metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-bis­­{[4-(2-pyrid­yl)pyrimidin-2-yl]sulfan­yl}methane)­disilver(I) bis­­(perchlorate)

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 20 November 2010; accepted 25 November 2010; online 30 November 2010)

In the macrocyclic centrosymmetric dinuclear complex, [Ag2(C19H14N6S2)2](ClO4)2, the AgI atom, bis­{[4-(2-pyrid­yl)pyrimidin-2-yl]sulfan­yl}methane (2-bppt) ligand and perchlorate anion each lie on a twofold rotation axis. The 2-bppt ligand chelates two four-coordinated AgI atoms through its two bipyridine-like arms. The O atoms of the perchlorate anion are disordered each over two positions of equal occupancy. Adjacent complex mol­ecules are linked by ππ inter­actions between the pyridine and pyrimidine rings [centroid–centroid distance = 3.663 (8) Å].

Related literature

For Ag(I) coordination polymers, see: Chen et al. (2006[Chen, C.-L., Kang, B.-S. & Su, C.-Y. (2006). Aust. J. Chem. 59, 3-18.]). For the coordination chemistry of 4-(pyridin-n-yl)pyrimidin-2-thiol (n = 2, 3, 4) and their derivatives, see: Dong et al. (2009[Dong, H.-Z., Zhao, J., Gou, S.-H. & Zhu, H.-B. (2009). Polyhedron, 28, 1040-1048.]); Huang et al. (2007[Huang, C.-H., Gou, S.-H., Zhu, H.-B. & Huang, W. (2007). Inorg. Chem. 46, 5537-5543.]); Zhu et al. (2010[Zhu, H.-B., Li, L., Xu, G. & Gou, S.-H. (2010). Eur. J. Inorg. Chem. pp. 1143-1148.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C19H14N6S2)2](ClO4)2

  • Mr = 1195.64

  • Orthorhombic, F d d d

  • a = 10.4382 (16) Å

  • b = 27.896 (4) Å

  • c = 30.089 (5) Å

  • V = 8761 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 298 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.832, Tmax = 0.880

  • 14503 measured reflections

  • 2705 independent reflections

  • 1640 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.172

  • S = 1.05

  • 2705 reflections

  • 169 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.277 (4)
Ag1—N2 2.398 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The supramolecular chemistry of Ag(I) coordination polymers is being a dynamic and thriving research field, which has attracted considerable interest (Chen et. al, 2006). For a long time, we have focused on the coordination chemistry of 4-(pyridin-n-yl)pyrimidin-2-thiol (n = 2, 3, 4) and their derivatives (Dong et al., 2009; Huang et al., 2007; Zhu et al., 2010). Herein, we report a macrocyclic Ag(I) complex with bis[4-(2-pyridyl)pyrimidin-2-ylthio]methane (2-bppt) ligand.

The title compound shows a discrete macrocylic dinuclear structure, with perchlorate anions uncoordinated (Fig. 1). Each AgI ion is chelated by two sets of N,N-chelating donors from two 2-bppt ligands. The Ag—N bond distances are 2.277 (4) and 2.398 (3) Å (Table 1), while the N—Ag—N angles are in the range of 70.96 (13) to 158.7 (2)°. The Ag—Ag separation across the macrocycle is 8.167 (1) Å.

Related literature top

For Ag(I) coordination polymers, see: Chen et al. (2006). For the coordination chemistry of 4-(pyridin-n-yl)pyrimidin-2-thiol (n = 2, 3, 4) and their derivatives, see: Dong et al. (2009); Huang et al. (2007); Zhu et al. (2010).

Experimental top

A CH3CN solution of AgClO4 (0.1 mmol) was layered above a CH2Cl2 solution of 2-bppt (0.1 mmol). Colorless crystals were obtained after one week. The crystals were collected and dried under vacuum (yield: 46%).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 and 0.97 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

The supramolecular chemistry of Ag(I) coordination polymers is being a dynamic and thriving research field, which has attracted considerable interest (Chen et. al, 2006). For a long time, we have focused on the coordination chemistry of 4-(pyridin-n-yl)pyrimidin-2-thiol (n = 2, 3, 4) and their derivatives (Dong et al., 2009; Huang et al., 2007; Zhu et al., 2010). Herein, we report a macrocyclic Ag(I) complex with bis[4-(2-pyridyl)pyrimidin-2-ylthio]methane (2-bppt) ligand.

The title compound shows a discrete macrocylic dinuclear structure, with perchlorate anions uncoordinated (Fig. 1). Each AgI ion is chelated by two sets of N,N-chelating donors from two 2-bppt ligands. The Ag—N bond distances are 2.277 (4) and 2.398 (3) Å (Table 1), while the N—Ag—N angles are in the range of 70.96 (13) to 158.7 (2)°. The Ag—Ag separation across the macrocycle is 8.167 (1) Å.

For Ag(I) coordination polymers, see: Chen et al. (2006). For the coordination chemistry of 4-(pyridin-n-yl)pyrimidin-2-thiol (n = 2, 3, 4) and their derivatives, see: Dong et al. (2009); Huang et al. (2007); Zhu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the 30% probability displacement ellipsoids. [Symmetry codes: (A) 7/4 - x, 3/4 - y, z; (B) x, 3/4 - y, -1/4 - z; (C) 7/4 - x, y, -1/4 - z; (D) 9/4 - x, 1/4 - y, z.]
Bis(µ-bis{[4-(2-pyridyl)pyrimidin-2-yl]sulfanyl}methane)disilver(I) bis(perchlorate) top
Crystal data top
[Ag2(C19H14N6S2)2](ClO4)2F(000) = 4768
Mr = 1195.64Dx = 1.813 Mg m3
Orthorhombic, FdddMo Kα radiation, λ = 0.71073 Å
Hall symbol: -F 2uv 2vwCell parameters from 2705 reflections
a = 10.4382 (16) Åθ = 2.3–25.5°
b = 27.896 (4) ŵ = 1.27 mm1
c = 30.089 (5) ÅT = 298 K
V = 8761 (2) Å3Block, colorless
Z = 80.15 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube1640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1312
Tmin = 0.832, Tmax = 0.880k = 3635
14503 measured reflectionsl = 3540
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2705 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.54 e Å3
24 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Ag2(C19H14N6S2)2](ClO4)2V = 8761 (2) Å3
Mr = 1195.64Z = 8
Orthorhombic, FdddMo Kα radiation
a = 10.4382 (16) ŵ = 1.27 mm1
b = 27.896 (4) ÅT = 298 K
c = 30.089 (5) Å0.15 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1640 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.880Rint = 0.035
14503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04624 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.05Δρmax = 0.54 e Å3
2705 reflectionsΔρmin = 0.64 e Å3
169 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.87500.37500.010711 (18)0.0724 (3)
S10.64901 (13)0.37857 (5)0.07449 (5)0.0703 (4)
Cl11.12500.12500.08929 (11)0.1119 (9)
C60.8563 (4)0.27205 (15)0.03645 (15)0.0602 (11)
N20.7995 (3)0.31493 (12)0.03991 (12)0.0577 (9)
N30.6715 (4)0.28754 (15)0.10059 (13)0.0708 (10)
C90.7124 (4)0.32014 (15)0.07181 (14)0.0598 (10)
C50.9565 (5)0.26651 (16)0.00209 (16)0.0652 (12)
C100.5575 (6)0.37500.12500.0715 (18)
H10A0.50250.40300.12670.086*0.50
H10B0.50250.34700.12330.086*0.50
N10.9792 (4)0.30490 (14)0.02472 (13)0.0693 (10)
C80.7272 (6)0.24468 (18)0.09552 (17)0.0804 (15)
H80.70130.21990.11410.096*
C70.8198 (6)0.23519 (16)0.06458 (18)0.0761 (14)
H70.85710.20500.06250.091*
C31.1171 (7)0.2208 (3)0.0336 (3)0.107 (2)
H31.16300.19240.03650.128*
C11.0704 (5)0.3010 (2)0.05571 (19)0.0873 (15)
H11.08640.32680.07450.105*
C21.1432 (5)0.2585 (3)0.0605 (3)0.105 (2)
H21.20780.25650.08170.125*
C41.0244 (6)0.2245 (2)0.0026 (2)0.0892 (16)
H41.00620.19850.01580.107*
O11.1499 (10)0.1740 (3)0.0861 (3)0.120 (3)0.50
O21.2437 (12)0.1043 (4)0.0898 (4)0.142 (4)0.50
O31.0656 (13)0.1194 (5)0.0423 (5)0.166 (5)0.50
O41.0504 (13)0.1200 (6)0.1265 (5)0.176 (5)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0848 (4)0.0529 (3)0.0795 (4)0.0060 (2)0.0000.000
S10.0718 (8)0.0712 (7)0.0679 (8)0.0074 (5)0.0057 (6)0.0091 (6)
Cl10.1036 (17)0.0619 (12)0.170 (3)0.0054 (11)0.0000.000
C60.068 (3)0.051 (2)0.062 (3)0.0062 (19)0.026 (2)0.0064 (19)
N20.059 (2)0.0522 (18)0.062 (2)0.0070 (15)0.0100 (18)0.0039 (15)
N30.074 (2)0.071 (3)0.067 (2)0.022 (2)0.007 (2)0.0131 (19)
C90.058 (2)0.063 (2)0.059 (2)0.0073 (19)0.012 (2)0.006 (2)
C50.065 (3)0.062 (3)0.069 (3)0.002 (2)0.023 (2)0.013 (2)
C100.050 (3)0.089 (5)0.076 (4)0.0000.0000.000 (3)
N10.066 (2)0.068 (2)0.074 (2)0.0072 (19)0.004 (2)0.0169 (19)
C80.095 (4)0.075 (3)0.071 (3)0.026 (3)0.020 (3)0.020 (3)
C70.091 (4)0.050 (2)0.087 (4)0.008 (2)0.034 (3)0.007 (2)
C30.092 (5)0.102 (5)0.126 (6)0.029 (4)0.023 (4)0.036 (5)
C10.074 (3)0.101 (4)0.087 (4)0.006 (3)0.007 (3)0.023 (3)
C20.065 (4)0.129 (6)0.120 (5)0.007 (3)0.003 (3)0.050 (5)
C40.087 (4)0.081 (3)0.099 (4)0.022 (3)0.027 (3)0.019 (3)
O10.152 (7)0.076 (5)0.132 (7)0.008 (5)0.029 (5)0.009 (4)
O20.133 (7)0.105 (6)0.188 (8)0.044 (6)0.017 (6)0.012 (6)
O30.176 (9)0.166 (8)0.155 (8)0.016 (7)0.028 (7)0.007 (7)
O40.167 (8)0.198 (9)0.162 (8)0.025 (8)0.076 (7)0.041 (7)
Geometric parameters (Å, º) top
Ag1—N12.277 (4)C5—C41.377 (6)
Ag1—N22.398 (3)C10—S1i1.798 (4)
S1—C91.761 (4)C10—H10A0.9700
S1—C101.798 (4)C10—H10B0.9700
Cl1—O41.370 (11)N1—C11.337 (6)
Cl1—O21.367 (11)C8—C71.368 (8)
Cl1—O11.395 (9)C8—H80.9300
Cl1—O31.552 (13)C7—H70.9300
C6—N21.339 (5)C3—C21.355 (11)
C6—C71.385 (7)C3—C41.348 (9)
C6—C51.479 (7)C3—H30.9300
N2—C91.330 (5)C1—C21.416 (9)
N3—C91.326 (5)C1—H10.9300
N3—C81.338 (6)C2—H20.9300
C5—N11.361 (6)C4—H40.9300
N1—Ag1—N1ii158.7 (2)S1i—C10—H10A108.3
N1—Ag1—N271.00 (14)S1—C10—H10B108.3
N1ii—Ag1—N2124.11 (13)S1i—C10—H10B108.3
N1—Ag1—N2ii124.11 (13)H10A—C10—H10B107.4
N1ii—Ag1—N2ii71.00 (14)C5—N1—C1118.3 (5)
N2—Ag1—N2ii101.13 (16)C5—N1—Ag1118.9 (3)
C9—S1—C10100.78 (17)C1—N1—Ag1122.6 (4)
O4—Cl1—O4iii70.5 (13)N3—C8—C7123.9 (4)
O4—Cl1—O2117.6 (10)N3—C8—H8118.1
O4iii—Cl1—O261.2 (7)C7—C8—H8118.1
O4—Cl1—O2iii61.2 (7)C8—C7—C6117.8 (5)
O4iii—Cl1—O2iii117.6 (10)C8—C7—H7121.1
O2—Cl1—O2iii178.7 (11)C6—C7—H7121.1
O4—Cl1—O1iii81.5 (8)C2—C3—C4119.8 (6)
O4iii—Cl1—O1iii105.2 (8)C2—C3—H3120.1
O2—Cl1—O1iii75.8 (6)C4—C3—H3120.1
O2iii—Cl1—O1iii104.3 (6)N1—C1—C2121.3 (6)
O4—Cl1—O1105.2 (8)N1—C1—H1119.3
O4iii—Cl1—O181.5 (8)C2—C1—H1119.3
O2—Cl1—O1104.3 (6)C3—C2—C1118.9 (6)
O2iii—Cl1—O175.8 (6)C3—C2—H2120.6
O1iii—Cl1—O1172.0 (9)C1—C2—H2120.6
O4—Cl1—O3iii168.9 (8)C3—C4—C5120.3 (6)
O4iii—Cl1—O3iii120.5 (8)C3—C4—H4119.8
O2—Cl1—O3iii72.0 (7)C5—C4—H4119.8
O2iii—Cl1—O3iii109.3 (9)Cl1—O1—O2iii51.3 (4)
O1iii—Cl1—O3iii96.3 (7)Cl1—O1—O4iii48.6 (5)
O1—Cl1—O3iii76.3 (7)O2iii—O1—O4iii83.8 (7)
O4—Cl1—O3120.5 (8)Cl1—O1—O3iii55.7 (6)
O4iii—Cl1—O3168.9 (8)O2iii—O1—O3iii85.0 (7)
O2—Cl1—O3109.3 (9)O4iii—O1—O3iii88.7 (8)
O2iii—Cl1—O372.0 (7)Cl1—O2—O4iii59.5 (7)
O1iii—Cl1—O376.3 (7)Cl1—O2—O1iii52.8 (5)
O1—Cl1—O396.3 (7)O4iii—O2—O1iii90.0 (9)
O3iii—Cl1—O348.6 (10)Cl1—O2—O3iii59.0 (6)
N2—C6—C7119.6 (5)O4iii—O2—O3iii108.6 (10)
N2—C6—C5117.4 (4)O1iii—O2—O3iii80.0 (8)
C7—C6—C5123.0 (4)O3iii—O3—Cl165.7 (5)
C9—N2—C6117.2 (4)O3iii—O3—O2iii104.2 (9)
C9—N2—Ag1127.3 (3)Cl1—O3—O2iii49.0 (5)
C6—N2—Ag1115.4 (3)O3iii—O3—O1iii88.3 (12)
C9—N3—C8113.5 (4)Cl1—O3—O1iii48.0 (5)
N3—C9—N2128.0 (4)O2iii—O3—O1iii75.8 (7)
N3—C9—S1119.0 (4)Cl1—O4—O2iii59.3 (7)
N2—C9—S1113.0 (3)Cl1—O4—O4iii54.8 (6)
N1—C5—C4121.3 (5)O2iii—O4—O4iii103.6 (10)
N1—C5—C6117.1 (4)Cl1—O4—O1iii49.9 (6)
C4—C5—C6121.6 (5)O2iii—O4—O1iii84.9 (9)
S1—C10—S1i115.8 (4)O4iii—O4—O1iii80.6 (11)
S1—C10—H10A108.3
Symmetry codes: (i) x, y+3/4, z1/4; (ii) x+7/4, y+3/4, z; (iii) x+9/4, y+1/4, z.

Experimental details

Crystal data
Chemical formula[Ag2(C19H14N6S2)2](ClO4)2
Mr1195.64
Crystal system, space groupOrthorhombic, Fddd
Temperature (K)298
a, b, c (Å)10.4382 (16), 27.896 (4), 30.089 (5)
V3)8761 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.832, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
14503, 2705, 1640
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.172, 1.05
No. of reflections2705
No. of parameters169
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.64

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N12.277 (4)Ag1—N22.398 (3)
 

Acknowledgements

The author acknowledges financial support from the China Postdoctoral Research Fund (20070411010).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-L., Kang, B.-S. & Su, C.-Y. (2006). Aust. J. Chem. 59, 3–18.  Web of Science CrossRef CAS Google Scholar
First citationDong, H.-Z., Zhao, J., Gou, S.-H. & Zhu, H.-B. (2009). Polyhedron, 28, 1040–1048.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, C.-H., Gou, S.-H., Zhu, H.-B. & Huang, W. (2007). Inorg. Chem. 46, 5537–5543.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-B., Li, L., Xu, G. & Gou, S.-H. (2010). Eur. J. Inorg. Chem. pp. 1143–1148.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds