metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[2-(5-iso­propyl-5-methyl-4-oxo-4,5-di­hydro-1H-imidazol-2-yl)nicotinato]cobalt(II)

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: huangzhongjing1@yahoo.com.cn

(Received 22 October 2010; accepted 1 November 2010; online 13 November 2010)

In the title complex, [Co(C13H14N3O3)2(H2O)2], the CoII atom has a distorted octa­hedral coordination, formed by four N atoms from two (±)-2-(5-isopropyl-5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl)nicotinate ligands and two O atoms from two water mol­ecules. Intra­molecular N—H⋯O and O—H⋯O hydrogen bonds are present. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the complex mol­ecules into a chain along [010].

Related literature

For the synthesis and structures of the compounds containing imidazolidinone derivatives, see: Bombek et al. (2005[Bombek, S., Pozgan, F., Kocevar, M. & Polanc, S. (2005). New J. Chem. 7, 948-954.]); Ellis et al. (2000[Ellis, K. K., Wilke, B., Zhang, Y. G. & Diver, S. T. (2000). Org. Lett. 24, 3785-3788.]); Erre et al. (1998[Erre, L. S., Garribba, E., Micera, G. & Sardone, N. (1998). Inorg. Chim. Acta, 272, 68-73.]); Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]). For coordination compounds with pyridine­carb­oxy­lic acids, see: Chatterjee et al. (1998[Chatterjee, M., Maji, M., Ghosh, S. & Mak, T. C. W. (1998). J. Chem. Soc. Dalton Trans. pp. 3641-3646.]); Nathan & Mai (2000[Nathan, L. C. & Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509-518.]); Park et al. (2007[Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819-2823.]); Yang et al. (2002[Yang, L., Crans, D. C., Miller, S. M., la Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E. III, Austin, L. D. & Willsky, G. R. (2002). Inorg. Chem. 41, 4859-4871.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H14N3O3)2(H2O)2]

  • Mr = 615.51

  • Orthorhombic, P b c a

  • a = 12.548 (5) Å

  • b = 19.558 (8) Å

  • c = 23.07 (1) Å

  • V = 5662 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 298 K

  • 0.43 × 0.42 × 0.40 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.763, Tmax = 0.777

  • 24468 measured reflections

  • 4992 independent reflections

  • 2623 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.142

  • S = 1.03

  • 4992 reflections

  • 376 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.156 (4)
Co1—N3 2.016 (3)
Co1—N4 2.144 (3)
Co1—N6 2.019 (3)
Co1—O7 2.090 (3)
Co1—O8 2.085 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.75 2.525 (5) 149
N5—H5⋯O5 0.86 1.77 2.537 (5) 148
O7—H7A⋯O3 0.85 2.11 2.888 (4) 151
O7—H7B⋯O1i 0.85 1.81 2.651 (4) 169
O8—H8A⋯O6 0.85 2.11 2.857 (4) 147
O8—H8B⋯O4ii 0.85 1.80 2.645 (4) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Much effort has been devoted to the synthesis (Bombek et al., 2005; Ellis et al., 2000) and crystal structures (Erre et al., 1998; Fu et al., 2008) of the compounds containing imidazolidinone derivatives during the last few years. One of them is (±)-2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-2-imidazol-2-yl) nicotinic acid (Imazapyr acid), which provides efficient metal-chelating ability. Imazapyr acid containing a pyridinecarboxylic acid and an imidazole ring is well known a versatile ligand. The pyridine carboxylic acid has been extensively used in the design of coordination compounds, due to a variety of bonding modes and ability to form strong hydrogen bonds (Chatterjee et al., 1998; Nathan & Mai, 2000; Park et al., 2007; Yang et al., 2002). Imidazole ring, which is one of the polydentate amine ligands, generally coordinates to metal ions using the N atoms as donors. We report here the structure of the title compound.

The molecular structure of the title complex is shown in Fig. 1. The CoII atom exhibits a distorted octahedral geometry, defined by four N atoms from two imazapyr ligands and two O atoms from water molecules (Table 1). The dihedral angle between the two imazapyr planes in the complex is 64.39 (2)°. Intramolecular O—H···O and N–H···O hydrogen bonds are observed between the coordinated water molecules and imazapyr ligands and between the imidazole and carboxylate groups (Table 2). Intermolecular O—H···O hydrogen bonds link the complex molecules into a chain along [0 1 0] (Fig. 2).

Related literature top

For the synthesis and structures of the compounds containing imidazolidinone derivatives, see: Bombek et al. (2005); Ellis et al. (2000); Erre et al. (1998); Fu et al. (2008). For coordination compounds with pyridinecarboxylic acids, see: Chatterjee et al. (1998); Nathan & Mai (2000); Park et al. (2007); Yang et al. (2002).

Experimental top

A solution of Imazapyr acid (0.39 g, 1.5 mmol) in 95% ethanol (15 ml) was added dropwise with stirring at room temperature to a solution of Co(CH3COO)2.4H2O (0.13 g, 0.5 mmol) in 20 ml water. The mixture was stirred at room temperature until it was homogeneous and then sealed in a 25 ml Teflon-lined stainless reactor, which was kept under autogenous pressure at 423 K for 5 h and then slowly cooled to room temperature. After 5 days, red block crystals suitable for X-ray diffraction were separated and washed with water. The product is stable in air and insoluble in water and common organic solvents (yield: 76%). Analysis, calculated for C26H32CoN6O8: C 50.74, H 5.24, N 13.65%; found: C 50.77, H 5.23, N 13.64%.

Refinement top

H atoms on C and N atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C,N). The water H atoms were located in a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Structure description top

Much effort has been devoted to the synthesis (Bombek et al., 2005; Ellis et al., 2000) and crystal structures (Erre et al., 1998; Fu et al., 2008) of the compounds containing imidazolidinone derivatives during the last few years. One of them is (±)-2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-2-imidazol-2-yl) nicotinic acid (Imazapyr acid), which provides efficient metal-chelating ability. Imazapyr acid containing a pyridinecarboxylic acid and an imidazole ring is well known a versatile ligand. The pyridine carboxylic acid has been extensively used in the design of coordination compounds, due to a variety of bonding modes and ability to form strong hydrogen bonds (Chatterjee et al., 1998; Nathan & Mai, 2000; Park et al., 2007; Yang et al., 2002). Imidazole ring, which is one of the polydentate amine ligands, generally coordinates to metal ions using the N atoms as donors. We report here the structure of the title compound.

The molecular structure of the title complex is shown in Fig. 1. The CoII atom exhibits a distorted octahedral geometry, defined by four N atoms from two imazapyr ligands and two O atoms from water molecules (Table 1). The dihedral angle between the two imazapyr planes in the complex is 64.39 (2)°. Intramolecular O—H···O and N–H···O hydrogen bonds are observed between the coordinated water molecules and imazapyr ligands and between the imidazole and carboxylate groups (Table 2). Intermolecular O—H···O hydrogen bonds link the complex molecules into a chain along [0 1 0] (Fig. 2).

For the synthesis and structures of the compounds containing imidazolidinone derivatives, see: Bombek et al. (2005); Ellis et al. (2000); Erre et al. (1998); Fu et al. (2008). For coordination compounds with pyridinecarboxylic acids, see: Chatterjee et al. (1998); Nathan & Mai (2000); Park et al. (2007); Yang et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the chain structure in the title compound. Dashed lines indicate hydrongen bonds.
Diaquabis[2-(5-isopropyl-5-methyl-4-oxo-4,5-dihydro-1H-imidazol- 2-yl)nicotinato]cobalt(II) top
Crystal data top
[Co(C13H14N3O3)2(H2O)2]F(000) = 2568
Mr = 615.51Dx = 1.444 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1647 reflections
a = 12.548 (5) Åθ = 2.3–19.4°
b = 19.558 (8) ŵ = 0.67 mm1
c = 23.07 (1) ÅT = 298 K
V = 5662 (4) Å3Block, red
Z = 80.43 × 0.42 × 0.40 mm
Data collection top
Bruker APEX CCD
diffractometer
4992 independent reflections
Radiation source: fine-focus sealed tube2623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.763, Tmax = 0.777k = 2320
24468 measured reflectionsl = 2719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0582P)2]
where P = (Fo2 + 2Fc2)/3
4992 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 0.73 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Co(C13H14N3O3)2(H2O)2]V = 5662 (4) Å3
Mr = 615.51Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.548 (5) ŵ = 0.67 mm1
b = 19.558 (8) ÅT = 298 K
c = 23.07 (1) Å0.43 × 0.42 × 0.40 mm
Data collection top
Bruker APEX CCD
diffractometer
4992 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2623 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.777Rint = 0.081
24468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.73 e Å3
4992 reflectionsΔρmin = 0.42 e Å3
376 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.27194 (5)0.10887 (3)0.37482 (2)0.03099 (19)
N10.1586 (3)0.18733 (17)0.39738 (15)0.0385 (9)
N20.2182 (3)0.26551 (19)0.26096 (15)0.0527 (11)
H20.18870.30500.25770.063*
N30.2662 (3)0.16654 (18)0.30244 (14)0.0383 (9)
N40.1631 (3)0.02982 (17)0.34952 (15)0.0378 (9)
N50.2214 (4)0.0503 (2)0.48558 (16)0.0639 (13)
H50.19310.09020.48820.077*
N60.2623 (3)0.05068 (18)0.44694 (15)0.0382 (9)
O10.0968 (3)0.42292 (16)0.37455 (14)0.0643 (10)
O20.1192 (3)0.37261 (16)0.28991 (15)0.0658 (11)
O30.3576 (3)0.11596 (18)0.22656 (14)0.0684 (11)
O40.1007 (3)0.20607 (16)0.37274 (14)0.0655 (10)
O50.1140 (4)0.15460 (19)0.45612 (16)0.0958 (16)
O60.3491 (3)0.10220 (17)0.52340 (13)0.0658 (11)
O70.3937 (2)0.05098 (15)0.33722 (13)0.0502 (9)
H7A0.38860.05550.30070.060*
H7B0.39910.00850.34460.060*
O80.3882 (2)0.16846 (14)0.41510 (12)0.0480 (9)
H8A0.37850.16610.45150.058*
H8B0.39280.21030.40550.058*
C10.1092 (4)0.3720 (2)0.3438 (2)0.0420 (12)
C20.1581 (4)0.2430 (2)0.36198 (18)0.0354 (12)
C30.1090 (3)0.3042 (2)0.37691 (18)0.0356 (11)
C40.0523 (4)0.3037 (2)0.4295 (2)0.0482 (13)
H40.01730.34310.44140.058*
C50.0476 (4)0.2467 (2)0.4633 (2)0.0592 (15)
H5A0.00740.24620.49720.071*
C60.1035 (4)0.1901 (2)0.4461 (2)0.0534 (14)
H60.10270.15170.46990.064*
C70.2153 (4)0.2272 (2)0.30712 (18)0.0387 (11)
C80.3064 (4)0.1638 (2)0.2472 (2)0.0507 (13)
C90.2802 (5)0.2306 (3)0.2150 (2)0.0572 (13)
C100.3847 (4)0.2701 (3)0.2021 (2)0.0756 (17)
H10A0.36810.31630.19130.113*
H10B0.42210.24810.17090.113*
H10C0.42880.27030.23610.113*
C110.2169 (5)0.2188 (3)0.1624 (2)0.0691 (16)
H110.25970.18940.13710.083*
C120.1139 (4)0.1788 (3)0.1769 (2)0.0757 (18)
H12A0.13100.14050.20120.114*
H12B0.08170.16280.14170.114*
H12C0.06500.20840.19690.114*
C130.1922 (6)0.2838 (3)0.1280 (2)0.113 (3)
H13A0.15010.27240.09470.170*
H13B0.25770.30470.11570.170*
H13C0.15340.31520.15210.170*
C140.1105 (4)0.1549 (2)0.4027 (2)0.0467 (13)
C150.1611 (3)0.0258 (2)0.38519 (18)0.0367 (11)
C160.1138 (4)0.0873 (2)0.36856 (18)0.0369 (11)
C170.0633 (4)0.0885 (2)0.3139 (2)0.0486 (13)
H170.03080.12840.30090.058*
C180.0619 (4)0.0317 (2)0.2801 (2)0.0505 (14)
H180.02640.03200.24470.061*
C190.1136 (4)0.0263 (2)0.2988 (2)0.0509 (14)
H190.11390.06460.27490.061*
C200.2145 (4)0.0108 (2)0.44084 (18)0.0418 (12)
C210.3021 (4)0.0531 (3)0.5021 (2)0.0515 (14)
C220.2846 (5)0.0172 (3)0.5315 (2)0.0660 (15)
C230.3951 (5)0.0554 (3)0.5391 (2)0.0811 (18)
H23A0.38300.10040.55430.122*
H23B0.43940.03010.56540.122*
H23C0.42990.05870.50210.122*
C240.2291 (6)0.0174 (4)0.5862 (3)0.094 (2)
H240.21370.06500.59660.113*
C250.2912 (6)0.0155 (3)0.6367 (2)0.113 (3)
H25A0.35690.00870.64250.169*
H25B0.24920.01340.67140.169*
H25C0.30630.06240.62750.169*
C260.1250 (6)0.0190 (4)0.5779 (3)0.111 (3)
H26A0.13760.06730.57510.167*
H26B0.07920.01000.61040.167*
H26C0.09160.00310.54300.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0399 (3)0.0183 (3)0.0348 (3)0.0004 (3)0.0002 (3)0.0031 (2)
N10.044 (2)0.030 (2)0.042 (2)0.0002 (18)0.0040 (18)0.0034 (17)
N20.079 (3)0.036 (2)0.043 (3)0.020 (2)0.005 (2)0.008 (2)
N30.051 (2)0.025 (2)0.039 (2)0.0067 (19)0.0055 (18)0.0026 (16)
N40.045 (3)0.030 (2)0.039 (2)0.0040 (18)0.0031 (19)0.0024 (17)
N50.100 (4)0.048 (3)0.044 (3)0.034 (3)0.010 (2)0.012 (2)
N60.053 (3)0.025 (2)0.037 (2)0.0035 (19)0.0028 (18)0.0012 (16)
O10.100 (3)0.0241 (19)0.069 (2)0.0034 (19)0.015 (2)0.0037 (17)
O20.102 (3)0.044 (2)0.052 (2)0.024 (2)0.001 (2)0.0121 (17)
O30.098 (3)0.053 (2)0.054 (2)0.026 (2)0.022 (2)0.0023 (18)
O40.095 (3)0.027 (2)0.074 (3)0.0002 (19)0.009 (2)0.0005 (18)
O50.173 (5)0.059 (3)0.055 (3)0.057 (3)0.006 (3)0.016 (2)
O60.101 (3)0.046 (2)0.050 (2)0.026 (2)0.022 (2)0.0049 (17)
O70.063 (2)0.0315 (18)0.056 (2)0.0090 (16)0.0096 (17)0.0037 (15)
O80.058 (2)0.0317 (18)0.054 (2)0.0078 (16)0.0026 (16)0.0035 (15)
C10.040 (3)0.031 (3)0.055 (3)0.004 (2)0.001 (3)0.002 (2)
C20.036 (3)0.027 (3)0.043 (3)0.001 (2)0.004 (2)0.003 (2)
C30.043 (3)0.026 (2)0.038 (3)0.000 (2)0.004 (2)0.001 (2)
C40.058 (3)0.029 (3)0.057 (3)0.005 (2)0.011 (3)0.003 (2)
C50.067 (4)0.050 (4)0.060 (4)0.011 (3)0.026 (3)0.002 (3)
C60.072 (4)0.035 (3)0.054 (3)0.005 (3)0.020 (3)0.011 (2)
C70.051 (3)0.027 (3)0.038 (3)0.003 (2)0.003 (2)0.003 (2)
C80.070 (4)0.039 (3)0.043 (3)0.014 (3)0.007 (3)0.001 (2)
C90.072 (4)0.048 (3)0.051 (3)0.008 (3)0.010 (3)0.008 (3)
C100.077 (4)0.077 (4)0.073 (4)0.009 (3)0.013 (3)0.014 (3)
C110.086 (4)0.066 (4)0.056 (4)0.019 (4)0.008 (3)0.002 (3)
C120.073 (4)0.085 (5)0.069 (4)0.009 (4)0.018 (3)0.004 (3)
C130.144 (7)0.109 (6)0.088 (5)0.025 (5)0.019 (5)0.038 (4)
C140.053 (3)0.032 (3)0.056 (3)0.008 (2)0.004 (3)0.004 (3)
C150.041 (3)0.029 (3)0.041 (3)0.005 (2)0.001 (2)0.002 (2)
C160.044 (3)0.027 (3)0.040 (3)0.004 (2)0.002 (2)0.001 (2)
C170.056 (3)0.035 (3)0.056 (3)0.008 (2)0.001 (3)0.006 (2)
C180.063 (4)0.040 (3)0.048 (3)0.006 (3)0.018 (3)0.003 (2)
C190.066 (4)0.040 (3)0.047 (3)0.014 (3)0.014 (3)0.013 (2)
C200.056 (3)0.034 (3)0.036 (3)0.010 (3)0.000 (2)0.005 (2)
C210.073 (4)0.040 (3)0.041 (3)0.012 (3)0.006 (3)0.003 (2)
C220.094 (4)0.061 (4)0.043 (3)0.014 (3)0.007 (3)0.004 (3)
C230.107 (5)0.069 (4)0.067 (4)0.003 (3)0.018 (4)0.017 (3)
C240.120 (6)0.096 (5)0.067 (5)0.032 (5)0.001 (4)0.002 (4)
C250.175 (8)0.113 (6)0.051 (4)0.036 (5)0.016 (4)0.008 (4)
C260.092 (6)0.155 (8)0.086 (5)0.017 (5)0.008 (4)0.011 (5)
Geometric parameters (Å, º) top
Co1—N12.156 (4)C8—C91.539 (6)
Co1—N32.016 (3)C9—C111.468 (7)
Co1—N42.144 (3)C9—C101.551 (7)
Co1—N62.019 (3)C10—H10A0.9600
Co1—O72.090 (3)C10—H10B0.9600
Co1—O82.085 (3)C10—H10C0.9600
N1—C61.321 (5)C11—C131.531 (7)
N1—C21.361 (5)C11—C121.548 (7)
N2—C71.303 (5)C11—H110.9800
N2—C91.482 (6)C12—H12A0.9600
N2—H20.8600C12—H12B0.9600
N3—C71.351 (5)C12—H12C0.9600
N3—C81.371 (5)C13—H13A0.9600
N4—C191.325 (5)C13—H13B0.9600
N4—C151.364 (5)C13—H13C0.9600
N5—C201.292 (5)C14—C161.539 (6)
N5—C221.474 (6)C15—C161.396 (5)
N5—H50.8600C15—C201.478 (6)
N6—C201.351 (5)C16—C171.412 (6)
N6—C211.367 (5)C17—C181.357 (6)
O1—C11.233 (5)C17—H170.9300
O2—C11.249 (5)C18—C191.377 (6)
O3—C81.232 (5)C18—H180.9300
O4—C141.223 (5)C19—H190.9300
O5—C141.233 (5)C21—C221.549 (7)
O6—C211.230 (5)C22—C241.442 (7)
O7—H7A0.8500C22—C231.585 (7)
O7—H7B0.8500C23—H23A0.9600
O8—H8A0.8500C23—H23B0.9600
O8—H8B0.8500C23—H23C0.9600
C1—C31.531 (6)C24—C261.500 (8)
C2—C31.390 (5)C24—C251.542 (8)
C2—C71.487 (6)C24—H240.9800
C3—C41.405 (6)C25—H25A0.9600
C4—C51.363 (6)C25—H25B0.9600
C4—H40.9300C25—H25C0.9600
C5—C61.369 (6)C26—H26A0.9600
C5—H5A0.9300C26—H26B0.9600
C6—H60.9300C26—H26C0.9600
N3—Co1—N6174.47 (15)H10B—C10—H10C109.5
N3—Co1—O894.68 (13)C9—C11—C13114.0 (5)
N6—Co1—O889.42 (13)C9—C11—C12110.6 (4)
N3—Co1—O789.18 (13)C13—C11—C12111.3 (5)
N6—Co1—O794.63 (13)C9—C11—H11106.8
O8—Co1—O788.65 (12)C13—C11—H11106.8
N3—Co1—N498.91 (14)C12—C11—H11106.8
N6—Co1—N477.27 (14)C11—C12—H12A109.5
O8—Co1—N4165.91 (12)C11—C12—H12B109.5
O7—Co1—N487.84 (13)H12A—C12—H12B109.5
N3—Co1—N177.18 (14)C11—C12—H12C109.5
N6—Co1—N199.35 (14)H12A—C12—H12C109.5
O8—Co1—N187.48 (13)H12B—C12—H12C109.5
O7—Co1—N1165.45 (13)C11—C13—H13A109.5
N4—Co1—N199.12 (14)C11—C13—H13B109.5
C6—N1—C2118.4 (4)H13A—C13—H13B109.5
C6—N1—Co1125.4 (3)C11—C13—H13C109.5
C2—N1—Co1115.3 (3)H13A—C13—H13C109.5
C7—N2—C9109.6 (4)H13B—C13—H13C109.5
C7—N2—H2125.2O4—C14—O5124.9 (5)
C9—N2—H2125.2O4—C14—C16114.6 (4)
C7—N3—C8106.4 (4)O5—C14—C16120.4 (4)
C7—N3—Co1116.2 (3)N4—C15—C16122.0 (4)
C8—N3—Co1137.3 (3)N4—C15—C20111.0 (4)
C19—N4—C15118.8 (4)C16—C15—C20127.1 (4)
C19—N4—Co1125.2 (3)C15—C16—C17116.8 (4)
C15—N4—Co1115.0 (3)C15—C16—C14127.7 (4)
C20—N5—C22110.3 (4)C17—C16—C14115.6 (4)
C20—N5—H5124.8C18—C17—C16120.4 (4)
C22—N5—H5124.8C18—C17—H17119.8
C20—N6—C21106.8 (4)C16—C17—H17119.8
C20—N6—Co1116.3 (3)C17—C18—C19119.2 (5)
C21—N6—Co1136.5 (3)C17—C18—H18120.4
Co1—O7—H7A107.4C19—C18—H18120.4
Co1—O7—H7B120.3N4—C19—C18122.7 (4)
H7A—O7—H7B107.9N4—C19—H19118.6
Co1—O8—H8A108.1C18—C19—H19118.6
Co1—O8—H8B118.0N5—C20—N6114.8 (4)
H8A—O8—H8B108.6N5—C20—C15127.3 (4)
O1—C1—O2125.3 (4)N6—C20—C15117.9 (4)
O1—C1—C3114.4 (4)O6—C21—N6125.0 (4)
O2—C1—C3120.3 (4)O6—C21—C22125.8 (4)
N1—C2—C3122.8 (4)N6—C21—C22109.0 (4)
N1—C2—C7110.0 (4)C24—C22—N5111.6 (5)
C3—C2—C7127.2 (4)C24—C22—C21117.1 (5)
C2—C3—C4115.6 (4)N5—C22—C2198.7 (4)
C2—C3—C1128.4 (4)C24—C22—C23109.0 (5)
C4—C3—C1116.0 (4)N5—C22—C23110.1 (5)
C5—C4—C3121.5 (4)C21—C22—C23110.0 (5)
C5—C4—H4119.2C22—C23—H23A109.5
C3—C4—H4119.2C22—C23—H23B109.5
C4—C5—C6118.2 (5)H23A—C23—H23B109.5
C4—C5—H5A120.9C22—C23—H23C109.5
C6—C5—H5A120.9H23A—C23—H23C109.5
N1—C6—C5123.2 (5)H23B—C23—H23C109.5
N1—C6—H6118.4C22—C24—C26107.9 (6)
C5—C6—H6118.4C22—C24—C25114.5 (6)
N2—C7—N3115.3 (4)C26—C24—C25109.7 (6)
N2—C7—C2126.1 (4)C22—C24—H24108.2
N3—C7—C2118.6 (4)C26—C24—H24108.2
O3—C8—N3125.5 (4)C25—C24—H24108.2
O3—C8—C9124.7 (4)C24—C25—H25A109.5
N3—C8—C9109.7 (4)C24—C25—H25B109.5
C11—C9—N2112.4 (5)H25A—C25—H25B109.5
C11—C9—C8112.4 (5)C24—C25—H25C109.5
N2—C9—C899.0 (4)H25A—C25—H25C109.5
C11—C9—C10112.2 (4)H25B—C25—H25C109.5
N2—C9—C10110.6 (4)C24—C26—H26A109.5
C8—C9—C10109.5 (4)C24—C26—H26B109.5
C9—C10—H10A109.5H26A—C26—H26B109.5
C9—C10—H10B109.5C24—C26—H26C109.5
H10A—C10—H10B109.5H26A—C26—H26C109.5
C9—C10—H10C109.5H26B—C26—H26C109.5
H10A—C10—H10C109.5
N3—Co1—N1—C6175.4 (4)Co1—N3—C8—O35.1 (9)
N6—Co1—N1—C60.2 (4)C7—N3—C8—C91.6 (5)
O8—Co1—N1—C689.2 (4)Co1—N3—C8—C9173.7 (4)
O7—Co1—N1—C6164.0 (4)C7—N2—C9—C11120.5 (5)
N4—Co1—N1—C678.3 (4)C7—N2—C9—C81.6 (5)
N3—Co1—N1—C215.5 (3)C7—N2—C9—C10113.3 (5)
N6—Co1—N1—C2168.9 (3)O3—C8—C9—C1160.4 (7)
O8—Co1—N1—C279.9 (3)N3—C8—C9—C11120.8 (5)
O7—Co1—N1—C25.2 (7)O3—C8—C9—N2179.3 (5)
N4—Co1—N1—C2112.6 (3)N3—C8—C9—N22.0 (5)
O8—Co1—N3—C774.9 (3)O3—C8—C9—C1065.0 (7)
O7—Co1—N3—C7163.5 (3)N3—C8—C9—C10113.8 (5)
N4—Co1—N3—C7108.8 (3)N2—C9—C11—C1371.2 (6)
N1—Co1—N3—C711.4 (3)C8—C9—C11—C13178.1 (5)
O8—Co1—N3—C8100.0 (5)C10—C9—C11—C1354.2 (7)
O7—Co1—N3—C811.5 (5)N2—C9—C11—C1255.1 (6)
N4—Co1—N3—C876.2 (5)C8—C9—C11—C1255.6 (6)
N1—Co1—N3—C8173.6 (5)C10—C9—C11—C12179.5 (5)
N3—Co1—N4—C191.0 (4)C19—N4—C15—C163.6 (7)
N6—Co1—N4—C19176.9 (4)Co1—N4—C15—C16165.4 (3)
O8—Co1—N4—C19163.5 (4)C19—N4—C15—C20176.6 (4)
O7—Co1—N4—C1987.9 (4)Co1—N4—C15—C2014.5 (5)
N1—Co1—N4—C1979.3 (4)N4—C15—C16—C172.9 (6)
N3—Co1—N4—C15169.1 (3)C20—C15—C16—C17177.3 (4)
N6—Co1—N4—C1514.9 (3)N4—C15—C16—C14176.7 (4)
O8—Co1—N4—C154.6 (7)C20—C15—C16—C143.1 (8)
O7—Co1—N4—C1580.3 (3)O4—C14—C16—C15154.5 (5)
N1—Co1—N4—C15112.5 (3)O5—C14—C16—C1527.8 (8)
O8—Co1—N6—C20163.2 (3)O4—C14—C16—C1725.1 (6)
O7—Co1—N6—C2074.6 (3)O5—C14—C16—C17152.6 (5)
N4—Co1—N6—C2012.1 (3)C15—C16—C17—C180.2 (7)
N1—Co1—N6—C20109.4 (3)C14—C16—C17—C18179.8 (4)
O8—Co1—N6—C218.0 (5)C16—C17—C18—C192.4 (8)
O7—Co1—N6—C2196.6 (5)C15—N4—C19—C181.2 (7)
N4—Co1—N6—C21176.7 (5)Co1—N4—C19—C18166.5 (4)
N1—Co1—N6—C2179.4 (5)C17—C18—C19—N41.7 (8)
C6—N1—C2—C34.9 (7)C22—N5—C20—N62.1 (6)
Co1—N1—C2—C3165.0 (3)C22—N5—C20—C15178.0 (5)
C6—N1—C2—C7174.3 (4)C21—N6—C20—N52.0 (6)
Co1—N1—C2—C715.7 (4)Co1—N6—C20—N5171.7 (3)
N1—C2—C3—C44.5 (6)C21—N6—C20—C15178.0 (4)
C7—C2—C3—C4174.6 (4)Co1—N6—C20—C158.4 (5)
N1—C2—C3—C1175.0 (4)N4—C15—C20—N5175.4 (5)
C7—C2—C3—C15.9 (8)C16—C15—C20—N54.7 (8)
O1—C1—C3—C2153.4 (5)N4—C15—C20—N64.5 (6)
O2—C1—C3—C228.0 (7)C16—C15—C20—N6175.3 (4)
O1—C1—C3—C426.1 (6)C20—N6—C21—O6178.4 (5)
O2—C1—C3—C4152.4 (4)Co1—N6—C21—O69.8 (9)
C2—C3—C4—C50.6 (7)C20—N6—C21—C225.0 (6)
C1—C3—C4—C5179.0 (5)Co1—N6—C21—C22166.8 (4)
C3—C4—C5—C62.8 (8)C20—N5—C22—C24128.4 (6)
C2—N1—C6—C51.2 (7)C20—N5—C22—C214.6 (6)
Co1—N1—C6—C5167.6 (4)C20—N5—C22—C23110.5 (5)
C4—C5—C6—N12.5 (8)O6—C21—C22—C2458.0 (8)
C9—N2—C7—N30.8 (6)N6—C21—C22—C24125.5 (5)
C9—N2—C7—C2177.9 (4)O6—C21—C22—N5177.7 (5)
C8—N3—C7—N20.6 (6)N6—C21—C22—N55.8 (6)
Co1—N3—C7—N2175.9 (3)O6—C21—C22—C2367.2 (7)
C8—N3—C7—C2176.8 (4)N6—C21—C22—C23109.4 (5)
Co1—N3—C7—C26.7 (5)N5—C22—C24—C2658.3 (7)
N1—C2—C7—N2170.6 (4)C21—C22—C24—C2654.3 (7)
C3—C2—C7—N28.6 (8)C23—C22—C24—C26179.9 (5)
N1—C2—C7—N36.4 (6)N5—C22—C24—C25179.2 (5)
C3—C2—C7—N3174.3 (4)C21—C22—C24—C2568.2 (8)
C7—N3—C8—O3179.6 (5)C23—C22—C24—C2557.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.752.525 (5)149
N5—H5···O50.861.772.537 (5)148
O7—H7A···O30.852.112.888 (4)151
O7—H7B···O1i0.851.812.651 (4)169
O8—H8A···O60.852.112.857 (4)147
O8—H8B···O4ii0.851.802.645 (4)170
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co(C13H14N3O3)2(H2O)2]
Mr615.51
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.548 (5), 19.558 (8), 23.07 (1)
V3)5662 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.43 × 0.42 × 0.40
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 0.777
No. of measured, independent and
observed [I > 2σ(I)] reflections
24468, 4992, 2623
Rint0.081
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 1.03
No. of reflections4992
No. of parameters376
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.42

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N12.156 (4)Co1—N62.019 (3)
Co1—N32.016 (3)Co1—O72.090 (3)
Co1—N42.144 (3)Co1—O82.085 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.752.525 (5)149
N5—H5···O50.861.772.537 (5)148
O7—H7A···O30.852.112.888 (4)151
O7—H7B···O1i0.851.812.651 (4)169
O8—H8A···O60.852.112.857 (4)147
O8—H8B···O4ii0.851.802.645 (4)170
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Innovation Project (gxun-chx2009080) of Guangxi University for Nationalities.

References

First citationBombek, S., Pozgan, F., Kocevar, M. & Polanc, S. (2005). New J. Chem. 7, 948–954.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatterjee, M., Maji, M., Ghosh, S. & Mak, T. C. W. (1998). J. Chem. Soc. Dalton Trans. pp. 3641–3646.  Web of Science CSD CrossRef Google Scholar
First citationEllis, K. K., Wilke, B., Zhang, Y. G. & Diver, S. T. (2000). Org. Lett. 24, 3785–3788.  Web of Science CSD CrossRef Google Scholar
First citationErre, L. S., Garribba, E., Micera, G. & Sardone, N. (1998). Inorg. Chim. Acta, 272, 68–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationNathan, L. C. & Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819–2823.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Crans, D. C., Miller, S. M., la Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E. III, Austin, L. D. & Willsky, G. R. (2002). Inorg. Chem. 41, 4859–4871.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds