metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[2-(5-iso­propyl-5-methyl-4-oxo-4,5-di­hydro-1H-imidazol-2-yl-κN3)nicotinato-κN]manganese(II)

aDepartment of Chemistry, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: huangzhongjing1@yahoo.com.cn

(Received 11 November 2010; accepted 21 November 2010; online 27 November 2010)

In the title compound, [Mn(C13H14N3O3)2(H2O)2], the MnII ion is coordinated by four N atoms from two (±)-2-(5-isopropyl-5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl)nicotinate ligands and two water mol­ecules in a distorted octa­hedral environment. Inter­molecular O—H⋯O hydrogen bonds lead to a chain along [010]. Intra­molecular N—H⋯O and O—H⋯O hydrogen bonds are observed.

Related literature

For coordination compounds with pyridine­carb­oxy­lic acids, see: Chatterjee et al. (1998[Chatterjee, M., Maji, M., Ghosh, S. & Mak, T. C. W. (1998). J. Chem. Soc. Dalton Trans. pp. 3641-3646.]); Nathan & Mai (2000[Nathan, L. C. & Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509-518.]); Park et al. (2007[Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819-2823.]); Yang et al. (2002[Yang, L., Crans, D. C., Miller, S. M., la Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E. III, Austin, L. D. & Willsky, G. R. (2002). Inorg. Chem. 41, 4859-4871.]). For the synthesis of compounds containing imidazolidinone derivatives, see: Erre et al. (1998[Erre, L. S., Garribba, E., Micera, G. & Sardone, N. (1998). Inorg. Chim. Acta, 272, 68-73.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C13H14N3O3)2(H2O)2]

  • Mr = 611.52

  • Orthorhombic, P b c a

  • a = 12.620 (3) Å

  • b = 19.753 (4) Å

  • c = 23.017 (5) Å

  • V = 5738 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 298 K

  • 0.50 × 0.48 × 0.35 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.839

  • 25491 measured reflections

  • 5057 independent reflections

  • 3208 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.179

  • S = 1.06

  • 5057 reflections

  • 376 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.74 2.524 (5) 151
N5—H5⋯O5 0.86 1.76 2.535 (6) 149
O7—H7A⋯O3 0.85 2.09 2.838 (5) 147
O7—H7B⋯O1i 0.85 1.80 2.638 (5) 170
O8—H8A⋯O6 0.85 2.06 2.791 (5) 143
O8—H8B⋯O4ii 0.85 1.77 2.609 (5) 171
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

(±)-2-(4-Isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl) nicotinic acid (imina) is a novel pyridylimidazolidinone ligand, which provides with efficient metal-chelating ability. The pyridine carboxylic acids have been extensively used in the design of coordination compounds, due to a variety of bonding modes and ability to form strong hydrogen bonds (Chatterjee et al., 1998; Nathan & Mai, 2000; Park et al., 2007; Yang et al., 2002). Imidazole group, which is one of the polydentate amine ligands, generally coordinates to metal ions using N atoms as donors. The synthesis of imina and its manganese(II) complex has been reported (Erre et al., 1998). Here we present the structure of a manganese(II) complex with 2-(5-isopropyl-5-methyl-4-oxo-4,5-dihydro-1H- imidazol-2-yl)nicotinate (L) ligand.

The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit contains one MnII atom, two L ligands and two coordinated water molecules. The MnII atom exhibits a distorted octahedral geometry, defined by four N atoms from two L ligands and two O atoms from two water molecules. The dihedral angle between the two L planes in the complex is 61.58 (9)°. Intramolecular N—H···O and O—H···O hydrogen bonds are observed (Table 1). The complex molecules are connected via intermolecular O—H···O hydrogen bonds, forming a one-dimensional chain (Fig. 2).

Related literature top

For coordination compounds with pyridinecarboxylic acids, see: Chatterjee et al. (1998); Nathan & Mai (2000); Park et al. (2007); Yang et al. (2002). For the synthesis of compounds containing imidazolidinone derivatives, see: Erre et al. (1998).

Experimental top

A mixture of Mn(CH3CO2)2.4H2O (0.122 g, 0.5 mmol), imina (0.392 g, 0.5 mmol), DMF (5 ml) and H2O (15 ml) was heated in a Teflon-lined steel bomb at 423 K for 3 d. Yellow crystals were obtained by slow evaporation of the solution at room temperature (yield: 78% ). Analysis, calculated for C26H32MnN6O8: C 51.07, H 5.27, N 13.74%; found: C 51.02, H 5.23, N 13.70%.

Refinement top

H atoms on C and N atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and N—H = 0.86 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C,N). The water H atoms were located in a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O). The highest residual electron density was found 1.08 Å from C22 and the deepest hole 0.33 Å from N5.

Structure description top

(±)-2-(4-Isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl) nicotinic acid (imina) is a novel pyridylimidazolidinone ligand, which provides with efficient metal-chelating ability. The pyridine carboxylic acids have been extensively used in the design of coordination compounds, due to a variety of bonding modes and ability to form strong hydrogen bonds (Chatterjee et al., 1998; Nathan & Mai, 2000; Park et al., 2007; Yang et al., 2002). Imidazole group, which is one of the polydentate amine ligands, generally coordinates to metal ions using N atoms as donors. The synthesis of imina and its manganese(II) complex has been reported (Erre et al., 1998). Here we present the structure of a manganese(II) complex with 2-(5-isopropyl-5-methyl-4-oxo-4,5-dihydro-1H- imidazol-2-yl)nicotinate (L) ligand.

The molecular structure of the title complex is shown in Fig. 1. The asymmetric unit contains one MnII atom, two L ligands and two coordinated water molecules. The MnII atom exhibits a distorted octahedral geometry, defined by four N atoms from two L ligands and two O atoms from two water molecules. The dihedral angle between the two L planes in the complex is 61.58 (9)°. Intramolecular N—H···O and O—H···O hydrogen bonds are observed (Table 1). The complex molecules are connected via intermolecular O—H···O hydrogen bonds, forming a one-dimensional chain (Fig. 2).

For coordination compounds with pyridinecarboxylic acids, see: Chatterjee et al. (1998); Nathan & Mai (2000); Park et al. (2007); Yang et al. (2002). For the synthesis of compounds containing imidazolidinone derivatives, see: Erre et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the chain structure in the title compound. Dashed lines indicate hydrongen bonds.
Diaquabis[2-(5-isopropyl-5-methyl-4-oxo-4,5-dihydro-1H- imidazol-2-yl-κN3)nicotinato-κN]manganese(II) top
Crystal data top
[Mn(C13H14N3O3)2(H2O)2]F(000) = 2552
Mr = 611.52Dx = 1.416 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5733 reflections
a = 12.620 (3) Åθ = 2.4–27.9°
b = 19.753 (4) ŵ = 0.52 mm1
c = 23.017 (5) ÅT = 298 K
V = 5738 (2) Å3Block, yellow
Z = 80.50 × 0.48 × 0.35 mm
Data collection top
Bruker SMART 1000
diffractometer
5057 independent reflections
Radiation source: fine-focus sealed tube3208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.782, Tmax = 0.839k = 2323
25491 measured reflectionsl = 1427
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0592P)2 + 17.1897P]
where P = (Fo2 + 2Fc2)/3
5057 reflections(Δ/σ)max < 0.001
376 parametersΔρmax = 1.08 e Å3
5 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Mn(C13H14N3O3)2(H2O)2]V = 5738 (2) Å3
Mr = 611.52Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.620 (3) ŵ = 0.52 mm1
b = 19.753 (4) ÅT = 298 K
c = 23.017 (5) Å0.50 × 0.48 × 0.35 mm
Data collection top
Bruker SMART 1000
diffractometer
5057 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3208 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.839Rint = 0.055
25491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0575 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0592P)2 + 17.1897P]
where P = (Fo2 + 2Fc2)/3
5057 reflectionsΔρmax = 1.08 e Å3
376 parametersΔρmin = 0.47 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.28498 (5)0.10909 (3)0.37476 (3)0.0311 (2)
N10.1631 (3)0.19583 (18)0.39468 (16)0.0367 (9)
N20.2232 (4)0.2701 (2)0.25716 (17)0.0490 (11)
H20.19650.31000.25440.059*
N30.2672 (3)0.17162 (18)0.29797 (15)0.0355 (9)
N40.1688 (3)0.02058 (18)0.35275 (16)0.0365 (9)
N50.2283 (4)0.0537 (2)0.49061 (18)0.0664 (15)
H50.20230.09390.49290.080*
N60.2631 (3)0.04717 (18)0.45175 (15)0.0350 (9)
O10.0913 (3)0.42772 (17)0.36537 (17)0.0651 (11)
O20.1213 (4)0.37586 (18)0.28288 (17)0.0650 (12)
O30.3547 (3)0.12123 (19)0.22133 (16)0.0646 (11)
O40.0995 (3)0.21079 (17)0.38402 (18)0.0673 (12)
O50.1178 (5)0.1567 (2)0.46503 (19)0.110 (2)
O60.3470 (3)0.09912 (18)0.52887 (15)0.0637 (11)
O70.4045 (3)0.05333 (16)0.32650 (15)0.0475 (9)
H7A0.39630.05730.29000.057*
H7B0.40220.01150.33510.057*
O80.3971 (2)0.16651 (15)0.42592 (14)0.0440 (8)
H8A0.38190.16470.46190.053*
H8B0.39770.20800.41620.053*
C10.1092 (3)0.3765 (2)0.3365 (2)0.0391 (11)
C20.1627 (3)0.2491 (2)0.35795 (19)0.0308 (10)
C30.1138 (3)0.3108 (2)0.37203 (19)0.0301 (10)
C40.0613 (4)0.3130 (2)0.4252 (2)0.0468 (13)
H40.02790.35280.43660.056*
C50.0578 (5)0.2576 (3)0.4611 (2)0.0643 (17)
H5A0.01990.25870.49580.077*
C60.1118 (5)0.2006 (3)0.4444 (2)0.0565 (15)
H60.11230.16350.46930.068*
C70.2186 (4)0.2319 (2)0.30315 (18)0.0341 (10)
C80.3063 (4)0.1685 (2)0.2425 (2)0.0461 (12)
C90.2812 (4)0.2346 (3)0.2106 (2)0.0473 (12)
C100.3824 (5)0.2715 (3)0.1936 (3)0.0673 (17)
H10A0.36530.31620.18030.101*
H10B0.41730.24700.16310.101*
H10C0.42840.27440.22670.101*
C110.2073 (5)0.2211 (3)0.1594 (2)0.0609 (15)
H110.24550.19060.13310.073*
C120.1066 (5)0.1839 (3)0.1777 (3)0.0666 (17)
H12A0.12520.14470.20020.100*
H12B0.06820.17000.14370.100*
H12C0.06320.21350.20060.100*
C130.1825 (7)0.2845 (4)0.1247 (3)0.095 (2)
H13A0.13520.27340.09350.142*
H13B0.24690.30290.10910.142*
H13C0.14970.31740.14970.142*
C140.1122 (4)0.1588 (2)0.4119 (2)0.0452 (12)
C150.1655 (3)0.0322 (2)0.39010 (18)0.0309 (10)
C160.1191 (3)0.0941 (2)0.3754 (2)0.0339 (10)
C170.0734 (4)0.0981 (2)0.3206 (2)0.0443 (12)
H170.04200.13850.30880.053*
C180.0735 (5)0.0442 (3)0.2836 (2)0.0543 (14)
H180.04060.04690.24750.065*
C190.1235 (4)0.0142 (3)0.3011 (2)0.0518 (14)
H190.12560.05080.27560.062*
C200.2189 (4)0.0141 (2)0.44567 (19)0.0373 (11)
C210.3027 (5)0.0501 (3)0.5075 (2)0.0505 (13)
C220.2893 (5)0.0204 (3)0.5368 (2)0.0533 (12)
C230.3975 (5)0.0538 (3)0.5459 (3)0.0712 (17)
H23A0.38790.09820.56200.107*
H23B0.43900.02690.57210.107*
H23C0.43360.05730.50930.107*
C240.2253 (5)0.0186 (4)0.5912 (3)0.0735 (16)
H240.21000.06550.60210.088*
C250.2858 (7)0.0140 (4)0.6421 (3)0.101 (3)
H25A0.35120.00970.64820.152*
H25B0.24340.01150.67670.152*
H25C0.30040.06060.63320.152*
C260.1188 (6)0.0170 (4)0.5812 (3)0.100 (2)
H26A0.13100.06390.57260.150*
H26B0.07600.01320.61550.150*
H26C0.08280.00390.54910.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0387 (4)0.0209 (3)0.0337 (4)0.0009 (3)0.0012 (3)0.0038 (3)
N10.047 (2)0.029 (2)0.034 (2)0.0061 (17)0.0065 (18)0.0057 (17)
N20.078 (3)0.031 (2)0.037 (2)0.015 (2)0.004 (2)0.0046 (19)
N30.049 (2)0.0263 (19)0.031 (2)0.0067 (17)0.0038 (17)0.0039 (17)
N40.044 (2)0.032 (2)0.033 (2)0.0081 (17)0.0043 (18)0.0033 (17)
N50.115 (4)0.046 (3)0.039 (2)0.034 (3)0.013 (3)0.012 (2)
N60.047 (2)0.0271 (19)0.0307 (19)0.0084 (17)0.0055 (17)0.0025 (17)
O10.097 (3)0.0228 (18)0.076 (3)0.0018 (19)0.020 (2)0.0028 (18)
O20.105 (3)0.038 (2)0.052 (2)0.029 (2)0.003 (2)0.0107 (18)
O30.097 (3)0.051 (2)0.046 (2)0.028 (2)0.019 (2)0.0007 (18)
O40.090 (3)0.0272 (19)0.085 (3)0.0018 (19)0.016 (2)0.003 (2)
O50.220 (6)0.056 (3)0.052 (3)0.075 (3)0.003 (3)0.016 (2)
O60.099 (3)0.050 (2)0.042 (2)0.032 (2)0.020 (2)0.0020 (18)
O70.056 (2)0.0297 (17)0.056 (2)0.0084 (16)0.0059 (18)0.0029 (16)
O80.052 (2)0.0286 (17)0.052 (2)0.0086 (15)0.0028 (17)0.0019 (16)
C10.031 (2)0.027 (3)0.059 (3)0.0029 (19)0.002 (2)0.001 (2)
C20.030 (2)0.028 (2)0.034 (2)0.0033 (18)0.0049 (19)0.0007 (19)
C30.025 (2)0.026 (2)0.039 (2)0.0009 (17)0.005 (2)0.001 (2)
C40.048 (3)0.036 (3)0.056 (3)0.013 (2)0.006 (3)0.006 (3)
C50.081 (4)0.060 (4)0.052 (3)0.025 (3)0.031 (3)0.009 (3)
C60.075 (4)0.045 (3)0.049 (3)0.018 (3)0.024 (3)0.016 (3)
C70.045 (3)0.025 (2)0.032 (2)0.003 (2)0.003 (2)0.004 (2)
C80.064 (3)0.038 (3)0.037 (3)0.011 (3)0.003 (2)0.002 (2)
C90.056 (3)0.046 (3)0.040 (3)0.006 (3)0.004 (2)0.003 (2)
C100.060 (4)0.073 (4)0.069 (4)0.018 (3)0.014 (3)0.013 (3)
C110.068 (4)0.069 (4)0.046 (3)0.010 (3)0.005 (3)0.001 (3)
C120.060 (4)0.072 (4)0.068 (4)0.012 (3)0.016 (3)0.005 (3)
C130.109 (6)0.103 (6)0.073 (5)0.009 (5)0.016 (4)0.032 (4)
C140.047 (3)0.033 (3)0.056 (3)0.012 (2)0.005 (3)0.005 (3)
C150.032 (2)0.027 (2)0.033 (2)0.0045 (18)0.0043 (19)0.0029 (19)
C160.032 (2)0.028 (2)0.042 (3)0.0045 (18)0.004 (2)0.003 (2)
C170.047 (3)0.033 (3)0.053 (3)0.009 (2)0.000 (2)0.007 (2)
C180.068 (4)0.055 (3)0.040 (3)0.021 (3)0.015 (3)0.001 (3)
C190.067 (4)0.050 (3)0.039 (3)0.021 (3)0.012 (3)0.010 (2)
C200.051 (3)0.030 (2)0.031 (2)0.009 (2)0.000 (2)0.003 (2)
C210.076 (4)0.042 (3)0.034 (3)0.013 (3)0.008 (3)0.004 (2)
C220.064 (3)0.051 (3)0.045 (3)0.006 (2)0.005 (2)0.001 (3)
C230.081 (3)0.066 (4)0.066 (4)0.016 (3)0.012 (3)0.015 (3)
C240.085 (4)0.084 (5)0.052 (3)0.014 (3)0.006 (3)0.001 (3)
C250.164 (8)0.097 (6)0.043 (3)0.030 (6)0.006 (4)0.004 (4)
C260.077 (4)0.148 (8)0.075 (5)0.003 (4)0.018 (3)0.010 (5)
Geometric parameters (Å, º) top
Mn1—O82.163 (3)C8—C91.533 (7)
Mn1—N32.168 (4)C9—C101.520 (7)
Mn1—N62.171 (4)C9—C111.525 (7)
Mn1—O72.173 (3)C10—H10A0.9600
Mn1—N42.337 (4)C10—H10B0.9600
Mn1—N12.348 (4)C10—H10C0.9600
N1—C61.318 (6)C11—C131.519 (8)
N1—C21.350 (5)C11—C121.527 (8)
N2—C71.301 (5)C11—H110.9800
N2—C91.475 (6)C12—H12A0.9600
N2—H20.8600C12—H12B0.9600
N3—C71.345 (5)C12—H12C0.9600
N3—C81.369 (6)C13—H13A0.9600
N4—C191.325 (6)C13—H13B0.9600
N4—C151.351 (5)C13—H13C0.9600
N5—C201.303 (6)C14—C161.531 (6)
N5—C221.468 (7)C15—C161.398 (6)
N5—H50.8600C15—C201.489 (6)
N6—C201.340 (5)C16—C171.390 (7)
N6—C211.377 (6)C17—C181.363 (7)
O1—C11.231 (6)C17—H170.9300
O2—C11.243 (6)C18—C191.376 (7)
O3—C81.218 (6)C18—H180.9300
O4—C141.222 (6)C19—H190.9300
O5—C141.225 (6)C21—C221.556 (7)
O6—C211.222 (6)C22—C241.492 (8)
O7—H7A0.8499C22—C231.531 (8)
O7—H7B0.8500C23—H23A0.9600
O8—H8A0.8500C23—H23B0.9600
O8—H8B0.8500C23—H23C0.9600
C1—C31.536 (6)C24—C261.534 (10)
C2—C31.403 (6)C24—C251.539 (9)
C2—C71.485 (6)C24—H240.9800
C3—C41.393 (7)C25—H25A0.9600
C4—C51.372 (7)C25—H25B0.9600
C4—H40.9300C25—H25C0.9600
C5—C61.372 (7)C26—H26A0.9600
C5—H5A0.9300C26—H26B0.9600
C6—H60.9300C26—H26C0.9600
O8—Mn1—N3102.29 (13)H10B—C10—H10C109.5
O8—Mn1—N686.22 (13)C13—C11—C9112.7 (5)
N3—Mn1—N6166.75 (15)C13—C11—C12111.7 (5)
O8—Mn1—O795.15 (13)C9—C11—C12112.4 (5)
N3—Mn1—O786.80 (13)C13—C11—H11106.5
N6—Mn1—O7102.69 (14)C9—C11—H11106.5
O8—Mn1—N4157.06 (13)C12—C11—H11106.5
N3—Mn1—N4100.64 (14)C11—C12—H12A109.5
N6—Mn1—N471.08 (13)C11—C12—H12B109.5
O7—Mn1—N486.87 (13)H12A—C12—H12B109.5
O8—Mn1—N186.55 (13)C11—C12—H12C109.5
N3—Mn1—N171.07 (13)H12A—C12—H12C109.5
N6—Mn1—N199.70 (14)H12B—C12—H12C109.5
O7—Mn1—N1157.60 (13)C11—C13—H13A109.5
N4—Mn1—N1100.21 (14)C11—C13—H13B109.5
C6—N1—C2119.1 (4)H13A—C13—H13B109.5
C6—N1—Mn1122.9 (3)C11—C13—H13C109.5
C2—N1—Mn1116.7 (3)H13A—C13—H13C109.5
C7—N2—C9109.8 (4)H13B—C13—H13C109.5
C7—N2—H2125.1O4—C14—O5124.1 (5)
C9—N2—H2125.1O4—C14—C16114.9 (5)
C7—N3—C8106.7 (4)O5—C14—C16121.1 (5)
C7—N3—Mn1118.7 (3)N4—C15—C16122.3 (4)
C8—N3—Mn1134.2 (3)N4—C15—C20110.3 (4)
C19—N4—C15118.9 (4)C16—C15—C20127.4 (4)
C19—N4—Mn1122.4 (3)C17—C16—C15116.3 (4)
C15—N4—Mn1117.3 (3)C17—C16—C14115.3 (4)
C20—N5—C22110.7 (4)C15—C16—C14128.4 (4)
C20—N5—H5124.7C18—C17—C16121.5 (4)
C22—N5—H5124.7C18—C17—H17119.2
C20—N6—C21106.6 (4)C16—C17—H17119.2
C20—N6—Mn1118.5 (3)C17—C18—C19118.2 (5)
C21—N6—Mn1133.7 (3)C17—C18—H18120.9
Mn1—O7—H7A111.9C19—C18—H18120.9
Mn1—O7—H7B110.5N4—C19—C18122.7 (5)
H7A—O7—H7B108.4N4—C19—H19118.6
Mn1—O8—H8A111.1C18—C19—H19118.6
Mn1—O8—H8B111.5N5—C20—N6114.9 (4)
H8A—O8—H8B107.4N5—C20—C15125.4 (4)
O1—C1—O2124.6 (5)N6—C20—C15119.6 (4)
O1—C1—C3114.4 (4)O6—C21—N6125.0 (5)
O2—C1—C3121.0 (4)O6—C21—C22125.7 (4)
N1—C2—C3122.3 (4)N6—C21—C22109.1 (4)
N1—C2—C7110.6 (4)N5—C22—C24109.6 (5)
C3—C2—C7127.2 (4)N5—C22—C23112.0 (5)
C4—C3—C2116.1 (4)C24—C22—C23112.2 (5)
C4—C3—C1115.1 (4)N5—C22—C2198.3 (4)
C2—C3—C1128.9 (4)C24—C22—C21113.7 (5)
C5—C4—C3121.3 (4)C23—C22—C21110.4 (5)
C5—C4—H4119.3C22—C23—H23A109.5
C3—C4—H4119.3C22—C23—H23B109.5
C4—C5—C6118.0 (5)H23A—C23—H23B109.5
C4—C5—H5A121.0C22—C23—H23C109.5
C6—C5—H5A121.0H23A—C23—H23C109.5
N1—C6—C5123.1 (5)H23B—C23—H23C109.5
N1—C6—H6118.5C22—C24—C26111.0 (5)
C5—C6—H6118.5C22—C24—C25112.4 (6)
N2—C7—N3114.9 (4)C26—C24—C25111.0 (6)
N2—C7—C2125.4 (4)C22—C24—H24107.4
N3—C7—C2119.7 (4)C26—C24—H24107.4
O3—C8—N3126.1 (4)C25—C24—H24107.4
O3—C8—C9124.4 (4)C24—C25—H25A109.5
N3—C8—C9109.6 (4)C24—C25—H25B109.5
N2—C9—C10112.1 (4)H25A—C25—H25B109.5
N2—C9—C11110.0 (4)C24—C25—H25C109.5
C10—C9—C11113.6 (5)H25A—C25—H25C109.5
N2—C9—C899.1 (4)H25B—C25—H25C109.5
C10—C9—C8110.9 (5)C24—C26—H26A109.5
C11—C9—C8110.3 (4)C24—C26—H26B109.5
C9—C10—H10A109.5H26A—C26—H26B109.5
C9—C10—H10B109.5C24—C26—H26C109.5
H10A—C10—H10B109.5H26A—C26—H26C109.5
C9—C10—H10C109.5H26B—C26—H26C109.5
H10A—C10—H10C109.5
O8—Mn1—N1—C679.3 (4)C3—C2—C7—N3175.8 (4)
N3—Mn1—N1—C6176.5 (5)C7—N3—C8—O3179.3 (5)
N6—Mn1—N1—C66.3 (4)Mn1—N3—C8—O39.4 (9)
O7—Mn1—N1—C6174.4 (4)C7—N3—C8—C91.4 (6)
N4—Mn1—N1—C678.7 (4)Mn1—N3—C8—C9169.9 (3)
O8—Mn1—N1—C287.5 (3)C7—N2—C9—C10117.0 (5)
N3—Mn1—N1—C216.8 (3)C7—N2—C9—C11115.7 (5)
N6—Mn1—N1—C2173.1 (3)C7—N2—C9—C80.1 (5)
O7—Mn1—N1—C27.7 (6)O3—C8—C9—N2179.8 (5)
N4—Mn1—N1—C2114.6 (3)N3—C8—C9—N20.9 (5)
O8—Mn1—N3—C768.3 (3)O3—C8—C9—C1062.2 (7)
N6—Mn1—N3—C760.8 (8)N3—C8—C9—C10117.0 (5)
O7—Mn1—N3—C7162.9 (3)O3—C8—C9—C1164.5 (7)
N4—Mn1—N3—C7110.9 (3)N3—C8—C9—C11116.2 (5)
N1—Mn1—N3—C713.6 (3)N2—C9—C11—C1373.7 (6)
O8—Mn1—N3—C8102.1 (5)C10—C9—C11—C1352.8 (7)
N6—Mn1—N3—C8128.7 (6)C8—C9—C11—C13178.1 (5)
O7—Mn1—N3—C87.5 (5)N2—C9—C11—C1253.7 (6)
N4—Mn1—N3—C878.7 (5)C10—C9—C11—C12179.8 (5)
N1—Mn1—N3—C8175.9 (5)C8—C9—C11—C1254.6 (6)
O8—Mn1—N4—C19173.7 (4)C19—N4—C15—C162.4 (7)
N3—Mn1—N4—C198.3 (4)Mn1—N4—C15—C16164.7 (3)
N6—Mn1—N4—C19177.6 (4)C19—N4—C15—C20178.9 (4)
O7—Mn1—N4—C1977.8 (4)Mn1—N4—C15—C2014.0 (5)
N1—Mn1—N4—C1980.7 (4)N4—C15—C16—C172.0 (7)
O8—Mn1—N4—C157.0 (6)C20—C15—C16—C17179.6 (4)
N3—Mn1—N4—C15174.9 (3)N4—C15—C16—C14177.9 (4)
N6—Mn1—N4—C1515.8 (3)C20—C15—C16—C140.6 (8)
O7—Mn1—N4—C1588.8 (3)O4—C14—C16—C1722.3 (6)
N1—Mn1—N4—C15112.6 (3)O5—C14—C16—C17156.7 (6)
O8—Mn1—N6—C20162.1 (4)O4—C14—C16—C15157.6 (5)
N3—Mn1—N6—C2067.3 (7)O5—C14—C16—C1523.5 (8)
O7—Mn1—N6—C2067.6 (4)C15—C16—C17—C180.4 (7)
N4—Mn1—N6—C2014.5 (3)C14—C16—C17—C18179.7 (5)
N1—Mn1—N6—C20112.1 (4)C16—C17—C18—C192.2 (8)
O8—Mn1—N6—C213.2 (5)C15—N4—C19—C180.5 (8)
N3—Mn1—N6—C21127.4 (6)Mn1—N4—C19—C18166.0 (4)
O7—Mn1—N6—C2197.6 (5)C17—C18—C19—N41.8 (9)
N4—Mn1—N6—C21179.8 (5)C22—N5—C20—N61.6 (7)
N1—Mn1—N6—C2182.7 (5)C22—N5—C20—C15177.6 (5)
C6—N1—C2—C33.1 (7)C21—N6—C20—N52.7 (6)
Mn1—N1—C2—C3164.1 (3)Mn1—N6—C20—N5166.2 (4)
C6—N1—C2—C7176.3 (4)C21—N6—C20—C15178.1 (4)
Mn1—N1—C2—C716.5 (5)Mn1—N6—C20—C1513.0 (6)
N1—C2—C3—C42.8 (6)N4—C15—C20—N5179.5 (5)
C7—C2—C3—C4176.5 (4)C16—C15—C20—N51.9 (8)
N1—C2—C3—C1177.9 (4)N4—C15—C20—N61.4 (6)
C7—C2—C3—C12.8 (7)C16—C15—C20—N6177.2 (4)
O1—C1—C3—C422.3 (6)C20—N6—C21—O6178.5 (6)
O2—C1—C3—C4156.6 (5)Mn1—N6—C21—O615.0 (9)
O1—C1—C3—C2158.4 (5)C20—N6—C21—C225.6 (6)
O2—C1—C3—C222.7 (7)Mn1—N6—C21—C22160.9 (4)
C2—C3—C4—C50.3 (7)C20—N5—C22—C24123.4 (6)
C1—C3—C4—C5179.1 (5)C20—N5—C22—C23111.5 (6)
C3—C4—C5—C62.9 (9)C20—N5—C22—C214.5 (6)
C2—N1—C6—C50.2 (9)O6—C21—C22—N5178.0 (6)
Mn1—N1—C6—C5166.2 (5)N6—C21—C22—N56.1 (6)
C4—C5—C6—N12.7 (10)O6—C21—C22—C2462.3 (8)
C9—N2—C7—N30.8 (6)N6—C21—C22—C24121.8 (5)
C9—N2—C7—C2177.3 (4)O6—C21—C22—C2364.8 (8)
C8—N3—C7—N21.4 (6)N6—C21—C22—C23111.1 (5)
Mn1—N3—C7—N2171.4 (3)N5—C22—C24—C2656.6 (7)
C8—N3—C7—C2176.8 (4)C23—C22—C24—C26178.3 (6)
Mn1—N3—C7—C210.3 (5)C21—C22—C24—C2652.2 (7)
N1—C2—C7—N2173.2 (5)N5—C22—C24—C25178.4 (5)
C3—C2—C7—N26.2 (8)C23—C22—C24—C2553.4 (8)
N1—C2—C7—N34.9 (6)C21—C22—C24—C2572.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.742.524 (5)151
N5—H5···O50.861.762.535 (6)149
O7—H7A···O30.852.092.838 (5)147
O7—H7B···O1i0.851.802.638 (5)170
O8—H8A···O60.852.062.791 (5)143
O8—H8B···O4ii0.851.772.609 (5)171
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mn(C13H14N3O3)2(H2O)2]
Mr611.52
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.620 (3), 19.753 (4), 23.017 (5)
V3)5738 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.50 × 0.48 × 0.35
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.782, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
25491, 5057, 3208
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.179, 1.06
No. of reflections5057
No. of parameters376
No. of restraints5
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0592P)2 + 17.1897P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.08, 0.47

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.742.524 (5)151
N5—H5···O50.861.762.535 (6)149
O7—H7A···O30.852.092.838 (5)147
O7—H7B···O1i0.851.802.638 (5)170
O8—H8A···O60.852.062.791 (5)143
O8—H8B···O4ii0.851.772.609 (5)171
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Innovation Project of Guangxi University for Nationalities (gxun-chx2009080).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatterjee, M., Maji, M., Ghosh, S. & Mak, T. C. W. (1998). J. Chem. Soc. Dalton Trans. pp. 3641–3646.  Web of Science CSD CrossRef Google Scholar
First citationErre, L. S., Garribba, E., Micera, G. & Sardone, N. (1998). Inorg. Chim. Acta, 272, 68–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationNathan, L. C. & Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819–2823.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Crans, D. C., Miller, S. M., la Cour, A., Anderson, O. P., Kaszynski, P. M., Godzala, M. E. III, Austin, L. D. & Willsky, G. R. (2002). Inorg. Chem. 41, 4859–4871.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds