metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­{2-hy­dr­oxy-5-[(pyridin-2-yl)methyl­­idene­amino]­benzoato-κ2N,N′}nickel(II) dihydrate

aFaculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: lix905@126.com

(Received 29 October 2010; accepted 9 November 2010; online 13 November 2010)

In the title complex, [Ni(C13H9N2O3)2(H2O)2]·2H2O, the NiII atom, located on a twofold rotation axis, is in a distorted octa­hedral geometry, defined by four N atoms from two 2-hy­droxy-5-[(pyridin-2-yl)methyl­idene­amino]­benzoate ligands and two O atoms from two water mol­ecules. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the complex mol­ecules and uncoordinated water mol­ecules into a three-dimensional network. Intra­molecular O—H⋯O hydrogen bonds are present between the hy­droxy and carboxyl­ate groups.

Related literature

For the biological activity of Schiff base compounds, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141-148.]); Cukurovali et al. (2002[Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547-2554.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H9N2O3)2(H2O)2]·2H2O

  • Mr = 613.22

  • Orthorhombic, P b c n

  • a = 15.7628 (6) Å

  • b = 10.5672 (3) Å

  • c = 15.6178 (6) Å

  • V = 2601.44 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 173 K

  • 0.41 × 0.34 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.725, Tmax = 0.907

  • 14975 measured reflections

  • 2294 independent reflections

  • 1599 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 0.89

  • 2294 reflections

  • 202 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.84 1.72 2.475 (2) 149
O4—H4B⋯O2i 0.83 (2) 1.81 (2) 2.621 (2) 168 (3)
O4—H4C⋯O5 0.84 (2) 1.91 (2) 2.744 (3) 173 (2)
O5—H5B⋯O3ii 0.82 (2) 2.05 (2) 2.870 (3) 178 (3)
O5—H5C⋯O1iii 0.84 (2) 1.99 (2) 2.793 (3) 160 (3)
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been of great interest for many years. These compounds play an important role in antitumor, antimicrobial and antiviral activities (Ali et al., 2002; Cukurovali et al., 2002; Tarafder et al., 2002). As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

The title compound is a mononuclear nickel(II) complex, as shown in Fig. 1. The NiII atom, lying on a twofold rotation axis, is six-coordinated in a distorted octahedral geometry, defined by four N donors from two Schiff base ligands, two O atoms from two coordinated water molecules. The molecular formula contains two uncoordinated water molecules. The Ni—N bond lengths are 2.0754 (18) and 2.1347 (17) Å, and the Ni—O distance is 2.0380 (17) Å. Intramolecular O—H···O hydrogen bonds between the hydroxy and carboxylate groups are observed (Table 1). In the crystal, intermolecular O—H···O hydrogen bonds link the complex molecules and uncoordinated water molecules into a three-dimensional network (Fig. 2).

Related literature top

For the biological activity of Schiff base compounds, see: Ali et al. (2002); Cukurovali et al. (2002); Tarafder et al. (2002).

Experimental top

5-Aminosalicylic acid (1.53 g, 10 mmol), 2-pyridinecarboxaldehyde (1 ml, 10 mmol) and triethylamine (1 ml, 10 mmol) were mixed in 50 ml ethanol in a round flask. The mixture was refluxed with agitation for 4 h at 323 K to give a yellow precipitate. After filtration and washing the precipitate with ethanol, a pure Schiff base ligand, 5-[(pyridin-2-yl)methyleneamino]-2-hydroxybenzoic acid (yield: 2.02 g, 84%) was obtained.

A mixture of 5-[(pyridin-2-yl)methyleneamino]-2-hydroxybenzoic acid (0.024 g, 0.1 mmol), Ni(CH3CO2)2.2H2O (0.025 g, 0.1 mmol) and ethanol (20 ml) was heated at 273 K for 30 min to give a red solution. After evaporating the solution at room temperature for one week, red crystals were obtained (yield: 65%).

Refinement top

H atoms attached to C atoms and O3 were placed in calculated positions and treated using a riding model, with C—H = 0.95 and O—H = 0.84 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). H atoms attached to water molecules (O4 and O5) were located in a difference Fourier map and refined isotropically.

Structure description top

Schiff base compounds have been of great interest for many years. These compounds play an important role in antitumor, antimicrobial and antiviral activities (Ali et al., 2002; Cukurovali et al., 2002; Tarafder et al., 2002). As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

The title compound is a mononuclear nickel(II) complex, as shown in Fig. 1. The NiII atom, lying on a twofold rotation axis, is six-coordinated in a distorted octahedral geometry, defined by four N donors from two Schiff base ligands, two O atoms from two coordinated water molecules. The molecular formula contains two uncoordinated water molecules. The Ni—N bond lengths are 2.0754 (18) and 2.1347 (17) Å, and the Ni—O distance is 2.0380 (17) Å. Intramolecular O—H···O hydrogen bonds between the hydroxy and carboxylate groups are observed (Table 1). In the crystal, intermolecular O—H···O hydrogen bonds link the complex molecules and uncoordinated water molecules into a three-dimensional network (Fig. 2).

For the biological activity of Schiff base compounds, see: Ali et al. (2002); Cukurovali et al. (2002); Tarafder et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x+1, y, -z+1/2.]
[Figure 2] Fig. 2. Three-dimensional supramolecular network in the title compound. Dashed lines denote hydrogen bonds.
Diaquabis{2-hydroxy-5-[(pyridin-2-yl)methylideneamino]benzoato- κ2N,N'}nickel(II) dihydrate top
Crystal data top
[Ni(C13H9N2O3)2(H2O)2]·2H2OF(000) = 1272
Mr = 613.22Dx = 1.566 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 14975 reflections
a = 15.7628 (6) Åθ = 3.9–25.0°
b = 10.5672 (3) ŵ = 0.81 mm1
c = 15.6178 (6) ÅT = 173 K
V = 2601.44 (16) Å3Platelet, red
Z = 40.41 × 0.34 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2294 independent reflections
Radiation source: fine-focus sealed tube1599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.0°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.725, Tmax = 0.907k = 1212
14975 measured reflectionsl = 1813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.20 e Å3
4 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ni(C13H9N2O3)2(H2O)2]·2H2OV = 2601.44 (16) Å3
Mr = 613.22Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 15.7628 (6) ŵ = 0.81 mm1
b = 10.5672 (3) ÅT = 173 K
c = 15.6178 (6) Å0.41 × 0.34 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2294 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1599 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.907Rint = 0.044
14975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0304 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.20 e Å3
2294 reflectionsΔρmin = 0.41 e Å3
202 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.40233 (3)0.25000.02879 (13)
C10.42670 (16)0.1813 (2)0.09408 (16)0.0418 (6)
C20.42072 (13)0.04024 (19)0.08275 (14)0.0314 (5)
C30.35591 (14)0.0140 (2)0.03319 (15)0.0371 (6)
C40.34858 (15)0.1436 (2)0.02799 (15)0.0422 (6)
H4A0.30490.17980.00610.051*
C50.40373 (14)0.2213 (2)0.07156 (14)0.0376 (5)
H5A0.39750.31060.06850.045*
C60.47632 (13)0.03895 (19)0.12562 (13)0.0306 (5)
H6A0.52040.00320.15930.037*
C70.46889 (13)0.16841 (18)0.12030 (13)0.0281 (5)
C80.60516 (14)0.2224 (2)0.16257 (13)0.0340 (5)
H8A0.62370.14790.13430.041*
C90.66617 (13)0.3041 (2)0.20555 (14)0.0333 (5)
C100.75249 (14)0.2905 (2)0.19473 (15)0.0463 (6)
H10A0.77470.22140.16290.056*
C110.80586 (17)0.3784 (3)0.23054 (17)0.0543 (7)
H11A0.86560.37110.22420.065*
C120.77113 (16)0.4765 (3)0.27551 (17)0.0529 (7)
H12A0.80670.54040.29890.064*
C130.68392 (16)0.4830 (2)0.28702 (16)0.0445 (6)
H13A0.66080.55000.32020.053*
N10.52662 (11)0.25156 (15)0.16309 (11)0.0290 (4)
N20.63159 (11)0.39730 (16)0.25264 (11)0.0347 (4)
O10.37216 (11)0.24708 (15)0.05397 (12)0.0591 (5)
O20.48289 (12)0.22398 (14)0.14171 (12)0.0561 (5)
O30.29873 (10)0.06080 (16)0.00716 (11)0.0531 (5)
H3A0.30950.13700.00350.080*
O40.50698 (13)0.53118 (16)0.15316 (12)0.0501 (5)
O50.62630 (14)0.48046 (19)0.02994 (14)0.0614 (5)
H4B0.4935 (15)0.6066 (17)0.1536 (18)0.062 (9)*
H4C0.5432 (14)0.522 (2)0.1140 (13)0.055 (9)*
H5C0.618 (2)0.419 (2)0.0026 (18)0.084 (11)*
H5B0.6754 (14)0.505 (3)0.024 (2)0.109 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0350 (2)0.0170 (2)0.0344 (2)0.0000.00107 (18)0.000
C10.0476 (16)0.0267 (13)0.0512 (15)0.0005 (11)0.0112 (13)0.0075 (12)
C20.0363 (13)0.0238 (12)0.0340 (12)0.0022 (9)0.0041 (10)0.0050 (10)
C30.0412 (14)0.0343 (14)0.0359 (12)0.0005 (10)0.0030 (11)0.0131 (10)
C40.0479 (15)0.0378 (14)0.0409 (13)0.0117 (11)0.0143 (11)0.0048 (11)
C50.0493 (14)0.0233 (12)0.0402 (13)0.0051 (10)0.0040 (11)0.0003 (10)
C60.0308 (13)0.0253 (11)0.0357 (13)0.0038 (9)0.0029 (10)0.0004 (10)
C70.0325 (12)0.0212 (11)0.0306 (12)0.0003 (9)0.0036 (10)0.0048 (9)
C80.0411 (15)0.0244 (12)0.0364 (13)0.0011 (10)0.0046 (11)0.0001 (10)
C90.0329 (13)0.0308 (13)0.0362 (13)0.0016 (9)0.0001 (11)0.0065 (11)
C100.0385 (15)0.0470 (16)0.0534 (16)0.0012 (11)0.0037 (12)0.0096 (13)
C110.0358 (14)0.0617 (19)0.0654 (19)0.0079 (13)0.0070 (13)0.0216 (15)
C120.0469 (17)0.0557 (18)0.0563 (17)0.0195 (14)0.0180 (13)0.0137 (14)
C130.0522 (16)0.0393 (15)0.0419 (14)0.0103 (12)0.0117 (12)0.0048 (12)
N10.0346 (11)0.0211 (9)0.0313 (10)0.0009 (7)0.0002 (8)0.0019 (8)
N20.0387 (10)0.0290 (10)0.0365 (10)0.0064 (8)0.0045 (9)0.0039 (9)
O10.0604 (12)0.0302 (10)0.0869 (13)0.0087 (8)0.0029 (10)0.0191 (9)
O20.0731 (13)0.0220 (9)0.0731 (12)0.0054 (8)0.0089 (10)0.0025 (9)
O30.0497 (11)0.0443 (10)0.0654 (12)0.0009 (8)0.0160 (9)0.0216 (9)
O40.0730 (13)0.0260 (10)0.0512 (11)0.0140 (9)0.0232 (10)0.0116 (8)
O50.0665 (15)0.0488 (13)0.0688 (14)0.0066 (11)0.0228 (12)0.0147 (11)
Geometric parameters (Å, º) top
Ni1—O42.0380 (17)C8—C91.456 (3)
Ni1—N22.0754 (18)C8—H8A0.9500
Ni1—N12.1347 (17)C9—N21.345 (3)
C1—O21.241 (3)C9—C101.378 (3)
C1—O11.271 (3)C10—C111.372 (3)
C1—C21.504 (3)C10—H10A0.9500
C2—C61.384 (3)C11—C121.367 (4)
C2—C31.404 (3)C11—H11A0.9500
C3—O31.354 (3)C12—C131.388 (3)
C3—C41.377 (3)C12—H12A0.9500
C4—C51.376 (3)C13—N21.337 (3)
C4—H4A0.9500C13—H13A0.9500
C5—C71.395 (3)O3—H3A0.8400
C5—H5A0.9500O4—H4B0.825 (16)
C6—C71.376 (3)O4—H4C0.843 (16)
C6—H6A0.9500O5—H5C0.837 (17)
C7—N11.431 (3)O5—H5B0.823 (18)
C8—N11.276 (3)
O4i—Ni1—O496.16 (11)C6—C7—C5119.61 (19)
O4i—Ni1—N293.23 (8)C6—C7—N1121.90 (19)
O4—Ni1—N288.74 (7)C5—C7—N1118.48 (18)
O4i—Ni1—N2i88.74 (7)N1—C8—C9119.7 (2)
O4—Ni1—N2i93.23 (8)N1—C8—H8A120.2
N2—Ni1—N2i177.06 (9)C9—C8—H8A120.2
O4i—Ni1—N1168.85 (7)N2—C9—C10122.9 (2)
O4—Ni1—N190.93 (7)N2—C9—C8114.73 (19)
N2—Ni1—N178.29 (7)C10—C9—C8122.3 (2)
N2i—Ni1—N199.48 (7)C11—C10—C9119.0 (2)
O4i—Ni1—N1i90.93 (7)C11—C10—H10A120.5
O4—Ni1—N1i168.85 (7)C9—C10—H10A120.5
N2—Ni1—N1i99.48 (6)C12—C11—C10118.5 (2)
N2i—Ni1—N1i78.29 (7)C12—C11—H11A120.7
N1—Ni1—N1i83.45 (9)C10—C11—H11A120.7
O2—C1—O1125.4 (2)C11—C12—C13120.0 (2)
O2—C1—C2118.4 (2)C11—C12—H12A120.0
O1—C1—C2116.2 (2)C13—C12—H12A120.0
C6—C2—C3118.72 (19)N2—C13—C12121.7 (2)
C6—C2—C1120.2 (2)N2—C13—H13A119.1
C3—C2—C1121.0 (2)C12—C13—H13A119.1
O3—C3—C4119.8 (2)C8—N1—C7117.79 (18)
O3—C3—C2120.2 (2)C8—N1—Ni1112.01 (14)
C4—C3—C2120.0 (2)C7—N1—Ni1129.08 (13)
C5—C4—C3120.8 (2)C13—N2—C9117.7 (2)
C5—C4—H4A119.6C13—N2—Ni1127.38 (16)
C3—C4—H4A119.6C9—N2—Ni1114.39 (14)
C4—C5—C7119.7 (2)C3—O3—H3A109.5
C4—C5—H5A120.2Ni1—O4—H4B129 (2)
C7—C5—H5A120.2Ni1—O4—H4C120.0 (17)
C7—C6—C2121.2 (2)H4B—O4—H4C107 (3)
C7—C6—H6A119.4H5C—O5—H5B109 (3)
C2—C6—H6A119.4
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.841.722.475 (2)149
O4—H4B···O2ii0.83 (2)1.81 (2)2.621 (2)168 (3)
O4—H4C···O50.84 (2)1.91 (2)2.744 (3)173 (2)
O5—H5B···O3iii0.82 (2)2.05 (2)2.870 (3)178 (3)
O5—H5C···O1iv0.84 (2)1.99 (2)2.793 (3)160 (3)
Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C13H9N2O3)2(H2O)2]·2H2O
Mr613.22
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)15.7628 (6), 10.5672 (3), 15.6178 (6)
V3)2601.44 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.41 × 0.34 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.725, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
14975, 2294, 1599
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 0.89
No. of reflections2294
No. of parameters202
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.841.722.475 (2)149
O4—H4B···O2i0.825 (16)1.808 (18)2.621 (2)168 (3)
O4—H4C···O50.843 (16)1.906 (17)2.744 (3)173 (2)
O5—H5B···O3ii0.823 (18)2.047 (19)2.870 (3)178 (3)
O5—H5C···O1iii0.837 (17)1.99 (2)2.793 (3)160 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the Ningbo Natural Science Foundation (grant No. 2010 A610060), the `Qianjiang Talent' Projects of Zhejiang Province (grant No. 2009R10032), the Ningbo University Foundation (grant No. XK1066), the Program for Innovative Research Team of Ningbo Novel Photoelectric Materials and Devices (grant No. 2009B21007) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141–148.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds