fe1—C20127.75 (15)H11A—C11—H11B107.6
C18—Fe1—C20118.71 (18)O3—C12—C11109.0 (3)
C19—Fe1—C2040.42 (13)O3—C12—H12A109.9
C14—Fe1—C22162.5 (2)C11—C12—H12A109.9
C21—Fe1—C2240.05 (18)O3—C12—H12B109.9
C15—Fe1—C22154.39 (19)C11—C12—H12B109.9
C18—Fe1—C22124.2 (2)H12A—C12—H12B108.3
C19—Fe1—C2268.48 (15)O4—C13—O3123.7 (3)
C20—Fe1—C2268.32 (17)O4—C13—C19123.8 (3)
C14—Fe1—C23156.13 (16)O3—C13—C19112.5 (3)
C21—Fe1—C2367.3 (2)C15—C14—C18108.2 (4)
C15—Fe1—C23121.41 (18)C15—C14—C10127.7 (4)
C18—Fe1—C23161.81 (16)C18—C14—C10123.6 (4)
C19—Fe1—C2341.21 (13)C15—C14—Fe170.1 (2)
C20—Fe1—C2368.28 (16)C18—C14—Fe170.3 (2)
C22—Fe1—C2340.00 (17)C10—C14—Fe1119.1 (2)
C14—Fe1—C1768.53 (16)C14—C15—C16106.8 (4)
C21—Fe1—C17118.0 (2)C14—C15—Fe168.7 (2)
C15—Fe1—C1768.40 (18)C16—C15—Fe170.4 (2)
C18—Fe1—C1740.33 (16)C14—C15—H15126.6
C19—Fe1—C17165.00 (18)C16—C15—H15126.6
C20—Fe1—C17152.5 (2)Fe1—C15—H15126.6
C22—Fe1—C17106.63 (18)C17—C16—C15108.8 (4)
C23—Fe1—C17126.15 (17)C17—C16—Fe170.1 (2)
C14—Fe1—C1668.52 (16)C15—C16—Fe168.8 (2)
C21—Fe1—C16152.1 (2)C17—C16—H16125.6
C15—Fe1—C1640.88 (16)C15—C16—H16125.6
C18—Fe1—C1667.8 (2)Fe1—C16—H16125.6
C19—Fe1—C16129.04 (19)C16—C17—C18108.8 (4)
C20—Fe1—C16166.29 (19)C16—C17—Fe170.1 (2)
C22—Fe1—C16119.29 (18)C18—C17—Fe169.3 (2)
C23—Fe1—C16109.46 (18)C16—C17—H17125.6
C17—Fe1—C1639.81 (17)C18—C17—H17125.6
C5—N1—C11119.0 (3)Fe1—C17—H17125.6
C5—N1—C8117.8 (3)C17—C18—C14107.4 (4)
C11—N1—C8115.1 (3)C17—C18—Fe170.4 (2)
C10—O1—C9115.1 (3)C14—C18—Fe168.4 (2)
C13—O3—C12117.3 (3)C17—C18—H18126.3
C2—C1—H1A109.5C14—C18—H18126.3
C2—C1—H1B109.5Fe1—C18—H18126.3
H1A—C1—H1B109.5C20—C19—C23107.3 (3)
C2—C1—H1C109.5C20—C19—C13126.8 (3)
H1A—C1—H1C109.5C23—C19—C13125.9 (3)
H1B—C1—H1C109.5C20—C19—Fe169.85 (18)
C7—C2—C3116.4 (3)C23—C19—Fe169.60 (18)
C7—C2—C1121.7 (3)C13—C19—Fe1127.8 (2)
C3—C2—C1121.9 (3)C19—C20—C21107.3 (4)
C2—C3—C4122.2 (3)C19—C20—Fe169.73 (18)
C2—C3—H3118.9C21—C20—Fe169.2 (2)
C4—C3—H3118.9C19—C20—H20126.3
C3—C4—C5121.6 (3)C21—C20—H20126.3
C3—C4—H4119.2Fe1—C20—H20126.3
C5—C4—H4119.2C22—C21—C20109.1 (4)
C4—C5—C6115.8 (3)C22—C21—Fe170.4 (2)
C4—C5—N1121.8 (3)C20—C21—Fe170.0 (2)
C6—C5—N1122.3 (3)C22—C21—H21125.4
C7—C6—C5121.3 (3)C20—C21—H21125.4
C7—C6—H6119.3Fe1—C21—H21125.4
C5—C6—H6119.3C21—C22—C23108.0 (4)
C2—C7—C6122.5 (3)C21—C22—Fe169.5 (2)
C2—C7—H7118.7C23—C22—Fe170.1 (2)
C6—C7—H7118.7C21—C22—H22126.0
N1—C8—C9113.1 (3)C23—C22—H22126.0
N1—C8—H8A109.0Fe1—C22—H22126.0
C9—C8—H8A109.0C22—C23—C19108.2 (4)
N1—C8—H8B109.0C22—C23—Fe169.9 (2)
C9—C8—H8B109.0C19—C23—Fe169.19 (18)
H8A—C8—H8B107.8C22—C23—H23125.9
O1—C9—C8108.3 (3)C19—C23—H23125.9
O1—C9—H9A110.0Fe1—C23—H23125.9
C7—C2—C3—C40.8 (5)C19—Fe1—C18—C17172.7 (3)
C1—C2—C3—C4178.8 (3)C20—Fe1—C18—C17156.7 (3)
C2—C3—C4—C52.0 (5)C22—Fe1—C18—C1774.5 (4)
C3—C4—C5—C63.3 (5)C23—Fe1—C18—C1748.3 (8)
C3—C4—C5—N1179.1 (3)C16—Fe1—C18—C1736.7 (3)
C11—N1—C5—C4176.1 (3)C21—Fe1—C18—C14126.7 (3)
C8—N1—C5—C436.8 (4)C15—Fe1—C18—C1438.1 (2)
C11—N1—C5—C61.4 (4)C19—Fe1—C18—C1453.8 (5)
C8—N1—C5—C6145.7 (3)C20—Fe1—C18—C1484.4 (3)
C4—C5—C6—C71.9 (5)C22—Fe1—C18—C14166.6 (3)
N1—C5—C6—C7179.5 (3)C23—Fe1—C18—C14167.2 (5)
C3—C2—C7—C62.2 (5)C17—Fe1—C18—C14118.9 (4)
C1—C2—C7—C6177.4 (3)C16—Fe1—C18—C1482.2 (3)
C5—C6—C7—C20.8 (5)O4—C13—C19—C20176.1 (4)
C5—N1—C8—C9142.6 (3)O3—C13—C19—C201.8 (5)
C11—N1—C8—C969.0 (4)O4—C13—C19—C230.9 (6)
C10—O1—C9—C8179.3 (3)O3—C13—C19—C23178.8 (3)
N1—C8—C9—O160.2 (4)O4—C13—C19—Fe191.8 (4)
C9—O1—C10—O29.3 (5)O3—C13—C19—Fe190.2 (3)
C9—O1—C10—C14170.6 (3)C14—Fe1—C19—C2081.7 (3)
C5—N1—C11—C1274.8 (4)C21—Fe1—C19—C2038.2 (2)
C8—N1—C11—C12137.3 (3)C15—Fe1—C19—C20125.9 (2)
C13—O3—C12—C11144.0 (3)C18—Fe1—C19—C2043.6 (5)
N1—C11—C12—O373.6 (4)C22—Fe1—C19—C2081.4 (3)
C12—O3—C13—O43.1 (5)C23—Fe1—C19—C20118.3 (3)
C12—O3—C13—C19174.9 (2)C17—Fe1—C19—C20155.0 (6)
O2—C10—C14—C15171.0 (4)C16—Fe1—C19—C20167.7 (2)
O1—C10—C14—C158.8 (5)C14—Fe1—C19—C23160.0 (3)
O2—C10—C14—C180.0 (6)C21—Fe1—C19—C2380.2 (3)
O1—C10—C14—C18179.9 (3)C15—Fe1—C19—C23115.8 (3)
O2—C10—C14—Fe184.6 (4)C18—Fe1—C19—C23161.9 (4)
O1—C10—C14—Fe195.3 (4)C20—Fe1—C19—C23118.3 (3)
C21—Fe1—C14—C15169.0 (2)C22—Fe1—C19—C2336.9 (3)
C18—Fe1—C14—C15118.8 (3)C17—Fe1—C19—C2336.7 (7)
C19—Fe1—C14—C1585.3 (3)C16—Fe1—C19—C2374.0 (3)
C20—Fe1—C14—C15127.6 (2)C14—Fe1—C19—C1339.8 (4)
C22—Fe1—C14—C15158.3 (5)C21—Fe1—C19—C13159.7 (4)
C23—Fe1—C14—C1551.3 (5)C15—Fe1—C19—C134.4 (3)
C17—Fe1—C14—C1581.3 (3)C18—Fe1—C19—C1377.9 (5)
C16—Fe1—C14—C1538.4 (3)C20—Fe1—C19—C13121.5 (4)
C21—Fe1—C14—C1872.2 (3)C22—Fe1—C19—C13157.1 (4)
C15—Fe1—C14—C18118.8 (3)C23—Fe1—C19—C13120.2 (4)
C19—Fe1—C14—C18155.9 (3)C17—Fe1—C19—C1383.5 (7)
C20—Fe1—C14—C18113.6 (3)C16—Fe1—C19—C1346.1 (4)
C22—Fe1—C14—C1839.5 (6)C23—C19—C20—C210.6 (4)
C23—Fe1—C14—C18170.1 (4)C13—C19—C20—C21178.0 (3)
C17—Fe1—C14—C1837.5 (3)Fe1—C19—C20—C2159.2 (3)
C16—Fe1—C14—C1880.4 (3)C23—C19—C20—Fe159.8 (2)
C21—Fe1—C14—C1046.1 (4)C13—C19—C20—Fe1122.7 (3)
C15—Fe1—C14—C10122.9 (4)C14—Fe1—C20—C19116.3 (2)
C18—Fe1—C14—C10118.3 (5)C21—Fe1—C20—C19118.7 (4)
C19—Fe1—C14—C1037.6 (4)C15—Fe1—C20—C1975.0 (3)
C20—Fe1—C14—C104.7 (4)C18—Fe1—C20—C19160.0 (2)
C22—Fe1—C14—C1078.8 (6)C22—Fe1—C20—C1981.8 (3)
C23—Fe1—C14—C1071.5 (6)C23—Fe1—C20—C1938.6 (2)
C17—Fe1—C14—C10155.8 (4)C17—Fe1—C20—C19166.3 (3)
C16—Fe1—C14—C10161.3 (4)C16—Fe1—C20—C1944.5 (8)
C18—C14—C15—C160.1 (4)C14—Fe1—C20—C21125.0 (3)
C10—C14—C15—C16172.2 (3)C15—Fe1—C20—C21166.3 (3)
Fe1—C14—C15—C1660.3 (2)C18—Fe1—C20—C2181.4 (3)
C18—C14—C15—Fe160.3 (3)C19—Fe1—C20—C21118.7 (4)
C10—C14—C15—Fe1111.9 (4)C22—Fe1—C20—C2136.8 (3)
C21—Fe1—C15—C1436.2 (7)C23—Fe1—C20—C2180.0 (3)
C18—Fe1—C15—C1438.2 (2)C17—Fe1—C20—C2147.6 (5)
C19—Fe1—C15—C14114.2 (2)C16—Fe1—C20—C21163.1 (7)
C20—Fe1—C15—C1472.6 (3)C19—C20—C21—C220.2 (5)
C22—Fe1—C15—C14165.1 (3)Fe1—C20—C21—C2259.7 (3)
C23—Fe1—C15—C14158.3 (2)C19—C20—C21—Fe159.6 (2)
C17—Fe1—C15—C1481.6 (3)C14—Fe1—C21—C22165.4 (2)
C16—Fe1—C15—C14118.0 (4)C15—Fe1—C21—C22165.8 (6)
C14—Fe1—C15—C16118.0 (4)C18—Fe1—C21—C22124.5 (3)
C21—Fe1—C15—C16154.3 (6)C19—Fe1—C21—C2282.2 (3)
C18—Fe1—C15—C1679.8 (3)C20—Fe1—C21—C22120.0 (4)
C19—Fe1—C15—C16127.8 (3)C23—Fe1—C21—C2237.5 (2)
C20—Fe1—C15—C16169.4 (3)C17—Fe1—C21—C2282.7 (3)
C22—Fe1—C15—C1647.1 (5)C16—Fe1—C21—C2251.6 (5)
C23—Fe1—C15—C1683.7 (3)C14—Fe1—C21—C2074.6 (3)
C17—Fe1—C15—C1636.4 (3)C15—Fe1—C21—C2045.8 (8)
C14—C15—C16—C170.4 (4)C18—Fe1—C21—C20115.5 (3)
Fe1—C15—C16—C1758.8 (3)C19—Fe1—C21—C2037.8 (2)
C14—C15—C16—Fe159.2 (2)C22—Fe1—C21—C20120.0 (4)
C14—Fe1—C16—C1781.8 (3)C23—Fe1—C21—C2082.5 (3)
C21—Fe1—C16—C1745.5 (5)C17—Fe1—C21—C20157.3 (3)
C15—Fe1—C16—C17120.5 (4)C16—Fe1—C21—C20171.6 (4)
C18—Fe1—C16—C1737.2 (3)C20—C21—C22—C230.3 (5)
C19—Fe1—C16—C17165.8 (2)Fe1—C21—C22—C2359.8 (3)
C20—Fe1—C16—C17158.4 (7)C20—C21—C22—Fe159.5 (3)
C22—Fe1—C16—C1780.8 (3)C14—Fe1—C22—C2142.7 (6)
C23—Fe1—C16—C17123.6 (3)C15—Fe1—C22—C21171.5 (3)
C14—Fe1—C16—C1538.7 (2)C18—Fe1—C22—C2173.3 (3)
C21—Fe1—C16—C15166.0 (4)C19—Fe1—C22—C2181.1 (3)
C18—Fe1—C16—C1583.4 (3)C20—Fe1—C22—C2137.5 (2)
C19—Fe1—C16—C1573.7 (3)C23—Fe1—C22—C21119.1 (4)
C20—Fe1—C16—C1537.9 (9)C17—Fe1—C22—C21113.9 (3)
C22—Fe1—C16—C15158.7 (3)C16—Fe1—C22—C21155.1 (3)
C23—Fe1—C16—C15115.9 (3)C14—Fe1—C22—C23161.8 (4)
C17—Fe1—C16—C15120.5 (4)C21—Fe1—C22—C23119.1 (4)
C15—C16—C17—C180.6 (5)C15—Fe1—C22—C2352.4 (5)
Fe1—C16—C17—C1858.6 (3)C18—Fe1—C22—C23167.6 (3)
C15—C16—C17—Fe158.0 (3)C19—Fe1—C22—C2338.0 (2)
C14—Fe1—C17—C1681.8 (3)C20—Fe1—C22—C2381.6 (3)
C21—Fe1—C17—C16157.8 (3)C17—Fe1—C22—C23127.0 (3)
C15—Fe1—C17—C1637.3 (3)C16—Fe1—C22—C2385.7 (3)
C18—Fe1—C17—C16120.2 (4)C21—C22—C23—C190.6 (4)
C19—Fe1—C17—C1647.4 (8)Fe1—C22—C23—C1958.8 (2)
C20—Fe1—C17—C16169.1 (3)C21—C22—C23—Fe159.4 (3)
C22—Fe1—C17—C16116.0 (3)C20—C19—C23—C220.7 (4)
C23—Fe1—C17—C1676.6 (3)C13—C19—C23—C22178.3 (3)
C14—Fe1—C17—C1838.4 (3)Fe1—C19—C23—C2259.2 (3)
C21—Fe1—C17—C1882.0 (4)C20—C19—C23—Fe160.0 (2)
C15—Fe1—C17—C1882.9 (3)C13—C19—C23—Fe1122.5 (3)
C19—Fe1—C17—C18167.6 (6)C14—Fe1—C23—C22166.6 (4)
C20—Fe1—C17—C1848.9 (5)C21—Fe1—C23—C2237.5 (2)
C22—Fe1—C17—C18123.8 (3)C15—Fe1—C23—C22156.3 (3)
C23—Fe1—C17—C18163.2 (3)C18—Fe1—C23—C2234.6 (7)
C16—Fe1—C17—C18120.2 (4)C19—Fe1—C23—C22119.6 (4)
C16—C17—C18—C140.6 (5)C20—Fe1—C23—C2281.7 (3)
Fe1—C17—C18—C1458.6 (3)C17—Fe1—C23—C2271.4 (3)
C16—C17—C18—Fe159.2 (3)C16—Fe1—C23—C22112.7 (3)
C15—C14—C18—C170.3 (4)C14—Fe1—C23—C1946.9 (5)
C10—C14—C18—C17172.2 (3)C21—Fe1—C23—C1982.1 (2)
Fe1—C14—C18—C1759.8 (3)C15—Fe1—C23—C1984.0 (3)
C15—C14—C18—Fe160.2 (2)C18—Fe1—C23—C19154.3 (6)
C10—C14—C18—Fe1112.4 (3)C20—Fe1—C23—C1937.9 (2)
C14—Fe1—C18—C17118.9 (4)C22—Fe1—C23—C19119.6 (4)
C21—Fe1—C18—C17114.4 (3)C17—Fe1—C23—C19169.0 (3)
C15—Fe1—C18—C1780.8 (3)C16—Fe1—C23—C19127.6 (3)

Experimental details

Crystal data
Chemical formula[Fe(C23H23NO4)]
Mr433.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)15.028 (2), 11.7488 (17), 22.765 (3)
V3)4019.3 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.33 × 0.25 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.784, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
19079, 3568, 2357
Rint0.057
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.00
No. of reflections3568
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20972125) is gratefully acknowledged.

References

First citationAbd-Alla, M. M., El-Zohry, M. F., Aly, K. I. & Abd-El-Wahab, M. M. M. (1993). J. Appl. Polym. Sci. 47, 323–329.  CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCayuela, E., Jalon, F. A., Manzano, B. R., Espino, G., Weissensteiner, W. & Mereiter, K. (2004). J. Am. Chem. Soc. 126, 7049–7062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGao, B., Yang, B., Li, T. & Zhang, B. (2009). Synth. Commun. 39, 2973–2981.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulbaba, K. & Manners, I. (2001). Macromol. Rapid Commun. 22, 711–724.  Web of Science CrossRef CAS Google Scholar
First citationLu, J., Baker, M. V. & Brown, D. H. (2006). Inorg. Chim. Acta, 359, 1299–1302.  Web of Science CrossRef CAS Google Scholar
First citationMizuta, T., Imamura, Y. & Miyoshi, K. (2003). J. Am. Chem. Soc. 125, 2068–2069.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNguyen, P., Gómez-Elipe, P. & Manners, I. (1999). Chem. Rev. 99, 1515–1548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtón, F., Tarraga, A., Espinosa, A., Velasco, M. D., Bautista, D. & Molina, P. (2005). J. Org. Chem. 70, 6603–6608.  Web of Science PubMed Google Scholar
First citationOtón, F., Tarraga, A., Espinosa, A., Velasco, M. D. & Molina, P. (2006a). J. Org. Chem. 71, 4590–4598.  Web of Science PubMed Google Scholar
First citationOtón, F., Tarraga, A. & Molina, P. (2006b). Org. Lett. 8, 2107–2110.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivarkar, A. B., Gupte, S. P. & Chaudhari, R. V. (2008). Ind. Eng. Chem. Res. 47, 2484–2494.  Web of Science CrossRef CAS Google Scholar
First citationSuzaki, Y., Horie, M., Sakano, T. & Osakada, K. (2006). J. Organomet. Chem. 691, 3403–3407.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds