metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­bis­­[μ-1-hy­dr­oxy-2-(imidazol-3-ium-1-yl)ethane-1,1-diyldi­phospho­nato]tricopper(II)]

aDepartment of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China, bDepartment of Vascular Surgery, The China–Japan Union Hospital of Jilin University, Changchun 130041, People's Republic of China, cDepartment of Orthopedics, The China–Japan Union Hospital of Jilin University, Changchun 130041, People's Republic of China, and dDepartment of Gynecology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
*Correspondence e-mail: sundj2010@yahoo.com.cn

(Received 6 November 2010; accepted 10 November 2010; online 17 November 2010)

In the title coordination polymer, [Cu3(C5H7N2O7P2)2(H2O)2]n, one CuII atom is five-coordinated by five O atoms from three 1-hy­droxy-2-(imidazol-3-ium-1-yl)ethane-1,1-diyldiphospho­nate (L) ligands in a distorted square-pyramidal geometry. The other CuII atom, lying on an inversion center, is six-coordinated in a distorted octa­hedral geometry by four O atoms from two L ligands and two O atoms from two water mol­ecules. The five-coordinated CuII atoms are linked by phospho­nate O atoms of the L ligands, forming a polymeric chain. These chains are further linked by the six-coordinated Cu atoms into a layer parallel to ([\overline{1}]01). N—H⋯O and O—H⋯O hydrogen bonds connect the layers into a three-dimensional supra­molecular structure.

Related literature

For general background to the applications of metal phospho­nates, see: Katz et al. (1994[Katz, H. E., Wilson, W. L. & Scheller, G. (1994). J. Am. Chem. Soc. 116, 6636-6640.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C5H7N2O7P2)2(H2O)2]

  • Mr = 764.81

  • Triclinic, [P \overline 1]

  • a = 7.4167 (9) Å

  • b = 8.1502 (10) Å

  • c = 9.5228 (12) Å

  • α = 104.747 (2)°

  • β = 107.658 (2)°

  • γ = 101.484 (2)°

  • V = 506.03 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.21 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.58, Tmax = 0.75

  • 2771 measured reflections

  • 1973 independent reflections

  • 1729 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.05

  • 1973 reflections

  • 175 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O6i 0.86 1.94 2.771 (4) 163
O7—H7⋯O4 0.82 2.16 2.724 (3) 126
O1W—H1A⋯O3ii 0.88 (5) 2.09 (3) 2.921 (4) 157 (5)
O1W—H1B⋯O2iii 0.87 (2) 2.13 (4) 2.851 (4) 140 (4)
Symmetry codes: (i) x, y, z-1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the last two decades great research efforts have been devoted to the synthesis and design of metal phosphonates due to their potential applications in electrooptics, ion exchange, catalysis, and stent in intestinal or biliary (Katz et al., 1994). Herein, we present a new copper(II)–phosphonate complex.

The structure analysis reveals that the title compound has a two-dimensional polymeric structure. As shown in Fig. 1, there exist two kinds of crystallographically unique CuII ions. Atom Cu1 is five-coordinated by four phosphonate O atoms and one hydroxy O atom from three 2-(imidazol-3-ium-1-yl)-1-hydroxy-1,1-ethylidenediphosphonate (L) ligands. Atom Cu2 is six-coordinated by four O atoms from two L ligands and two O atoms from two water molecules. The Cu1 atoms are linked by the phosphonate O atoms, resulting in a one-dimensional polymeric chain. These chains are further linked by the Cu2 atoms into a layer (Fig. 2). N—H···O and O—H···O hydrogen bonds involving the coordinated water molecules and L ligands (Table 1) lead to the formation of a three-dimensional supramolecular network.

Related literature top

For general background to the applications of metal phosphonates, see: Katz et al. (1994).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of CuCl2.2H2O (0.034 g, 0.2 mmol), L ligand (0.070 g, 0.2 mmol) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 423 K in 2 h and maintained at 423 K for 72 h. After the mixture was cooled to 298 K, green crystals of the title compound were obtained (yield: 56%).

Refinement top

H atoms bound to C, N and hydroxy O were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97, N—H = 0.86 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxy)Ueq(C,N,O). H atoms of water molecules were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Structure description top

During the last two decades great research efforts have been devoted to the synthesis and design of metal phosphonates due to their potential applications in electrooptics, ion exchange, catalysis, and stent in intestinal or biliary (Katz et al., 1994). Herein, we present a new copper(II)–phosphonate complex.

The structure analysis reveals that the title compound has a two-dimensional polymeric structure. As shown in Fig. 1, there exist two kinds of crystallographically unique CuII ions. Atom Cu1 is five-coordinated by four phosphonate O atoms and one hydroxy O atom from three 2-(imidazol-3-ium-1-yl)-1-hydroxy-1,1-ethylidenediphosphonate (L) ligands. Atom Cu2 is six-coordinated by four O atoms from two L ligands and two O atoms from two water molecules. The Cu1 atoms are linked by the phosphonate O atoms, resulting in a one-dimensional polymeric chain. These chains are further linked by the Cu2 atoms into a layer (Fig. 2). N—H···O and O—H···O hydrogen bonds involving the coordinated water molecules and L ligands (Table 1) lead to the formation of a three-dimensional supramolecular network.

For general background to the applications of metal phosphonates, see: Katz et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y - 1, -z; (ii) x - 1, y - 1, z - 1; (iii) -x, -y - 2, -z; (iv) x + 1, y + 1, z + 1; (v) -x + 1, -y, -z + 1; (vi) x, y + 1, z; (vii) -x - 1, -y - 2, -z - 1.]
[Figure 2] Fig. 2. Two-dimensional layer structure in the title compound.
Poly[diaquabis[µ-1-hydroxy-2-(imidazol-3-ium-1-yl)ethane-1,1- diyldiphosphonato]tricopper(II)] top
Crystal data top
[Cu3(C5H7N2O7P2)2(H2O)2]Z = 1
Mr = 764.81F(000) = 381
Triclinic, P1Dx = 2.510 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4167 (9) ÅCell parameters from 1973 reflections
b = 8.1502 (10) Åθ = 1.9–28.3°
c = 9.5228 (12) ŵ = 3.54 mm1
α = 104.747 (2)°T = 293 K
β = 107.658 (2)°Block, blue
γ = 101.484 (2)°0.30 × 0.28 × 0.21 mm
V = 506.03 (11) Å3
Data collection top
Bruker APEX CCD
diffractometer
1973 independent reflections
Radiation source: fine-focus sealed tube1729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
φ and ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.58, Tmax = 0.75k = 106
2771 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.039P)2 + 0.8352P]
where P = (Fo2 + 2Fc2)/3
1973 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.55 e Å3
2 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu3(C5H7N2O7P2)2(H2O)2]γ = 101.484 (2)°
Mr = 764.81V = 506.03 (11) Å3
Triclinic, P1Z = 1
a = 7.4167 (9) ÅMo Kα radiation
b = 8.1502 (10) ŵ = 3.54 mm1
c = 9.5228 (12) ÅT = 293 K
α = 104.747 (2)°0.30 × 0.28 × 0.21 mm
β = 107.658 (2)°
Data collection top
Bruker APEX CCD
diffractometer
1973 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1729 reflections with I > 2σ(I)
Tmin = 0.58, Tmax = 0.75Rint = 0.012
2771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.55 e Å3
1973 reflectionsΔρmin = 0.68 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2068 (5)0.5648 (4)0.4517 (4)0.0140 (7)
H10.10470.61190.54970.017*
C20.3998 (5)0.5281 (5)0.2131 (4)0.0173 (7)
H20.45240.54750.11900.021*
C30.4782 (5)0.3932 (5)0.2542 (4)0.0186 (7)
H30.59350.29950.19280.022*
C40.0950 (5)0.7988 (4)0.3483 (4)0.0122 (7)
H4A0.16730.88560.34600.015*
H4B0.01470.84350.44870.015*
C50.0110 (5)0.7833 (4)0.2191 (4)0.0090 (6)
N10.2266 (4)0.6324 (4)0.3368 (3)0.0110 (6)
N20.3567 (4)0.4195 (4)0.4031 (3)0.0159 (6)
H2A0.37500.35180.45680.019*
O10.2890 (3)1.0888 (3)0.3981 (2)0.0104 (5)
O20.2018 (3)0.9799 (3)0.1041 (2)0.0098 (5)
O30.0217 (3)1.1193 (3)0.2195 (2)0.0099 (5)
O40.2060 (3)0.3636 (3)0.0771 (2)0.0100 (5)
O50.0648 (3)0.5288 (3)0.2312 (2)0.0105 (5)
O60.3438 (3)0.2484 (3)0.3787 (3)0.0115 (5)
O70.1644 (3)0.7118 (3)0.0644 (2)0.0105 (5)
H70.23150.61210.05110.016*
P10.12407 (12)1.01022 (10)0.23716 (9)0.00780 (18)
P20.16460 (12)0.34839 (10)0.22756 (9)0.00806 (18)
Cu10.07744 (6)0.75596 (5)0.06756 (4)0.00871 (12)
Cu20.50000.00000.50000.01057 (15)
O1W0.3909 (4)0.0271 (4)0.7275 (3)0.0282 (6)
H1A0.302 (6)0.054 (7)0.768 (5)0.042*
H1B0.491 (5)0.001 (6)0.815 (4)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0184 (18)0.0150 (17)0.0093 (15)0.0056 (14)0.0050 (13)0.0048 (13)
C20.0147 (17)0.0198 (18)0.0129 (16)0.0011 (14)0.0017 (14)0.0058 (14)
C30.0171 (18)0.0175 (18)0.0163 (17)0.0001 (14)0.0032 (14)0.0056 (14)
C40.0152 (17)0.0084 (15)0.0117 (16)0.0021 (13)0.0061 (13)0.0011 (13)
C50.0099 (15)0.0080 (15)0.0064 (14)0.0002 (12)0.0010 (12)0.0026 (12)
N10.0119 (13)0.0090 (13)0.0128 (13)0.0032 (11)0.0050 (11)0.0040 (11)
N20.0209 (16)0.0133 (15)0.0156 (14)0.0029 (12)0.0077 (12)0.0089 (12)
O10.0133 (12)0.0068 (11)0.0075 (11)0.0025 (9)0.0004 (9)0.0009 (9)
O20.0126 (11)0.0060 (11)0.0093 (10)0.0004 (9)0.0045 (9)0.0019 (9)
O30.0137 (11)0.0072 (11)0.0089 (11)0.0032 (9)0.0036 (9)0.0032 (9)
O40.0134 (11)0.0080 (11)0.0091 (11)0.0042 (9)0.0044 (9)0.0029 (9)
O50.0149 (12)0.0075 (11)0.0072 (11)0.0021 (9)0.0028 (9)0.0020 (9)
O60.0127 (11)0.0082 (11)0.0086 (11)0.0016 (9)0.0003 (9)0.0013 (9)
O70.0107 (11)0.0075 (11)0.0077 (11)0.0004 (9)0.0008 (9)0.0008 (9)
P10.0101 (4)0.0055 (4)0.0064 (4)0.0017 (3)0.0022 (3)0.0014 (3)
P20.0104 (4)0.0049 (4)0.0062 (4)0.0012 (3)0.0014 (3)0.0006 (3)
Cu10.0123 (2)0.0056 (2)0.0063 (2)0.00188 (15)0.00214 (15)0.00108 (15)
Cu20.0109 (3)0.0053 (3)0.0098 (3)0.0012 (2)0.0012 (2)0.0005 (2)
O1W0.0233 (15)0.0366 (17)0.0267 (15)0.0095 (13)0.0093 (12)0.0132 (13)
Geometric parameters (Å, º) top
C1—N21.318 (4)O2—Cu11.936 (2)
C1—N11.329 (4)O3—P11.529 (2)
C1—H10.9300O3—Cu1iii1.962 (2)
C2—C31.343 (5)O4—P21.534 (2)
C2—N11.377 (4)O4—Cu1i2.003 (2)
C2—H20.9300O5—P21.523 (2)
C3—N21.364 (4)O5—Cu11.930 (2)
C3—H30.9300O6—P21.521 (2)
C4—N11.462 (4)O6—Cu21.959 (2)
C4—C51.528 (4)O7—H70.8200
C4—H4A0.9700P2—C5i1.842 (3)
C4—H4B0.9700Cu1—O3iii1.962 (2)
C5—O71.444 (4)Cu1—O4i2.003 (2)
C5—P2i1.842 (3)Cu2—O1i1.950 (2)
C5—P11.857 (3)Cu2—O1iv1.950 (2)
N2—H2A0.8600Cu2—O6v1.959 (2)
O1—P11.519 (2)O1W—H1A0.88 (5)
O1—Cu2ii1.950 (2)O1W—H1B0.87 (2)
O2—P11.530 (2)
N2—C1—N1108.3 (3)P2—O4—Cu1i119.28 (13)
N2—C1—H1125.8P2—O5—Cu1131.88 (14)
N1—C1—H1125.8P2—O6—Cu2136.89 (14)
C3—C2—N1107.0 (3)C5—O7—H7109.5
C3—C2—H2126.5O1—P1—O3111.33 (12)
N1—C2—H2126.5O1—P1—O2112.88 (13)
C2—C3—N2107.0 (3)O3—P1—O2112.51 (12)
C2—C3—H3126.5O1—P1—C5106.82 (13)
N2—C3—H3126.5O3—P1—C5108.50 (14)
N1—C4—C5114.6 (3)O2—P1—C5104.30 (13)
N1—C4—H4A108.6O6—P2—O5109.75 (13)
C5—C4—H4A108.6O6—P2—O4114.99 (13)
N1—C4—H4B108.6O5—P2—O4112.22 (12)
C5—C4—H4B108.6O6—P2—C5i107.03 (13)
H4A—C4—H4B107.6O5—P2—C5i108.36 (14)
O7—C5—C4112.5 (3)O4—P2—C5i104.02 (13)
O7—C5—P2i108.6 (2)O5—Cu1—O2174.89 (9)
C4—C5—P2i114.1 (2)O5—Cu1—O3iii91.03 (9)
O7—C5—P1105.3 (2)O2—Cu1—O3iii91.03 (9)
C4—C5—P1108.5 (2)O5—Cu1—O4i90.70 (9)
P2i—C5—P1107.27 (16)O2—Cu1—O4i88.63 (9)
C1—N1—C2108.3 (3)O3iii—Cu1—O4i163.80 (9)
C1—N1—C4124.8 (3)O1i—Cu2—O1iv180.00 (13)
C2—N1—C4126.7 (3)O1i—Cu2—O692.58 (9)
C1—N2—C3109.3 (3)O1iv—Cu2—O687.42 (9)
C1—N2—H2A125.3O1i—Cu2—O6v87.42 (9)
C3—N2—H2A125.3O1iv—Cu2—O6v92.58 (9)
P1—O1—Cu2ii131.22 (13)O6—Cu2—O6v180.00 (19)
P1—O2—Cu1118.08 (13)H1A—O1W—H1B93 (4)
P1—O3—Cu1iii125.96 (13)
N1—C2—C3—N22.0 (4)P2i—C5—P1—O163.64 (18)
N1—C4—C5—O756.4 (4)O7—C5—P1—O360.7 (2)
N1—C4—C5—P2i67.9 (3)C4—C5—P1—O360.0 (2)
N1—C4—C5—P1172.6 (2)P2i—C5—P1—O3176.24 (13)
N2—C1—N1—C22.1 (4)O7—C5—P1—O259.4 (2)
N2—C1—N1—C4176.7 (3)C4—C5—P1—O2179.9 (2)
C3—C2—N1—C12.5 (4)P2i—C5—P1—O256.12 (17)
C3—C2—N1—C4177.0 (3)Cu2—O6—P2—O5156.45 (19)
C5—C4—N1—C1127.4 (3)Cu2—O6—P2—O475.9 (2)
C5—C4—N1—C258.9 (4)Cu2—O6—P2—C5i39.1 (2)
N1—C1—N2—C30.9 (4)Cu1—O5—P2—O6147.75 (17)
C2—C3—N2—C10.7 (4)Cu1—O5—P2—O418.6 (2)
Cu2ii—O1—P1—O3172.39 (16)Cu1—O5—P2—C5i95.7 (2)
Cu2ii—O1—P1—O260.0 (2)Cu1i—O4—P2—O6115.31 (15)
Cu2ii—O1—P1—C554.1 (2)Cu1i—O4—P2—O5118.31 (14)
Cu1iii—O3—P1—O1118.20 (16)Cu1i—O4—P2—C5i1.40 (18)
Cu1iii—O3—P1—O29.7 (2)P2—O5—Cu1—O3iii156.80 (19)
Cu1iii—O3—P1—C5124.53 (16)P2—O5—Cu1—O4i39.31 (19)
Cu1—O2—P1—O1134.92 (14)P1—O2—Cu1—O3iii124.84 (14)
Cu1—O2—P1—O398.05 (15)P1—O2—Cu1—O4i71.36 (15)
Cu1—O2—P1—C519.34 (18)P2—O6—Cu2—O1i19.3 (2)
O7—C5—P1—O1179.20 (18)P2—O6—Cu2—O1iv160.7 (2)
C4—C5—P1—O160.1 (2)
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z1; (iii) x, y2, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6vi0.861.942.771 (4)163
O7—H7···O40.822.162.724 (3)126
O1W—H1A···O3vii0.88 (5)2.09 (3)2.921 (4)157 (5)
O1W—H1B···O2iv0.87 (2)2.13 (4)2.851 (4)140 (4)
Symmetry codes: (iv) x+1, y+1, z+1; (vi) x, y, z1; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu3(C5H7N2O7P2)2(H2O)2]
Mr764.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4167 (9), 8.1502 (10), 9.5228 (12)
α, β, γ (°)104.747 (2), 107.658 (2), 101.484 (2)
V3)506.03 (11)
Z1
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.30 × 0.28 × 0.21
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.58, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
2771, 1973, 1729
Rint0.012
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.05
No. of reflections1973
No. of parameters175
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.68

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.861.942.771 (4)163
O7—H7···O40.822.162.724 (3)126
O1W—H1A···O3ii0.88 (5)2.09 (3)2.921 (4)157 (5)
O1W—H1B···O2iii0.87 (2)2.13 (4)2.851 (4)140 (4)
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank The China–Japan Union Hospital of Jilin University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKatz, H. E., Wilson, W. L. & Scheller, G. (1994). J. Am. Chem. Soc. 116, 6636–6640.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds