metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[hexa­aqua­(μ2-fumarato-κ4O1,O1′:O4,O4′)bis­­(μ3-maleato-κ4O1,O1′:O4:O4′)disamarium(III)] hexa­hydrate]

aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wulx@jlu.edu.cn

(Received 5 October 2010; accepted 4 November 2010; online 10 November 2010)

In the title coordination polymer, {[Sm2(C4H2O4)3(H2O)6]·6H2O}n, the SmIII ion is nine-coordinated by four O atoms from three different maleate ligands, two O atoms from one fumarate ligand and three O atoms from three water mol­ecules. The fumarate ligand lies on an inversion center. Adjacent SmIII ions are bridged by the maleate and fumarate ligands, forming a layer parallel to (011). The layers are further linked by inter­molecular O—H⋯O hydrogen bonds into a three-dimensional supra­molecular network.

Related literature

For the structures of transition metal complexes with malonate ligands, see: Li et al. (2006[Li, B., Ye, L., Yang, G.-D. & Wu, L.-X. (2006). Acta Cryst. E62, m3155-m3157.]); Ye et al. (2007[Ye, L., Li, B., Yang, G.-D. & Wu, L.-X. (2007). Acta Cryst. E63, m146-m147.]); Zhu et al. (2007[Zhu, T., Li, B., Yang, G.-D. & Wu, L.-X. (2007). Acta Cryst. E63, m409-m410.]). For a related structure, see: Hansson & Thörnqwist (1975[Hansson, E. & Thörnqwist, C. (1975). Acta Chem. Scand. Ser. A, 29, 927-934.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm2(C4H2O4)3(H2O)6]·6H2O

  • Mr = 859.08

  • Triclinic, [P \overline 1]

  • a = 6.150 (3) Å

  • b = 10.679 (6) Å

  • c = 11.214 (6) Å

  • α = 69.99 (3)°

  • β = 79.64 (2)°

  • γ = 89.74 (2)°

  • V = 679.4 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.38 mm−1

  • T = 290 K

  • 0.08 × 0.07 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.732, Tmax = 0.782

  • 6707 measured reflections

  • 3071 independent reflections

  • 2950 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.066

  • S = 1.00

  • 3071 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O6i 0.85 1.88 2.680 (4) 156
O7—H7A⋯O11ii 0.85 1.95 2.774 (5) 164
O8—H8A⋯O11iii 0.85 1.94 2.770 (5) 164
O8—H8B⋯O10ii 0.85 1.97 2.792 (5) 164
O9—H9A⋯O7iv 0.85 2.10 2.893 (4) 155
O9—H9B⋯O3iv 0.85 1.97 2.808 (4) 168
O10—H10A⋯O1v 0.85 1.97 2.783 (4) 160
O10—H10B⋯O12 0.85 1.95 2.761 (5) 159
O11—H11B⋯O12 0.85 1.93 2.775 (5) 171
O11—H11A⋯O10iv 0.85 1.95 2.755 (5) 157
O12—H12A⋯O4vi 0.85 1.87 2.705 (5) 168
O12—H12B⋯O5ii 0.89 1.98 2.744 (5) 142
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) x-1, y, z; (v) x, y-1, z; (vi) -x+2, -y+2, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diacids have been widely used to form metal–organic frameworks. Recently, we reported several compounds based on malonate ligand and different transition metal ions (Li et al., 2006; Ye et al., 2007; Zhu et al., 2007). Hererin, we report the crystal structure of the title compound based on maleate ligand.

The structure of the title compound is shown in Fig. 1. The bond lengths and angles are normal and comparable with those reported for a similar structure (Hansson & Thörnqwist, 1975). The SmIII ion is nine-coordinated by four O atoms from three maleate ligands, two O atoms from one fumarate ligand and three coordinated water molecules. The two carboxylate groups of the fumarate ligand and one of the carboxylate groups of the maleate ligand exhibit a chelating coordination mode, while the other carboxylate group of the maleate ligand binds SmIII ions in a bidentate bridging mode. Adjacent SmIII ions are bridged by the maleate and fumarate ligands, forming a layer parallel to (0 1 1) (Fig. 2). Additionly, abundant O—H···O hydrogen bonds stabilize the crystal structure of the title compound (Table 1).

Related literature top

For the structures of transition metal complexes with malonate ligands, see: Li et al. (2006); Ye et al. (2007); Zhu et al. (2007). For a related structure, see: Hansson & Thörnqwist (1975).

Experimental top

Maleic acid and Sm(NO3)3 of analytical grade are used without further purification. Sm(NO3)3 (67.24 mg, 0.2 mmol) and maleic acid (69.64 mg, 0.6 mmol) were dissolved in water (10 ml), and the pH value was adjusted to about 3 using a dilute NaOH solution. The mixture was stirred for half an hour and then filtered. The filtrate was allowed to stand at room temperature for two weeks, giving colorless block-shaped crystals.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2 Ueq(C). H atoms of the water molecules were initially located in a difference Fourier map, but were idealized and refined as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

Diacids have been widely used to form metal–organic frameworks. Recently, we reported several compounds based on malonate ligand and different transition metal ions (Li et al., 2006; Ye et al., 2007; Zhu et al., 2007). Hererin, we report the crystal structure of the title compound based on maleate ligand.

The structure of the title compound is shown in Fig. 1. The bond lengths and angles are normal and comparable with those reported for a similar structure (Hansson & Thörnqwist, 1975). The SmIII ion is nine-coordinated by four O atoms from three maleate ligands, two O atoms from one fumarate ligand and three coordinated water molecules. The two carboxylate groups of the fumarate ligand and one of the carboxylate groups of the maleate ligand exhibit a chelating coordination mode, while the other carboxylate group of the maleate ligand binds SmIII ions in a bidentate bridging mode. Adjacent SmIII ions are bridged by the maleate and fumarate ligands, forming a layer parallel to (0 1 1) (Fig. 2). Additionly, abundant O—H···O hydrogen bonds stabilize the crystal structure of the title compound (Table 1).

For the structures of transition metal complexes with malonate ligands, see: Li et al. (2006); Ye et al. (2007); Zhu et al. (2007). For a related structure, see: Hansson & Thörnqwist (1975).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the symmetry-related atoms to complete the Sm coordination. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) -x, 1-y, 1-z; (B) 2-x, 2-y, -z; (C) 1+x, y, z; (D) 1-x, 2-y, -z.]
[Figure 2] Fig. 2. Crystal packing diagram of the title cmopound, showing the two-dimensional network.
Poly[[hexaaqua(µ2-fumarato- κ4O1,O1':O4,O4')bis(µ3-maleato- κ4O1,O1':O4:O4')disamarium(III)] hexahydrate] top
Crystal data top
[Sm2(C4H2O4)3(H2O)6]·6H2OZ = 1
Mr = 859.08F(000) = 418
Triclinic, P1Dx = 2.100 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.150 (3) ÅCell parameters from 6497 reflections
b = 10.679 (6) Åθ = 3.3–27.5°
c = 11.214 (6) ŵ = 4.38 mm1
α = 69.99 (3)°T = 290 K
β = 79.64 (2)°Block, colorless
γ = 89.74 (2)°0.08 × 0.07 × 0.06 mm
V = 679.4 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3071 independent reflections
Radiation source: rotation anode2950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.732, Tmax = 0.782k = 1313
6707 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0342P)2 + 3.0041P]
where P = (Fo2 + 2Fc2)/3
3071 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Sm2(C4H2O4)3(H2O)6]·6H2Oγ = 89.74 (2)°
Mr = 859.08V = 679.4 (6) Å3
Triclinic, P1Z = 1
a = 6.150 (3) ÅMo Kα radiation
b = 10.679 (6) ŵ = 4.38 mm1
c = 11.214 (6) ÅT = 290 K
α = 69.99 (3)°0.08 × 0.07 × 0.06 mm
β = 79.64 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3071 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2950 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.782Rint = 0.018
6707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.00Δρmax = 0.58 e Å3
3071 reflectionsΔρmin = 0.58 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6917 (6)1.1675 (4)0.0453 (3)0.0173 (7)
C20.7911 (7)1.3067 (4)0.0028 (4)0.0256 (8)
H20.70261.36810.02690.031*
C30.9922 (7)1.3525 (4)0.0657 (4)0.0291 (9)
H31.03111.44230.08530.035*
C41.1596 (6)1.2717 (4)0.1134 (3)0.0190 (7)
C50.2343 (6)0.6379 (4)0.4136 (3)0.0176 (7)
C60.0980 (7)0.5175 (4)0.5083 (4)0.0254 (8)
H60.15230.46580.58070.031*
O10.6917 (5)1.0926 (3)0.1584 (3)0.0230 (6)
O20.6003 (5)1.1329 (4)0.0303 (3)0.0321 (7)
O31.1332 (4)1.1467 (3)0.0770 (3)0.0211 (5)
O41.3316 (5)1.3327 (3)0.1921 (3)0.0326 (7)
O50.4186 (5)0.6652 (3)0.4363 (3)0.0253 (6)
O60.1671 (4)0.7103 (3)0.3142 (3)0.0224 (5)
O70.8126 (4)0.8515 (3)0.3427 (3)0.0223 (5)
H7B0.89620.79090.33250.033*
H7A0.81560.85340.41760.033*
O80.3684 (5)0.9438 (3)0.4042 (3)0.0289 (6)
H8A0.31481.02000.38820.043*
H8B0.33460.91000.48610.043*
O90.1952 (4)1.0193 (3)0.1778 (3)0.0236 (6)
H9A0.06690.99330.22360.035*
H9B0.16331.04770.10270.035*
O100.8053 (6)0.1975 (3)0.3360 (3)0.0339 (7)
H10A0.79810.15450.28530.051*
H10B0.74850.27270.31280.051*
O110.2212 (5)0.1916 (3)0.3961 (3)0.0322 (7)
H11B0.30850.25990.37710.048*
H11A0.11370.20350.35600.048*
O120.5308 (6)0.4066 (3)0.3112 (3)0.0384 (8)
H12A0.56960.48720.26390.058*
H12B0.50620.41420.38940.058*
Sm10.50414 (3)0.869449 (17)0.223642 (16)0.01447 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0152 (16)0.0201 (17)0.0163 (16)0.0006 (13)0.0001 (12)0.0074 (13)
C20.028 (2)0.0164 (17)0.029 (2)0.0044 (15)0.0018 (16)0.0079 (15)
C30.035 (2)0.0138 (17)0.033 (2)0.0033 (15)0.0089 (17)0.0089 (16)
C40.0210 (17)0.0184 (16)0.0152 (16)0.0009 (14)0.0014 (13)0.0038 (13)
C50.0164 (16)0.0167 (16)0.0163 (16)0.0012 (13)0.0015 (13)0.0023 (13)
C60.0252 (19)0.0207 (18)0.0224 (18)0.0066 (15)0.0005 (15)0.0002 (15)
O10.0281 (14)0.0196 (13)0.0172 (12)0.0039 (11)0.0035 (11)0.0013 (10)
O20.0257 (15)0.051 (2)0.0247 (15)0.0029 (14)0.0051 (12)0.0194 (14)
O30.0207 (13)0.0153 (12)0.0247 (13)0.0003 (10)0.0003 (10)0.0055 (10)
O40.0282 (15)0.0187 (14)0.0409 (18)0.0034 (12)0.0135 (13)0.0076 (13)
O50.0186 (13)0.0246 (14)0.0274 (14)0.0048 (11)0.0072 (11)0.0006 (11)
O60.0169 (12)0.0215 (13)0.0219 (13)0.0008 (10)0.0043 (10)0.0017 (10)
O70.0154 (12)0.0271 (14)0.0234 (13)0.0044 (10)0.0063 (10)0.0062 (11)
O80.0423 (17)0.0262 (15)0.0168 (13)0.0084 (13)0.0019 (12)0.0074 (11)
O90.0168 (12)0.0270 (14)0.0216 (13)0.0030 (11)0.0029 (10)0.0021 (11)
O100.0396 (18)0.0385 (18)0.0292 (16)0.0048 (14)0.0105 (13)0.0168 (14)
O110.0342 (17)0.0299 (16)0.0337 (16)0.0009 (13)0.0113 (13)0.0101 (13)
O120.051 (2)0.0229 (15)0.0373 (18)0.0064 (14)0.0083 (15)0.0057 (13)
Sm10.01201 (10)0.01535 (10)0.01502 (10)0.00140 (6)0.00158 (6)0.00444 (7)
Geometric parameters (Å, º) top
C1—O11.247 (5)O9—H9A0.8500
C1—O21.249 (5)O9—H9B0.8500
C1—C21.493 (5)O10—H10A0.8500
C2—C31.328 (6)O10—H10B0.8501
C2—H20.9300O11—H11B0.8500
C3—C41.484 (5)O11—H11A0.8500
C3—H30.9300O12—H12A0.8500
C4—O31.256 (5)O12—H12B0.8944
C4—O41.265 (5)Sm1—O12.464 (3)
C5—O61.258 (5)Sm1—O2ii2.377 (3)
C5—O51.262 (5)Sm1—O3iii2.566 (3)
C5—C61.496 (5)Sm1—O4iii2.486 (3)
C6—C6i1.327 (8)Sm1—O52.593 (3)
C6—H60.9300Sm1—O62.512 (3)
O7—H7B0.8500Sm1—O72.480 (3)
O7—H7A0.8499Sm1—O82.432 (3)
O8—H8A0.8500Sm1—O92.489 (3)
O8—H8B0.8500
O1—C1—O2122.4 (4)O2ii—Sm1—O7145.71 (10)
O1—C1—C2118.2 (3)O8—Sm1—O773.67 (10)
O2—C1—C2119.2 (4)O1—Sm1—O771.50 (10)
C3—C2—C1127.1 (4)O2ii—Sm1—O4iii76.01 (12)
C3—C2—H2116.4O8—Sm1—O4iii137.15 (11)
C1—C2—H2116.4O1—Sm1—O4iii126.86 (10)
C2—C3—C4125.2 (4)O7—Sm1—O4iii80.70 (11)
C2—C3—H3117.4O2ii—Sm1—O971.17 (11)
C4—C3—H3117.4O8—Sm1—O969.13 (10)
O3—C4—O4120.7 (3)O1—Sm1—O977.68 (10)
O3—C4—C3121.5 (3)O7—Sm1—O9136.11 (10)
O4—C4—C3117.7 (3)O4iii—Sm1—O9143.16 (11)
O3—C4—Sm1iii62.2 (2)O2ii—Sm1—O679.19 (10)
O4—C4—Sm1iii58.6 (2)O8—Sm1—O684.11 (11)
C3—C4—Sm1iii175.8 (3)O1—Sm1—O6152.27 (10)
O6—C5—O5120.8 (3)O7—Sm1—O6121.53 (9)
O6—C5—C6121.1 (3)O4iii—Sm1—O680.77 (10)
O5—C5—C6118.1 (3)O9—Sm1—O677.11 (10)
C6i—C6—C5121.8 (5)O2ii—Sm1—O3iii74.78 (10)
C6i—C6—H6119.1O8—Sm1—O3iii140.72 (10)
C5—C6—H6119.1O1—Sm1—O3iii76.69 (9)
C1—O1—Sm1115.9 (2)O7—Sm1—O3iii71.03 (10)
C1—O2—Sm1ii161.0 (3)O4iii—Sm1—O3iii51.38 (9)
C4—O3—Sm1iii92.2 (2)O9—Sm1—O3iii130.71 (9)
C4—O4—Sm1iii95.7 (2)O6—Sm1—O3iii129.48 (9)
C5—O5—Sm192.2 (2)O2ii—Sm1—O5121.78 (11)
C5—O6—Sm196.1 (2)O8—Sm1—O570.25 (11)
Sm1—O7—H7B110.4O1—Sm1—O5134.92 (9)
Sm1—O7—H7A131.5O7—Sm1—O570.75 (9)
H7B—O7—H7A106.8O4iii—Sm1—O569.11 (11)
Sm1—O8—H8A118.2O9—Sm1—O5115.51 (9)
Sm1—O8—H8B137.9O6—Sm1—O550.82 (9)
H8A—O8—H8B102.8O3iii—Sm1—O5112.47 (9)
Sm1—O9—H9A118.7O2ii—Sm1—C4iii74.35 (11)
Sm1—O9—H9B120.7O8—Sm1—C4iii146.16 (11)
H9A—O9—H9B100.2O1—Sm1—C4iii101.68 (11)
H10A—O10—H10B113.0O7—Sm1—C4iii73.74 (10)
H11B—O11—H11A115.2O4iii—Sm1—C4iii25.73 (10)
H12A—O12—H12B100.4O9—Sm1—C4iii144.26 (10)
O2ii—Sm1—O8139.41 (11)O6—Sm1—C4iii105.51 (11)
O2ii—Sm1—O1103.29 (11)O3iii—Sm1—C4iii25.66 (9)
O8—Sm1—O176.25 (10)O5—Sm1—C4iii90.53 (11)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z; (iii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O6iv0.851.882.680 (4)156
O7—H7A···O11v0.851.952.774 (5)164
O8—H8A···O11vi0.851.942.770 (5)164
O8—H8B···O10v0.851.972.792 (5)164
O9—H9A···O7vii0.852.102.893 (4)155
O9—H9B···O3vii0.851.972.808 (4)168
O10—H10A···O1viii0.851.972.783 (4)160
O10—H10B···O120.851.952.761 (5)159
O11—H11B···O120.851.932.775 (5)171
O11—H11A···O10vii0.851.952.755 (5)157
O12—H12A···O4iii0.851.872.705 (5)168
O12—H12B···O5v0.891.982.744 (5)142
Symmetry codes: (iii) x+2, y+2, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z; (vii) x1, y, z; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Sm2(C4H2O4)3(H2O)6]·6H2O
Mr859.08
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)6.150 (3), 10.679 (6), 11.214 (6)
α, β, γ (°)69.99 (3), 79.64 (2), 89.74 (2)
V3)679.4 (6)
Z1
Radiation typeMo Kα
µ (mm1)4.38
Crystal size (mm)0.08 × 0.07 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.732, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
6707, 3071, 2950
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.066, 1.00
No. of reflections3071
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.58

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O6i0.851.882.680 (4)156
O7—H7A···O11ii0.851.952.774 (5)164
O8—H8A···O11iii0.851.942.770 (5)164
O8—H8B···O10ii0.851.972.792 (5)164
O9—H9A···O7iv0.852.102.893 (4)155
O9—H9B···O3iv0.851.972.808 (4)168
O10—H10A···O1v0.851.972.783 (4)160
O10—H10B···O120.851.952.761 (5)159
O11—H11B···O120.851.932.775 (5)171
O11—H11A···O10iv0.851.952.755 (5)157
O12—H12A···O4vi0.851.872.705 (5)168
O12—H12B···O5ii0.891.982.744 (5)142
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x1, y, z; (v) x, y1, z; (vi) x+2, y+2, z.
 

Acknowledgements

This work was supported financially by the National Basic Research Program of China (grant No. 2007CB808003) and the National Natural Science Foundation of China (grant Nos. 20973082, 20921003, 20703019).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHansson, E. & Thörnqwist, C. (1975). Acta Chem. Scand. Ser. A, 29, 927–934.  CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, B., Ye, L., Yang, G.-D. & Wu, L.-X. (2006). Acta Cryst. E62, m3155–m3157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, L., Li, B., Yang, G.-D. & Wu, L.-X. (2007). Acta Cryst. E63, m146–m147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, T., Li, B., Yang, G.-D. & Wu, L.-X. (2007). Acta Cryst. E63, m409–m410.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds