metal-organic compounds
Poly[diaquabis[μ-1-hydroxy-2-(imidazol-3-ium-1-yl)ethane-1,1-diyldiphosphonato]tricopper(II)]
aDepartment of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China, bDepartment of Vascular Surgery, The China–Japan Union Hospital of Jilin University, Changchun 130041, People's Republic of China, cDepartment of Orthopedics, The China–Japan Union Hospital of Jilin University, Changchun 130041, People's Republic of China, and dDepartment of Gynecology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
*Correspondence e-mail: sundj2010@yahoo.com.cn
In the title coordination polymer, [Cu3(C5H7N2O7P2)2(H2O)2]n, one CuII atom is five-coordinated by five O atoms from three 1-hydroxy-2-(imidazol-3-ium-1-yl)ethane-1,1-diyldiphosphonate (L) ligands in a distorted square-pyramidal geometry. The other CuII atom, lying on an inversion center, is six-coordinated in a distorted octahedral geometry by four O atoms from two L ligands and two O atoms from two water molecules. The five-coordinated CuII atoms are linked by phosphonate O atoms of the L ligands, forming a polymeric chain. These chains are further linked by the six-coordinated Cu atoms into a layer parallel to (01). N—H⋯O and O—H⋯O hydrogen bonds connect the layers into a three-dimensional supramolecular structure.
Related literature
For general background to the applications of metal phosphonates, see: Katz et al. (1994).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810046398/hy2377sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046398/hy2377Isup2.hkl
The synthesis was performed under hydrothermal conditions. A mixture of CuCl2.2H2O (0.034 g, 0.2 mmol), L ligand (0.070 g, 0.2 mmol) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 423 K in 2 h and maintained at 423 K for 72 h. After the mixture was cooled to 298 K, green crystals of the title compound were obtained (yield: 56%).
H atoms bound to C, N and hydroxy O were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97, N—H = 0.86 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxy)Ueq(C,N,O). H atoms of water molecules were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).
During the last two decades great research efforts have been devoted to the synthesis and design of metal phosphonates due to their potential applications in electrooptics, ion exchange, catalysis, and stent in intestinal or biliary (Katz et al., 1994). Herein, we present a new copper(II)–phosphonate complex.
The structure analysis reveals that the title compound has a two-dimensional polymeric structure. As shown in Fig. 1, there exist two kinds of crystallographically unique CuII ions. Atom Cu1 is five-coordinated by four phosphonate O atoms and one hydroxy O atom from three 2-(imidazol-3-ium-1-yl)-1-hydroxy-1,1-ethylidenediphosphonate (L) ligands. Atom Cu2 is six-coordinated by four O atoms from two L ligands and two O atoms from two water molecules. The Cu1 atoms are linked by the phosphonate O atoms, resulting in a one-dimensional polymeric chain. These chains are further linked by the Cu2 atoms into a layer (Fig. 2). N—H···O and O—H···O hydrogen bonds involving the coordinated water molecules and L ligands (Table 1) lead to the formation of a three-dimensional supramolecular network.
For general background to the applications of metal phosphonates, see: Katz et al. (1994).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu3(C5H7N2O7P2)2(H2O)2] | Z = 1 |
Mr = 764.81 | F(000) = 381 |
Triclinic, P1 | Dx = 2.510 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4167 (9) Å | Cell parameters from 1973 reflections |
b = 8.1502 (10) Å | θ = 1.9–28.3° |
c = 9.5228 (12) Å | µ = 3.54 mm−1 |
α = 104.747 (2)° | T = 293 K |
β = 107.658 (2)° | Block, blue |
γ = 101.484 (2)° | 0.30 × 0.28 × 0.21 mm |
V = 506.03 (11) Å3 |
Bruker APEX CCD diffractometer | 1973 independent reflections |
Radiation source: fine-focus sealed tube | 1729 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
φ and ω scans | θmax = 26.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→8 |
Tmin = 0.58, Tmax = 0.75 | k = −10→6 |
2771 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.039P)2 + 0.8352P] where P = (Fo2 + 2Fc2)/3 |
1973 reflections | (Δ/σ)max = 0.001 |
175 parameters | Δρmax = 0.55 e Å−3 |
2 restraints | Δρmin = −0.68 e Å−3 |
[Cu3(C5H7N2O7P2)2(H2O)2] | γ = 101.484 (2)° |
Mr = 764.81 | V = 506.03 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.4167 (9) Å | Mo Kα radiation |
b = 8.1502 (10) Å | µ = 3.54 mm−1 |
c = 9.5228 (12) Å | T = 293 K |
α = 104.747 (2)° | 0.30 × 0.28 × 0.21 mm |
β = 107.658 (2)° |
Bruker APEX CCD diffractometer | 1973 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1729 reflections with I > 2σ(I) |
Tmin = 0.58, Tmax = 0.75 | Rint = 0.012 |
2771 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 2 restraints |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.55 e Å−3 |
1973 reflections | Δρmin = −0.68 e Å−3 |
175 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2068 (5) | −0.5648 (4) | −0.4517 (4) | 0.0140 (7) | |
H1 | 0.1047 | −0.6119 | −0.5497 | 0.017* | |
C2 | 0.3998 (5) | −0.5281 (5) | −0.2131 (4) | 0.0173 (7) | |
H2 | 0.4524 | −0.5475 | −0.1190 | 0.021* | |
C3 | 0.4782 (5) | −0.3932 (5) | −0.2542 (4) | 0.0186 (7) | |
H3 | 0.5935 | −0.2995 | −0.1928 | 0.022* | |
C4 | 0.0950 (5) | −0.7988 (4) | −0.3483 (4) | 0.0122 (7) | |
H4A | 0.1673 | −0.8856 | −0.3460 | 0.015* | |
H4B | −0.0147 | −0.8435 | −0.4487 | 0.015* | |
C5 | 0.0110 (5) | −0.7833 (4) | −0.2191 (4) | 0.0090 (6) | |
N1 | 0.2266 (4) | −0.6324 (4) | −0.3368 (3) | 0.0110 (6) | |
N2 | 0.3567 (4) | −0.4195 (4) | −0.4031 (3) | 0.0159 (6) | |
H2A | 0.3750 | −0.3518 | −0.4568 | 0.019* | |
O1 | −0.2890 (3) | −1.0888 (3) | −0.3981 (2) | 0.0104 (5) | |
O2 | −0.2018 (3) | −0.9799 (3) | −0.1041 (2) | 0.0098 (5) | |
O3 | 0.0217 (3) | −1.1193 (3) | −0.2195 (2) | 0.0099 (5) | |
O4 | 0.2060 (3) | −0.3636 (3) | 0.0771 (2) | 0.0100 (5) | |
O5 | 0.0648 (3) | −0.5288 (3) | 0.2312 (2) | 0.0105 (5) | |
O6 | 0.3438 (3) | −0.2484 (3) | 0.3787 (3) | 0.0115 (5) | |
O7 | 0.1644 (3) | −0.7118 (3) | −0.0644 (2) | 0.0105 (5) | |
H7 | 0.2315 | −0.6121 | −0.0511 | 0.016* | |
P1 | −0.12407 (12) | −1.01022 (10) | −0.23716 (9) | 0.00780 (18) | |
P2 | 0.16460 (12) | −0.34839 (10) | 0.22756 (9) | 0.00806 (18) | |
Cu1 | −0.07744 (6) | −0.75596 (5) | 0.06756 (4) | 0.00871 (12) | |
Cu2 | 0.5000 | 0.0000 | 0.5000 | 0.01057 (15) | |
O1W | 0.3909 (4) | −0.0271 (4) | 0.7275 (3) | 0.0282 (6) | |
H1A | 0.302 (6) | −0.054 (7) | 0.768 (5) | 0.042* | |
H1B | 0.491 (5) | −0.001 (6) | 0.815 (4) | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0184 (18) | 0.0150 (17) | 0.0093 (15) | 0.0056 (14) | 0.0050 (13) | 0.0048 (13) |
C2 | 0.0147 (17) | 0.0198 (18) | 0.0129 (16) | 0.0011 (14) | 0.0017 (14) | 0.0058 (14) |
C3 | 0.0171 (18) | 0.0175 (18) | 0.0163 (17) | −0.0001 (14) | 0.0032 (14) | 0.0056 (14) |
C4 | 0.0152 (17) | 0.0084 (15) | 0.0117 (16) | 0.0021 (13) | 0.0061 (13) | 0.0011 (13) |
C5 | 0.0099 (15) | 0.0080 (15) | 0.0064 (14) | −0.0002 (12) | 0.0010 (12) | 0.0026 (12) |
N1 | 0.0119 (13) | 0.0090 (13) | 0.0128 (13) | 0.0032 (11) | 0.0050 (11) | 0.0040 (11) |
N2 | 0.0209 (16) | 0.0133 (15) | 0.0156 (14) | 0.0029 (12) | 0.0077 (12) | 0.0089 (12) |
O1 | 0.0133 (12) | 0.0068 (11) | 0.0075 (11) | 0.0025 (9) | 0.0004 (9) | 0.0009 (9) |
O2 | 0.0126 (11) | 0.0060 (11) | 0.0093 (10) | 0.0004 (9) | 0.0045 (9) | 0.0019 (9) |
O3 | 0.0137 (11) | 0.0072 (11) | 0.0089 (11) | 0.0032 (9) | 0.0036 (9) | 0.0032 (9) |
O4 | 0.0134 (11) | 0.0080 (11) | 0.0091 (11) | 0.0042 (9) | 0.0044 (9) | 0.0029 (9) |
O5 | 0.0149 (12) | 0.0075 (11) | 0.0072 (11) | 0.0021 (9) | 0.0028 (9) | 0.0020 (9) |
O6 | 0.0127 (11) | 0.0082 (11) | 0.0086 (11) | 0.0016 (9) | −0.0003 (9) | 0.0013 (9) |
O7 | 0.0107 (11) | 0.0075 (11) | 0.0077 (11) | −0.0004 (9) | −0.0008 (9) | 0.0008 (9) |
P1 | 0.0101 (4) | 0.0055 (4) | 0.0064 (4) | 0.0017 (3) | 0.0022 (3) | 0.0014 (3) |
P2 | 0.0104 (4) | 0.0049 (4) | 0.0062 (4) | 0.0012 (3) | 0.0014 (3) | 0.0006 (3) |
Cu1 | 0.0123 (2) | 0.0056 (2) | 0.0063 (2) | 0.00188 (15) | 0.00214 (15) | 0.00108 (15) |
Cu2 | 0.0109 (3) | 0.0053 (3) | 0.0098 (3) | 0.0012 (2) | −0.0012 (2) | 0.0005 (2) |
O1W | 0.0233 (15) | 0.0366 (17) | 0.0267 (15) | 0.0095 (13) | 0.0093 (12) | 0.0132 (13) |
C1—N2 | 1.318 (4) | O2—Cu1 | 1.936 (2) |
C1—N1 | 1.329 (4) | O3—P1 | 1.529 (2) |
C1—H1 | 0.9300 | O3—Cu1iii | 1.962 (2) |
C2—C3 | 1.343 (5) | O4—P2 | 1.534 (2) |
C2—N1 | 1.377 (4) | O4—Cu1i | 2.003 (2) |
C2—H2 | 0.9300 | O5—P2 | 1.523 (2) |
C3—N2 | 1.364 (4) | O5—Cu1 | 1.930 (2) |
C3—H3 | 0.9300 | O6—P2 | 1.521 (2) |
C4—N1 | 1.462 (4) | O6—Cu2 | 1.959 (2) |
C4—C5 | 1.528 (4) | O7—H7 | 0.8200 |
C4—H4A | 0.9700 | P2—C5i | 1.842 (3) |
C4—H4B | 0.9700 | Cu1—O3iii | 1.962 (2) |
C5—O7 | 1.444 (4) | Cu1—O4i | 2.003 (2) |
C5—P2i | 1.842 (3) | Cu2—O1i | 1.950 (2) |
C5—P1 | 1.857 (3) | Cu2—O1iv | 1.950 (2) |
N2—H2A | 0.8600 | Cu2—O6v | 1.959 (2) |
O1—P1 | 1.519 (2) | O1W—H1A | 0.88 (5) |
O1—Cu2ii | 1.950 (2) | O1W—H1B | 0.87 (2) |
O2—P1 | 1.530 (2) | ||
N2—C1—N1 | 108.3 (3) | P2—O4—Cu1i | 119.28 (13) |
N2—C1—H1 | 125.8 | P2—O5—Cu1 | 131.88 (14) |
N1—C1—H1 | 125.8 | P2—O6—Cu2 | 136.89 (14) |
C3—C2—N1 | 107.0 (3) | C5—O7—H7 | 109.5 |
C3—C2—H2 | 126.5 | O1—P1—O3 | 111.33 (12) |
N1—C2—H2 | 126.5 | O1—P1—O2 | 112.88 (13) |
C2—C3—N2 | 107.0 (3) | O3—P1—O2 | 112.51 (12) |
C2—C3—H3 | 126.5 | O1—P1—C5 | 106.82 (13) |
N2—C3—H3 | 126.5 | O3—P1—C5 | 108.50 (14) |
N1—C4—C5 | 114.6 (3) | O2—P1—C5 | 104.30 (13) |
N1—C4—H4A | 108.6 | O6—P2—O5 | 109.75 (13) |
C5—C4—H4A | 108.6 | O6—P2—O4 | 114.99 (13) |
N1—C4—H4B | 108.6 | O5—P2—O4 | 112.22 (12) |
C5—C4—H4B | 108.6 | O6—P2—C5i | 107.03 (13) |
H4A—C4—H4B | 107.6 | O5—P2—C5i | 108.36 (14) |
O7—C5—C4 | 112.5 (3) | O4—P2—C5i | 104.02 (13) |
O7—C5—P2i | 108.6 (2) | O5—Cu1—O2 | 174.89 (9) |
C4—C5—P2i | 114.1 (2) | O5—Cu1—O3iii | 91.03 (9) |
O7—C5—P1 | 105.3 (2) | O2—Cu1—O3iii | 91.03 (9) |
C4—C5—P1 | 108.5 (2) | O5—Cu1—O4i | 90.70 (9) |
P2i—C5—P1 | 107.27 (16) | O2—Cu1—O4i | 88.63 (9) |
C1—N1—C2 | 108.3 (3) | O3iii—Cu1—O4i | 163.80 (9) |
C1—N1—C4 | 124.8 (3) | O1i—Cu2—O1iv | 180.00 (13) |
C2—N1—C4 | 126.7 (3) | O1i—Cu2—O6 | 92.58 (9) |
C1—N2—C3 | 109.3 (3) | O1iv—Cu2—O6 | 87.42 (9) |
C1—N2—H2A | 125.3 | O1i—Cu2—O6v | 87.42 (9) |
C3—N2—H2A | 125.3 | O1iv—Cu2—O6v | 92.58 (9) |
P1—O1—Cu2ii | 131.22 (13) | O6—Cu2—O6v | 180.00 (19) |
P1—O2—Cu1 | 118.08 (13) | H1A—O1W—H1B | 93 (4) |
P1—O3—Cu1iii | 125.96 (13) | ||
N1—C2—C3—N2 | −2.0 (4) | P2i—C5—P1—O1 | 63.64 (18) |
N1—C4—C5—O7 | −56.4 (4) | O7—C5—P1—O3 | −60.7 (2) |
N1—C4—C5—P2i | 67.9 (3) | C4—C5—P1—O3 | 60.0 (2) |
N1—C4—C5—P1 | −172.6 (2) | P2i—C5—P1—O3 | −176.24 (13) |
N2—C1—N1—C2 | −2.1 (4) | O7—C5—P1—O2 | 59.4 (2) |
N2—C1—N1—C4 | −176.7 (3) | C4—C5—P1—O2 | −179.9 (2) |
C3—C2—N1—C1 | 2.5 (4) | P2i—C5—P1—O2 | −56.12 (17) |
C3—C2—N1—C4 | 177.0 (3) | Cu2—O6—P2—O5 | −156.45 (19) |
C5—C4—N1—C1 | −127.4 (3) | Cu2—O6—P2—O4 | 75.9 (2) |
C5—C4—N1—C2 | 58.9 (4) | Cu2—O6—P2—C5i | −39.1 (2) |
N1—C1—N2—C3 | 0.9 (4) | Cu1—O5—P2—O6 | −147.75 (17) |
C2—C3—N2—C1 | 0.7 (4) | Cu1—O5—P2—O4 | −18.6 (2) |
Cu2ii—O1—P1—O3 | −172.39 (16) | Cu1—O5—P2—C5i | 95.7 (2) |
Cu2ii—O1—P1—O2 | 60.0 (2) | Cu1i—O4—P2—O6 | −115.31 (15) |
Cu2ii—O1—P1—C5 | −54.1 (2) | Cu1i—O4—P2—O5 | 118.31 (14) |
Cu1iii—O3—P1—O1 | −118.20 (16) | Cu1i—O4—P2—C5i | 1.40 (18) |
Cu1iii—O3—P1—O2 | 9.7 (2) | P2—O5—Cu1—O3iii | 156.80 (19) |
Cu1iii—O3—P1—C5 | 124.53 (16) | P2—O5—Cu1—O4i | −39.31 (19) |
Cu1—O2—P1—O1 | −134.92 (14) | P1—O2—Cu1—O3iii | −124.84 (14) |
Cu1—O2—P1—O3 | 98.05 (15) | P1—O2—Cu1—O4i | 71.36 (15) |
Cu1—O2—P1—C5 | −19.34 (18) | P2—O6—Cu2—O1i | 19.3 (2) |
O7—C5—P1—O1 | 179.20 (18) | P2—O6—Cu2—O1iv | −160.7 (2) |
C4—C5—P1—O1 | −60.1 (2) |
Symmetry codes: (i) −x, −y−1, −z; (ii) x−1, y−1, z−1; (iii) −x, −y−2, −z; (iv) x+1, y+1, z+1; (v) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O6vi | 0.86 | 1.94 | 2.771 (4) | 163 |
O7—H7···O4 | 0.82 | 2.16 | 2.724 (3) | 126 |
O1W—H1A···O3vii | 0.88 (5) | 2.09 (3) | 2.921 (4) | 157 (5) |
O1W—H1B···O2iv | 0.87 (2) | 2.13 (4) | 2.851 (4) | 140 (4) |
Symmetry codes: (iv) x+1, y+1, z+1; (vi) x, y, z−1; (vii) x, y+1, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu3(C5H7N2O7P2)2(H2O)2] |
Mr | 764.81 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.4167 (9), 8.1502 (10), 9.5228 (12) |
α, β, γ (°) | 104.747 (2), 107.658 (2), 101.484 (2) |
V (Å3) | 506.03 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 3.54 |
Crystal size (mm) | 0.30 × 0.28 × 0.21 |
Data collection | |
Diffractometer | Bruker APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.58, 0.75 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2771, 1973, 1729 |
Rint | 0.012 |
(sin θ/λ)max (Å−1) | 0.619 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.073, 1.05 |
No. of reflections | 1973 |
No. of parameters | 175 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.55, −0.68 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O6i | 0.86 | 1.94 | 2.771 (4) | 163 |
O7—H7···O4 | 0.82 | 2.16 | 2.724 (3) | 126 |
O1W—H1A···O3ii | 0.88 (5) | 2.09 (3) | 2.921 (4) | 157 (5) |
O1W—H1B···O2iii | 0.87 (2) | 2.13 (4) | 2.851 (4) | 140 (4) |
Symmetry codes: (i) x, y, z−1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1. |
Acknowledgements
The authors thank The China–Japan Union Hospital of Jilin University for supporting this work.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Katz, H. E., Wilson, W. L. & Scheller, G. (1994). J. Am. Chem. Soc. 116, 6636–6640. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the last two decades great research efforts have been devoted to the synthesis and design of metal phosphonates due to their potential applications in electrooptics, ion exchange, catalysis, and stent in intestinal or biliary (Katz et al., 1994). Herein, we present a new copper(II)–phosphonate complex.
The structure analysis reveals that the title compound has a two-dimensional polymeric structure. As shown in Fig. 1, there exist two kinds of crystallographically unique CuII ions. Atom Cu1 is five-coordinated by four phosphonate O atoms and one hydroxy O atom from three 2-(imidazol-3-ium-1-yl)-1-hydroxy-1,1-ethylidenediphosphonate (L) ligands. Atom Cu2 is six-coordinated by four O atoms from two L ligands and two O atoms from two water molecules. The Cu1 atoms are linked by the phosphonate O atoms, resulting in a one-dimensional polymeric chain. These chains are further linked by the Cu2 atoms into a layer (Fig. 2). N—H···O and O—H···O hydrogen bonds involving the coordinated water molecules and L ligands (Table 1) lead to the formation of a three-dimensional supramolecular network.