metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[1-phenyl-3-(1H-1,2,4-triazol-1-yl-κN4)propan-1-one]bis­­(thio­cyanato-κN)manganese(II)

aCollege of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: caihua-1109@163.com

(Received 8 November 2010; accepted 14 November 2010; online 20 November 2010)

In the mononuclear title complex, [Mn(NCS)2(C11H11N3O)4], the MnII atom, lying on an inversion center, is coordinated by two monodentate thio­cyanate anions and four monodentate 1-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one ligands in a distorted octa­hedral geometry. Each complex mol­ecule is linked to four neighboring ones by weak C—H⋯N and C—H⋯S hydrogen bonds, forming a two-dimensional sheet parallel to (001).

Related literature

For general background to self-assembly of supra­molecular systems, see: Beatty (2003[Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.]); Braga et al. (2003[Braga, D., Maini, L., Polito, M., Tagliavini, E. & Grepioni, F. (2003). Coord. Chem. Rev. 246, 53-71.]). For a related structure, see: Guo & Cai (2007[Guo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322-m1324.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C11H11N3O)4]

  • Mr = 976.03

  • Triclinic, [P \overline 1]

  • a = 7.9326 (17) Å

  • b = 11.845 (3) Å

  • c = 13.740 (3) Å

  • α = 69.240 (3)°

  • β = 75.417 (3)°

  • γ = 81.686 (3)°

  • V = 1166.1 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.919, Tmax = 0.942

  • 6410 measured reflections

  • 4075 independent reflections

  • 2840 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 1.06

  • 4075 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N2i 0.93 2.62 3.436 (3) 146
C18—H18⋯S1ii 0.93 2.82 3.725 (3) 164
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembly processes directed by either hydrogen-bonding interactions or metal coordinations have been extensively utilized in crystal engineering to construct supramolecular systems with novel structures and properties due to their inherent strength and reliability (Braga et al., 2003). Proper selection of metal ions and ligands with suitable functionalized groups is the key issue in designing and self-assembling of coordination supramolecules (Beatty, 2003). Recently, we have initiated a research program of synthesizing supramolecules based on pseudohalide and flexible ligand, which consists of a propanone unit substituted with an imidazole and a phenyl group (Guo & Cai, 2007). To further explore this series, we synthesized the title compound, a new MnII complex based on the mixed ligands, thiocyanate and 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (L).

In the molecular structure (Fig. 1) of the mononuclear title complex, the MnII atom is six-coordinated by four monodentate L ligands, forming the equatorial plane and two N atoms from two monodentate NCS- anions in the axial positions, displaying an MnN6 octahedral geometry. The triazol and phenyl rings in each of the ligands are not coplanar. The dihedral angels formed by the least-squares planes of the phenyl and triazole rings are 53.8 (2) and 69.6 (2)°. In the crystal, weak intermolecular C—H···N and C—H···S hydrogen bonds (Table 1) connect the complex molecules into a two-dimensional supramolecular sheet parallel to (0 0 1), as shown in Fig. 2.

Related literature top

For general background to self-assembly of supramolecular systems, see: Beatty (2003); Braga et al. (2003). For a related structure, see: Guo & Cai (2007).

Experimental top

MnCl2.4H2O (19.8 mg, 0.1 mmol), 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (22.3 mg, 0.1 mmol) and NH4SCN (7.6 mg, 0.1 mmol) were mixed in a CH3CN/H2O (20 ml, v/v 1:1) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Colorless block crystals of the title compound suitable for X-ray analysis were obtained in a 60% yield by slow evaporation of the solvent over a period of one week. Analysis, calculated for C46H44MnN14O4S2: C 56.61, H 4.54, N 20.09%; found: C 56.45, H 4.43, N 20.12%.

Refinement top

Although all H atoms were visible in difference Fourier maps, they were finally placed in geometrically calculated positions and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (methylene) Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Self-assembly processes directed by either hydrogen-bonding interactions or metal coordinations have been extensively utilized in crystal engineering to construct supramolecular systems with novel structures and properties due to their inherent strength and reliability (Braga et al., 2003). Proper selection of metal ions and ligands with suitable functionalized groups is the key issue in designing and self-assembling of coordination supramolecules (Beatty, 2003). Recently, we have initiated a research program of synthesizing supramolecules based on pseudohalide and flexible ligand, which consists of a propanone unit substituted with an imidazole and a phenyl group (Guo & Cai, 2007). To further explore this series, we synthesized the title compound, a new MnII complex based on the mixed ligands, thiocyanate and 3-(1H-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (L).

In the molecular structure (Fig. 1) of the mononuclear title complex, the MnII atom is six-coordinated by four monodentate L ligands, forming the equatorial plane and two N atoms from two monodentate NCS- anions in the axial positions, displaying an MnN6 octahedral geometry. The triazol and phenyl rings in each of the ligands are not coplanar. The dihedral angels formed by the least-squares planes of the phenyl and triazole rings are 53.8 (2) and 69.6 (2)°. In the crystal, weak intermolecular C—H···N and C—H···S hydrogen bonds (Table 1) connect the complex molecules into a two-dimensional supramolecular sheet parallel to (0 0 1), as shown in Fig. 2.

For general background to self-assembly of supramolecular systems, see: Beatty (2003); Braga et al. (2003). For a related structure, see: Guo & Cai (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the 30% probability ellipsoids. [Symmetry code: (A) -x, -y, 2-z.]
[Figure 2] Fig. 2. The two-dimensional sheet structure of the title compound, showing C—H···N and C—H···S hydrogen bongs as red and green dashed lines.
Tetrakis[1-phenyl-3-(1H-1,2,4-triazol-1-yl-κN4)propan-1- one]bis(thiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C11H11N3O)4]Z = 1
Mr = 976.03F(000) = 507
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9326 (17) ÅCell parameters from 1514 reflections
b = 11.845 (3) Åθ = 2.8–22.4°
c = 13.740 (3) ŵ = 0.43 mm1
α = 69.240 (3)°T = 293 K
β = 75.417 (3)°Block, colorless
γ = 81.686 (3)°0.20 × 0.18 × 0.14 mm
V = 1166.1 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4075 independent reflections
Radiation source: fine-focus sealed tube2840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.919, Tmax = 0.942k = 1314
6410 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.0024P]
where P = (Fo2 + 2Fc2)/3
4075 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Mn(NCS)2(C11H11N3O)4]γ = 81.686 (3)°
Mr = 976.03V = 1166.1 (5) Å3
Triclinic, P1Z = 1
a = 7.9326 (17) ÅMo Kα radiation
b = 11.845 (3) ŵ = 0.43 mm1
c = 13.740 (3) ÅT = 293 K
α = 69.240 (3)°0.20 × 0.18 × 0.14 mm
β = 75.417 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4075 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2840 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.942Rint = 0.021
6410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
4075 reflectionsΔρmin = 0.23 e Å3
304 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00001.00000.03670 (15)
S10.34152 (10)0.18300 (7)0.86875 (6)0.0709 (2)
O10.7108 (2)0.12219 (16)0.41612 (14)0.0696 (5)
O20.2798 (3)0.43808 (16)0.66598 (16)0.0763 (6)
N10.2363 (2)0.06526 (16)0.87054 (14)0.0429 (5)
N20.4935 (2)0.14559 (18)0.78206 (15)0.0532 (5)
N30.4371 (2)0.09195 (16)0.72510 (14)0.0425 (5)
N40.1390 (2)0.18782 (15)0.96560 (14)0.0413 (5)
N50.2623 (3)0.36007 (18)0.99367 (16)0.0532 (5)
N60.3215 (2)0.34167 (17)0.91665 (15)0.0441 (5)
N70.1117 (3)0.03665 (19)0.88320 (16)0.0538 (5)
C10.2858 (3)0.0449 (2)0.77873 (18)0.0459 (6)
H10.22310.00310.75500.055*
C20.3686 (3)0.1270 (2)0.86777 (19)0.0524 (6)
H20.37080.15450.92300.063*
C30.5430 (3)0.0878 (2)0.62302 (18)0.0523 (6)
H3A0.48150.04820.59260.063*
H3B0.65170.04100.63370.063*
C40.5813 (3)0.2132 (2)0.54720 (17)0.0470 (6)
H4A0.64650.25120.57700.056*
H4B0.47210.26080.53980.056*
C50.6839 (3)0.2142 (2)0.43876 (18)0.0459 (6)
C60.7487 (3)0.3311 (2)0.35991 (17)0.0426 (6)
C70.6996 (3)0.4402 (2)0.3773 (2)0.0555 (7)
H70.62640.44210.44130.067*
C80.7584 (4)0.5460 (2)0.3002 (2)0.0638 (7)
H80.72250.61920.31210.077*
C90.8682 (3)0.5450 (3)0.2070 (2)0.0633 (7)
H90.90770.61730.15580.076*
C100.9208 (3)0.4378 (3)0.1883 (2)0.0645 (8)
H100.99640.43680.12470.077*
C110.8608 (3)0.3315 (2)0.26470 (19)0.0546 (7)
H110.89630.25870.25200.066*
C120.2476 (3)0.2397 (2)0.90146 (18)0.0429 (6)
H120.26930.20900.85240.051*
C130.1537 (3)0.2650 (2)1.02034 (19)0.0506 (6)
H130.09180.25191.07290.061*
C140.4552 (3)0.4253 (2)0.8686 (2)0.0570 (7)
H14A0.54580.44280.92450.068*
H14B0.50800.38680.83290.068*
C150.3844 (3)0.5427 (2)0.78923 (19)0.0509 (6)
H15A0.48040.60330.77890.061*
H15B0.30550.57010.81880.061*
C160.2891 (3)0.5332 (2)0.6827 (2)0.0509 (6)
C170.2102 (3)0.6418 (2)0.59709 (19)0.0479 (6)
C180.2121 (3)0.7519 (2)0.6130 (2)0.0607 (7)
H180.26540.75990.67890.073*
C190.1353 (4)0.8486 (3)0.5314 (2)0.0715 (8)
H190.13760.92170.54270.086*
C200.0561 (4)0.8392 (3)0.4342 (2)0.0702 (8)
H200.00430.90540.37970.084*
C210.0530 (4)0.7320 (3)0.4172 (2)0.0764 (9)
H210.00110.72490.35100.092*
C220.1298 (3)0.6347 (3)0.4978 (2)0.0637 (7)
H220.12770.56230.48510.076*
C230.2068 (3)0.0969 (2)0.87534 (17)0.0438 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0344 (3)0.0396 (3)0.0321 (3)0.0090 (2)0.0024 (2)0.0078 (2)
S10.0835 (5)0.0780 (5)0.0643 (5)0.0293 (4)0.0104 (4)0.0341 (4)
O10.0930 (14)0.0559 (12)0.0517 (12)0.0116 (10)0.0070 (10)0.0209 (10)
O20.0934 (14)0.0546 (12)0.0837 (15)0.0020 (10)0.0071 (11)0.0356 (11)
N10.0423 (11)0.0464 (12)0.0356 (12)0.0131 (9)0.0017 (9)0.0090 (9)
N20.0519 (12)0.0649 (14)0.0437 (13)0.0276 (11)0.0015 (10)0.0180 (11)
N30.0439 (11)0.0465 (11)0.0342 (11)0.0125 (9)0.0007 (9)0.0115 (9)
N40.0461 (12)0.0391 (11)0.0368 (11)0.0063 (9)0.0088 (9)0.0091 (9)
N50.0671 (14)0.0482 (13)0.0480 (13)0.0001 (11)0.0184 (11)0.0179 (11)
N60.0433 (11)0.0417 (12)0.0448 (12)0.0033 (9)0.0111 (9)0.0099 (10)
N70.0488 (12)0.0645 (14)0.0515 (13)0.0091 (11)0.0147 (10)0.0184 (11)
C10.0445 (14)0.0532 (15)0.0390 (14)0.0148 (11)0.0065 (11)0.0113 (12)
C20.0595 (16)0.0612 (16)0.0376 (14)0.0266 (13)0.0029 (12)0.0179 (12)
C30.0522 (15)0.0573 (16)0.0398 (14)0.0100 (12)0.0057 (12)0.0152 (12)
C40.0445 (14)0.0537 (15)0.0349 (13)0.0037 (11)0.0013 (11)0.0098 (12)
C50.0429 (14)0.0518 (15)0.0395 (14)0.0015 (12)0.0063 (11)0.0134 (12)
C60.0405 (13)0.0533 (15)0.0322 (13)0.0052 (11)0.0080 (11)0.0110 (11)
C70.0627 (17)0.0549 (17)0.0412 (15)0.0019 (13)0.0043 (13)0.0120 (13)
C80.081 (2)0.0497 (16)0.0557 (18)0.0065 (14)0.0147 (16)0.0108 (14)
C90.0639 (18)0.0649 (19)0.0529 (18)0.0242 (15)0.0152 (14)0.0000 (15)
C100.0645 (18)0.082 (2)0.0379 (15)0.0223 (16)0.0035 (13)0.0123 (15)
C110.0609 (16)0.0605 (17)0.0402 (15)0.0095 (13)0.0027 (12)0.0174 (13)
C120.0432 (14)0.0435 (14)0.0420 (14)0.0090 (11)0.0056 (11)0.0143 (12)
C130.0664 (17)0.0460 (15)0.0431 (15)0.0026 (13)0.0194 (13)0.0142 (12)
C140.0443 (15)0.0577 (17)0.0664 (18)0.0029 (13)0.0162 (13)0.0167 (14)
C150.0532 (15)0.0448 (14)0.0529 (16)0.0092 (12)0.0183 (13)0.0141 (13)
C160.0512 (15)0.0448 (15)0.0614 (17)0.0087 (12)0.0222 (13)0.0208 (14)
C170.0501 (14)0.0457 (15)0.0496 (15)0.0125 (12)0.0206 (12)0.0172 (12)
C180.0799 (19)0.0510 (16)0.0476 (16)0.0053 (14)0.0106 (14)0.0177 (14)
C190.090 (2)0.0491 (17)0.069 (2)0.0007 (15)0.0149 (18)0.0154 (16)
C200.0660 (18)0.068 (2)0.0579 (19)0.0036 (15)0.0109 (15)0.0029 (16)
C210.071 (2)0.088 (2)0.0564 (19)0.0139 (18)0.0056 (16)0.0210 (18)
C220.0677 (18)0.0635 (18)0.0621 (19)0.0128 (15)0.0150 (15)0.0294 (16)
C230.0484 (15)0.0493 (15)0.0325 (13)0.0019 (12)0.0090 (11)0.0139 (11)
Geometric parameters (Å, º) top
Mn1—N72.207 (2)C7—C81.375 (3)
Mn1—N12.2452 (17)C7—H70.9300
Mn1—N42.2796 (18)C8—C91.358 (4)
S1—C231.619 (3)C8—H80.9300
O1—C51.212 (3)C9—C101.370 (4)
O2—C161.216 (3)C9—H90.9300
N1—C11.320 (3)C10—C111.378 (3)
N1—C21.349 (3)C10—H100.9300
N2—C21.307 (3)C11—H110.9300
N2—N31.352 (2)C12—H120.9300
N3—C11.323 (3)C13—H130.9300
N3—C31.456 (3)C14—C151.510 (3)
N4—C121.320 (3)C14—H14A0.9700
N4—C131.352 (3)C14—H14B0.9700
N5—C131.315 (3)C15—C161.504 (3)
N5—N61.353 (2)C15—H15A0.9700
N6—C121.326 (3)C15—H15B0.9700
N6—C141.459 (3)C16—C171.490 (3)
N7—C231.158 (3)C17—C221.380 (3)
C1—H10.9300C17—C181.393 (3)
C2—H20.9300C18—C191.374 (4)
C3—C41.503 (3)C18—H180.9300
C3—H3A0.9700C19—C201.361 (4)
C3—H3B0.9700C19—H190.9300
C4—C51.504 (3)C20—C211.367 (4)
C4—H4A0.9700C20—H200.9300
C4—H4B0.9700C21—C221.373 (4)
C5—C61.490 (3)C21—H210.9300
C6—C71.380 (3)C22—H220.9300
C6—C111.383 (3)
N7—Mn1—N7i180.0C8—C7—H7119.9
N7—Mn1—N1i91.32 (7)C6—C7—H7119.9
N7i—Mn1—N1i88.68 (7)C9—C8—C7120.8 (3)
N7—Mn1—N188.68 (7)C9—C8—H8119.6
N7i—Mn1—N191.32 (7)C7—C8—H8119.6
N1i—Mn1—N1180.0C8—C9—C10120.1 (3)
N7—Mn1—N4i89.00 (7)C8—C9—H9119.9
N7i—Mn1—N4i91.00 (7)C10—C9—H9119.9
N1i—Mn1—N4i93.23 (6)C9—C10—C11119.4 (2)
N1—Mn1—N4i86.77 (6)C9—C10—H10120.3
N7—Mn1—N491.00 (7)C11—C10—H10120.3
N7i—Mn1—N489.00 (7)C10—C11—C6121.2 (2)
N1i—Mn1—N486.77 (6)C10—C11—H11119.4
N1—Mn1—N493.23 (6)C6—C11—H11119.4
N4i—Mn1—N4180.000 (1)N4—C12—N6110.5 (2)
C1—N1—C2102.08 (18)N4—C12—H12124.7
C1—N1—Mn1127.56 (15)N6—C12—H12124.7
C2—N1—Mn1130.23 (15)N5—C13—N4115.0 (2)
C2—N2—N3102.28 (18)N5—C13—H13122.5
C1—N3—N2109.70 (18)N4—C13—H13122.5
C1—N3—C3129.7 (2)N6—C14—C15112.91 (19)
N2—N3—C3120.58 (18)N6—C14—H14A109.0
C12—N4—C13102.41 (19)C15—C14—H14A109.0
C12—N4—Mn1129.36 (15)N6—C14—H14B109.0
C13—N4—Mn1127.34 (15)C15—C14—H14B109.0
C13—N5—N6102.19 (19)H14A—C14—H14B107.8
C12—N6—N5109.89 (19)C16—C15—C14113.7 (2)
C12—N6—C14130.0 (2)C16—C15—H15A108.8
N5—N6—C14120.02 (19)C14—C15—H15A108.8
C23—N7—Mn1143.02 (18)C16—C15—H15B108.8
N1—C1—N3110.6 (2)C14—C15—H15B108.8
N1—C1—H1124.7H15A—C15—H15B107.7
N3—C1—H1124.7O2—C16—C17120.4 (2)
N2—C2—N1115.3 (2)O2—C16—C15120.1 (2)
N2—C2—H2122.3C17—C16—C15119.5 (2)
N1—C2—H2122.3C22—C17—C18117.7 (2)
N3—C3—C4110.74 (19)C22—C17—C16119.6 (2)
N3—C3—H3A109.5C18—C17—C16122.7 (2)
C4—C3—H3A109.5C19—C18—C17120.1 (3)
N3—C3—H3B109.5C19—C18—H18119.9
C4—C3—H3B109.5C17—C18—H18119.9
H3A—C3—H3B108.1C20—C19—C18121.1 (3)
C3—C4—C5112.8 (2)C20—C19—H19119.4
C3—C4—H4A109.0C18—C19—H19119.4
C5—C4—H4A109.0C19—C20—C21119.6 (3)
C3—C4—H4B109.0C19—C20—H20120.2
C5—C4—H4B109.0C21—C20—H20120.2
H4A—C4—H4B107.8C20—C21—C22120.0 (3)
O1—C5—C6121.1 (2)C20—C21—H21120.0
O1—C5—C4120.6 (2)C22—C21—H21120.0
C6—C5—C4118.3 (2)C21—C22—C17121.5 (3)
C7—C6—C11118.2 (2)C21—C22—H22119.3
C7—C6—C5122.6 (2)C17—C22—H22119.3
C11—C6—C5119.2 (2)N7—C23—S1178.0 (2)
C8—C7—C6120.3 (2)
N7—Mn1—N1—C117.61 (19)O1—C5—C6—C7170.4 (2)
N7i—Mn1—N1—C1162.39 (19)C4—C5—C6—C78.7 (3)
N4i—Mn1—N1—C171.47 (19)O1—C5—C6—C118.7 (3)
N4—Mn1—N1—C1108.53 (19)C4—C5—C6—C11172.2 (2)
N7—Mn1—N1—C2167.2 (2)C11—C6—C7—C81.4 (4)
N7i—Mn1—N1—C212.8 (2)C5—C6—C7—C8177.7 (2)
N4i—Mn1—N1—C2103.7 (2)C6—C7—C8—C91.4 (4)
N4—Mn1—N1—C276.3 (2)C7—C8—C9—C100.5 (4)
C2—N2—N3—C10.3 (3)C8—C9—C10—C110.3 (4)
C2—N2—N3—C3177.8 (2)C9—C10—C11—C60.1 (4)
N7—Mn1—N4—C122.65 (19)C7—C6—C11—C100.7 (4)
N7i—Mn1—N4—C12177.35 (19)C5—C6—C11—C10178.5 (2)
N1i—Mn1—N4—C1288.62 (19)C13—N4—C12—N60.3 (2)
N1—Mn1—N4—C1291.38 (19)Mn1—N4—C12—N6170.01 (13)
N7—Mn1—N4—C13169.91 (18)N5—N6—C12—N40.2 (2)
N7i—Mn1—N4—C1310.09 (18)C14—N6—C12—N4176.4 (2)
N1i—Mn1—N4—C1378.64 (18)N6—N5—C13—N40.3 (3)
N1—Mn1—N4—C13101.36 (18)C12—N4—C13—N50.4 (3)
C13—N5—N6—C120.0 (2)Mn1—N4—C13—N5170.35 (15)
C13—N5—N6—C14176.6 (2)C12—N6—C14—C15107.7 (3)
N1i—Mn1—N7—C2327.0 (3)N5—N6—C14—C1576.5 (3)
N1—Mn1—N7—C23153.0 (3)N6—C14—C15—C1677.9 (3)
N4i—Mn1—N7—C2366.2 (3)C14—C15—C16—O22.3 (3)
N4—Mn1—N7—C23113.8 (3)C14—C15—C16—C17179.2 (2)
C2—N1—C1—N30.3 (3)O2—C16—C17—C221.5 (4)
Mn1—N1—C1—N3176.47 (14)C15—C16—C17—C22177.0 (2)
N2—N3—C1—N10.4 (3)O2—C16—C17—C18177.9 (2)
C3—N3—C1—N1177.6 (2)C15—C16—C17—C183.6 (3)
N3—N2—C2—N10.2 (3)C22—C17—C18—C190.2 (4)
C1—N1—C2—N20.0 (3)C16—C17—C18—C19179.2 (2)
Mn1—N1—C2—N2176.10 (16)C17—C18—C19—C200.2 (4)
C1—N3—C3—C4125.4 (2)C18—C19—C20—C210.2 (4)
N2—N3—C3—C457.7 (3)C19—C20—C21—C220.1 (4)
N3—C3—C4—C5177.45 (19)C20—C21—C22—C170.5 (4)
C3—C4—C5—O18.0 (3)C18—C17—C22—C210.5 (4)
C3—C4—C5—C6172.95 (19)C16—C17—C22—C21178.9 (2)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2ii0.932.623.436 (3)146
C18—H18···S1iii0.932.823.725 (3)164
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C11H11N3O)4]
Mr976.03
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9326 (17), 11.845 (3), 13.740 (3)
α, β, γ (°)69.240 (3), 75.417 (3), 81.686 (3)
V3)1166.1 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.919, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
6410, 4075, 2840
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.06
No. of reflections4075
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.932.623.436 (3)146
C18—H18···S1ii0.932.823.725 (3)164
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

We acknowledge financial support by the Special Fund for Central Universities (ZXH2009D011), the Natural Science Foundation of Tianjin (09JCYBJC04200), the National Natural Science Foundation of China and the Civil Aviation Administration of China (grant No. 61079010).

References

First citationBeatty, A. M. (2003). Coord. Chem. Rev. 246, 131–143.  Web of Science CrossRef CAS Google Scholar
First citationBraga, D., Maini, L., Polito, M., Tagliavini, E. & Grepioni, F. (2003). Coord. Chem. Rev. 246, 53–71.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, J.-H. & Cai, H. (2007). Acta Cryst. E63, m1322–m1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds