metal-organic compounds
Aqua(4-nitrophthalato-κO1)bis[2-(1H-pyrazol-3-yl-κN2)pyridine-κN]manganese(II) hemihydrate
aCollege of Chemistry and Biology, Beihua University, Jilin 132013, People's Republic of China
*Correspondence e-mail: nilei_bh@163.com
In the title compound, [Mn(C8H3NO6)(C8H7N3)2(H2O)]·0.5H2O, the Mn2+ ion is octahedrally coordinated by two 2-(1H-pyrazol-3-yl)pyridine ligands, one 4-nitrophthalate ligand and one coordinated water molecule leading to an overall MnN4O2 coordination environment. The two 2-(1H-pyrazol-3-yl)pyridine ligands, which deviate from planarity by 0.0187 (2) and 0.0601 (2) Å, make a dihedral angle of 81.90 (6)°. An intramolecular N—H⋯O hydrogen bond occurs. Intermolecular π–π stacking interactions with a face-to-face separation of 3.61 (1) Å between the 2-(1H-pyrazol-3-yl)pyridine ligands is observed. Additionally, O—H⋯O hydrogen bonding involving the uncoordinated water (which is situated on an inversion center), coordinated water molecules and 2-(1H-pyrazol-3-yl)pyridine ligands leads to a three-dimensional network in the crystal structure.
Related literature
For the use of 4-nitro-phthalic acid for metal-organic frameworks, see: Xu et al. (2009); Guo & Guo (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810045952/im2225sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810045952/im2225Isup2.hkl
A mixture of manganese sulfate hydrate (0.33 mmol, 0.050 g), 2-(1H-pyrazol-3-yl)-pyridine (0.32 mmoL, 0.05 g), and 4-nitrophthalic acid (0.24 mmoL, 0.05 g), gadolinium(III) nitrate pentahydrate (0.12 mmoL, 0.05 g), and 14 ml H2O was sealed in a 25 ml Teflon-lined stainless steel autoclave at 433 K for three days. Pink crystals suitable for the X-ray experiment were obtained after cooling down to room temperature (yield: 76%). Anal. Calc. for C48H40Mn2N14O15: C 49.53, H 3.44, N 16.85%; Found: C 49.36, H 3.32, N 16.72%.
All hydrogen atoms bound to carbon were refined using a riding model with C—H = 0.93 Å and Uiso = 1.2Ueq (C). The H atoms of the coordinated water molecule were located from difference density maps and were refined with d(O—H) = 0.83 (2) Å, and with a fixed Uiso of 0.80 Å2.
of the H atoms of lattice water did not result in a reasonable model since there is only 0.5 water situated at a crystallographic center of inversion. Hydrogen positions would therefore have to be split. Hence corresponding hydrogen positions were excluded from the final refinement.The synthesis of metal-organic frameworks (MOFs) has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application (Xu et al. (2009); Guo & Guo (2007)). Here, we describe the synthesis and structural characterization of the title compound.
Single crystal X-ray π-π stacking interactions with a face-to-face separation of 3.61 (1) Å between the 2-(1H-pyrazol-3-yl)-pyridine ligands is observed. Additionally, extensive hydrogen bonding involving solvent water (which are situated at a crystallographic center of inversion), coordinated water molecules and 2-(1H-pyrazol-3-yl)-pyridine ligands leads to a three dimensional network in the (Figure 2).
revealed that the of the title compound, [(Mn(C8H7N3)2(C8H3NO6)(H2O)] × 0.5 H2O, consists of one Mn2+ ion that is octahedrally coordinated by two 2-(1H-pyrazol-3-yl)-pyridine ligands, one 4-nitro-phthalato ligand and one coordinated water molecule leading to an overall MnN4O2 coordination environment (Figure 1). Deviations of the two 2-(1H-pyrazol-3-yl)-pyridine moieties from planarity are 0.0187 (2) and 0.0601 (2) Å, respectively. The dihedral angle between the two 3-(2-pyridyl)-1H-pyrazole planes is 81.90 (6)°. The Mn-N and Mn-O bond distances are in the range of 2.200 (2)—2.359 (2) and 2.126 (2)—2.162 (2) Å, respectively. IntermolecularFor the use of 4-nitro-phthalic acid for metal-organic frameworks, see: Xu et al. (2009); Guo & Guo (2007).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C8H3NO6)(C8H7N3)2(H2O)]·0.5H2O | Z = 2 |
Mr = 581.41 | F(000) = 594 |
Triclinic, P1 | Dx = 1.497 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5996 (7) Å | Cell parameters from 4492 reflections |
b = 11.2654 (7) Å | θ = 1.9–25.0° |
c = 11.9493 (7) Å | µ = 0.57 mm−1 |
α = 96.275 (2)° | T = 294 K |
β = 112.485 (2)° | Block, pink |
γ = 96.902 (2)° | 0.12 × 0.10 × 0.08 mm |
V = 1289.94 (14) Å3 |
Bruker APEXII CCD diffractometer | 4492 independent reflections |
Radiation source: fine-focus sealed tube | 4112 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
phi and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −12→12 |
Tmin = 0.935, Tmax = 0.956 | k = −13→12 |
13775 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.065P)2 + 0.6953P] where P = (Fo2 + 2Fc2)/3 |
4492 reflections | (Δ/σ)max = 0.001 |
364 parameters | Δρmax = 0.67 e Å−3 |
3 restraints | Δρmin = −0.56 e Å−3 |
[Mn(C8H3NO6)(C8H7N3)2(H2O)]·0.5H2O | γ = 96.902 (2)° |
Mr = 581.41 | V = 1289.94 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.5996 (7) Å | Mo Kα radiation |
b = 11.2654 (7) Å | µ = 0.57 mm−1 |
c = 11.9493 (7) Å | T = 294 K |
α = 96.275 (2)° | 0.12 × 0.10 × 0.08 mm |
β = 112.485 (2)° |
Bruker APEXII CCD diffractometer | 4492 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 4112 reflections with I > 2σ(I) |
Tmin = 0.935, Tmax = 0.956 | Rint = 0.016 |
13775 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 3 restraints |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.67 e Å−3 |
4492 reflections | Δρmin = −0.56 e Å−3 |
364 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7173 (4) | 0.2731 (3) | 0.9226 (3) | 0.0712 (8) | |
H1 | 0.6343 | 0.2568 | 0.9323 | 0.085* | |
C2 | 0.8448 (4) | 0.3131 (3) | 1.0143 (3) | 0.0697 (8) | |
H2 | 0.8668 | 0.3294 | 1.0983 | 0.084* | |
C3 | 0.9359 (3) | 0.3247 (2) | 0.9554 (2) | 0.0518 (6) | |
C4 | 1.0853 (3) | 0.3638 (2) | 1.0005 (2) | 0.0537 (6) | |
C5 | 1.1703 (4) | 0.4045 (3) | 1.1239 (2) | 0.0695 (8) | |
H5 | 1.1328 | 0.4073 | 1.1828 | 0.083* | |
C6 | 1.3098 (4) | 0.4403 (3) | 1.1578 (3) | 0.0831 (10) | |
H6 | 1.3680 | 0.4673 | 1.2401 | 0.100* | |
C7 | 1.3632 (4) | 0.4362 (3) | 1.0692 (3) | 0.0802 (9) | |
H7 | 1.4576 | 0.4607 | 1.0903 | 0.096* | |
C8 | 1.2730 (3) | 0.3948 (3) | 0.9483 (3) | 0.0670 (7) | |
H8 | 1.3090 | 0.3916 | 0.8884 | 0.080* | |
C9 | 1.3004 (3) | 0.2422 (3) | 0.5695 (3) | 0.0635 (7) | |
H9 | 1.3674 | 0.2662 | 0.5403 | 0.076* | |
C10 | 1.2660 (3) | 0.1287 (3) | 0.5905 (3) | 0.0611 (7) | |
H10 | 1.3037 | 0.0604 | 0.5786 | 0.073* | |
C11 | 1.1618 (2) | 0.13717 (19) | 0.63382 (19) | 0.0406 (4) | |
C12 | 1.0839 (2) | 0.04615 (18) | 0.67283 (18) | 0.0404 (4) | |
C13 | 1.0928 (3) | −0.0766 (2) | 0.6586 (2) | 0.0526 (6) | |
H13 | 1.1490 | −0.1049 | 0.6217 | 0.063* | |
C14 | 1.0177 (3) | −0.1549 (2) | 0.6995 (3) | 0.0663 (7) | |
H14 | 1.0218 | −0.2372 | 0.6906 | 0.080* | |
C15 | 0.9309 (3) | 0.0111 (2) | 0.7633 (3) | 0.0688 (8) | |
H15 | 0.8747 | 0.0405 | 0.7995 | 0.083* | |
C16 | 0.9367 (4) | −0.1107 (3) | 0.7536 (3) | 0.0761 (8) | |
H16 | 0.8861 | −0.1620 | 0.7834 | 0.091* | |
C17 | 0.6605 (2) | 0.2144 (2) | 0.5118 (2) | 0.0513 (6) | |
C18 | 0.5813 (2) | 0.1929 (2) | 0.3746 (2) | 0.0427 (5) | |
C19 | 0.4714 (3) | 0.0954 (2) | 0.3232 (2) | 0.0572 (6) | |
H19 | 0.4438 | 0.0523 | 0.3746 | 0.069* | |
C20 | 0.4030 (3) | 0.0616 (2) | 0.1979 (3) | 0.0619 (7) | |
H20 | 0.3294 | −0.0034 | 0.1639 | 0.074* | |
C21 | 0.4462 (2) | 0.1264 (2) | 0.1246 (2) | 0.0545 (6) | |
C22 | 0.5544 (2) | 0.2235 (2) | 0.1721 (2) | 0.0479 (5) | |
H22 | 0.5820 | 0.2648 | 0.1197 | 0.058* | |
C23 | 0.6216 (2) | 0.25915 (18) | 0.29779 (19) | 0.0400 (4) | |
C24 | 0.7320 (2) | 0.3719 (2) | 0.3445 (2) | 0.0462 (5) | |
Mn1 | 0.97367 (3) | 0.28597 (3) | 0.71009 (3) | 0.03701 (12) | |
N1 | 0.7320 (2) | 0.26121 (19) | 0.8159 (2) | 0.0564 (5) | |
H1A | 0.6650 | 0.2366 | 0.7450 | 0.068* | |
N2 | 0.8652 (2) | 0.29291 (17) | 0.83442 (17) | 0.0485 (4) | |
N3 | 1.1369 (2) | 0.35929 (18) | 0.91298 (18) | 0.0528 (5) | |
N4 | 1.22077 (19) | 0.31285 (17) | 0.59823 (18) | 0.0474 (4) | |
H4 | 1.2240 | 0.3884 | 0.5919 | 0.057* | |
N5 | 1.13476 (17) | 0.25018 (15) | 0.63847 (16) | 0.0393 (4) | |
N6 | 1.0021 (2) | 0.08928 (16) | 0.72337 (18) | 0.0467 (4) | |
N7 | 0.3749 (3) | 0.0899 (3) | −0.0097 (2) | 0.0805 (7) | |
O1 | 0.5935 (2) | 0.2119 (4) | 0.5746 (2) | 0.1504 (16) | |
O2 | 0.78795 (15) | 0.22449 (14) | 0.54996 (14) | 0.0475 (4) | |
O3 | 0.7370 (2) | 0.44475 (15) | 0.43391 (16) | 0.0596 (4) | |
O4 | 0.8061 (2) | 0.38723 (19) | 0.2870 (2) | 0.0791 (6) | |
O5 | 0.4122 (3) | 0.1463 (3) | −0.0749 (2) | 0.1086 (9) | |
O6 | 0.2814 (4) | 0.0044 (3) | −0.0487 (3) | 0.1654 (18) | |
O1W | 0.96188 (16) | 0.46463 (14) | 0.66095 (15) | 0.0479 (4) | |
O2W | 0.5000 | 0.5000 | 0.5000 | 0.208 (3) | |
H1W | 0.9011 (17) | 0.454 (3) | 0.5913 (10) | 0.080* | |
H2W | 1.0347 (14) | 0.507 (2) | 0.670 (2) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.097 (2) | 0.0723 (18) | 0.0770 (19) | 0.0202 (16) | 0.0667 (19) | 0.0216 (15) |
C2 | 0.109 (2) | 0.0717 (18) | 0.0557 (16) | 0.0283 (17) | 0.0556 (18) | 0.0216 (13) |
C3 | 0.0855 (18) | 0.0398 (11) | 0.0455 (12) | 0.0208 (11) | 0.0388 (12) | 0.0118 (9) |
C4 | 0.0838 (18) | 0.0380 (12) | 0.0446 (12) | 0.0213 (11) | 0.0277 (12) | 0.0100 (9) |
C5 | 0.106 (2) | 0.0573 (16) | 0.0450 (14) | 0.0253 (15) | 0.0264 (15) | 0.0096 (12) |
C6 | 0.104 (3) | 0.0694 (19) | 0.0505 (16) | 0.0196 (18) | 0.0035 (17) | 0.0064 (14) |
C7 | 0.073 (2) | 0.076 (2) | 0.0705 (19) | 0.0113 (16) | 0.0083 (16) | 0.0066 (15) |
C8 | 0.0655 (17) | 0.0692 (17) | 0.0592 (16) | 0.0113 (14) | 0.0192 (13) | 0.0037 (13) |
C9 | 0.0590 (15) | 0.0756 (18) | 0.0797 (18) | 0.0222 (13) | 0.0481 (14) | 0.0230 (14) |
C10 | 0.0679 (16) | 0.0625 (16) | 0.0775 (17) | 0.0340 (13) | 0.0465 (14) | 0.0217 (13) |
C11 | 0.0430 (11) | 0.0413 (11) | 0.0400 (11) | 0.0145 (9) | 0.0174 (9) | 0.0070 (8) |
C12 | 0.0442 (11) | 0.0390 (11) | 0.0347 (10) | 0.0117 (9) | 0.0112 (9) | 0.0057 (8) |
C13 | 0.0630 (14) | 0.0435 (12) | 0.0492 (13) | 0.0197 (11) | 0.0175 (11) | 0.0072 (10) |
C14 | 0.0842 (19) | 0.0372 (13) | 0.0728 (17) | 0.0156 (12) | 0.0235 (15) | 0.0146 (12) |
C15 | 0.0821 (19) | 0.0506 (14) | 0.101 (2) | 0.0164 (13) | 0.0608 (17) | 0.0260 (14) |
C16 | 0.092 (2) | 0.0478 (15) | 0.105 (2) | 0.0101 (14) | 0.0540 (19) | 0.0311 (15) |
C17 | 0.0418 (12) | 0.0668 (15) | 0.0513 (13) | 0.0064 (10) | 0.0257 (10) | 0.0111 (11) |
C18 | 0.0337 (10) | 0.0464 (12) | 0.0515 (12) | 0.0080 (9) | 0.0206 (9) | 0.0084 (9) |
C19 | 0.0470 (13) | 0.0583 (14) | 0.0676 (16) | −0.0026 (11) | 0.0259 (12) | 0.0176 (12) |
C20 | 0.0428 (13) | 0.0561 (15) | 0.0722 (17) | −0.0106 (11) | 0.0149 (12) | 0.0028 (12) |
C21 | 0.0420 (12) | 0.0584 (14) | 0.0500 (13) | 0.0027 (10) | 0.0089 (10) | −0.0010 (11) |
C22 | 0.0416 (11) | 0.0532 (13) | 0.0472 (12) | 0.0032 (10) | 0.0170 (10) | 0.0096 (10) |
C23 | 0.0338 (10) | 0.0382 (11) | 0.0475 (11) | 0.0056 (8) | 0.0162 (9) | 0.0067 (9) |
C24 | 0.0433 (11) | 0.0391 (11) | 0.0504 (12) | 0.0008 (9) | 0.0143 (10) | 0.0085 (10) |
Mn1 | 0.0428 (2) | 0.03495 (19) | 0.03942 (19) | 0.00804 (13) | 0.02298 (15) | 0.00565 (13) |
N1 | 0.0672 (13) | 0.0579 (12) | 0.0593 (12) | 0.0069 (10) | 0.0432 (11) | 0.0088 (9) |
N2 | 0.0655 (12) | 0.0437 (10) | 0.0483 (11) | 0.0105 (9) | 0.0356 (10) | 0.0075 (8) |
N3 | 0.0663 (13) | 0.0466 (11) | 0.0465 (11) | 0.0141 (9) | 0.0234 (10) | 0.0048 (8) |
N4 | 0.0476 (10) | 0.0460 (10) | 0.0576 (11) | 0.0075 (8) | 0.0302 (9) | 0.0124 (8) |
N5 | 0.0414 (9) | 0.0379 (9) | 0.0432 (9) | 0.0072 (7) | 0.0221 (8) | 0.0062 (7) |
N6 | 0.0541 (11) | 0.0376 (9) | 0.0570 (11) | 0.0102 (8) | 0.0298 (9) | 0.0121 (8) |
N7 | 0.0622 (15) | 0.0935 (19) | 0.0578 (15) | −0.0044 (14) | 0.0031 (12) | −0.0036 (14) |
O1 | 0.0515 (13) | 0.342 (5) | 0.0589 (13) | 0.015 (2) | 0.0337 (11) | 0.016 (2) |
O2 | 0.0402 (8) | 0.0541 (9) | 0.0470 (8) | 0.0068 (7) | 0.0177 (7) | 0.0041 (7) |
O3 | 0.0743 (12) | 0.0413 (9) | 0.0559 (10) | −0.0013 (8) | 0.0228 (9) | 0.0036 (8) |
O4 | 0.0715 (13) | 0.0731 (13) | 0.0920 (14) | −0.0272 (10) | 0.0501 (12) | −0.0099 (11) |
O5 | 0.0866 (17) | 0.167 (3) | 0.0508 (12) | −0.0142 (17) | 0.0190 (12) | 0.0042 (14) |
O6 | 0.160 (3) | 0.160 (3) | 0.0776 (18) | −0.088 (3) | −0.0201 (19) | −0.0018 (18) |
O1W | 0.0464 (9) | 0.0414 (8) | 0.0532 (9) | 0.0005 (7) | 0.0182 (7) | 0.0109 (7) |
O2W | 0.190 (6) | 0.278 (8) | 0.248 (8) | 0.101 (6) | 0.165 (6) | 0.066 (6) |
C1—N1 | 1.338 (3) | C15—H15 | 0.9300 |
C1—C2 | 1.357 (5) | C16—H16 | 0.9300 |
C1—H1 | 0.9300 | C17—O1 | 1.216 (3) |
C2—C3 | 1.398 (4) | C17—O2 | 1.235 (3) |
C2—H2 | 0.9300 | C17—C18 | 1.504 (3) |
C3—N2 | 1.332 (3) | C18—C19 | 1.393 (3) |
C3—C4 | 1.456 (4) | C18—C23 | 1.398 (3) |
C4—N3 | 1.352 (3) | C19—C20 | 1.375 (4) |
C4—C5 | 1.390 (4) | C19—H19 | 0.9300 |
C5—C6 | 1.370 (5) | C20—C21 | 1.370 (4) |
C5—H5 | 0.9300 | C20—H20 | 0.9300 |
C6—C7 | 1.378 (5) | C21—C22 | 1.378 (3) |
C6—H6 | 0.9300 | C21—N7 | 1.473 (3) |
C7—C8 | 1.382 (4) | C22—C23 | 1.380 (3) |
C7—H7 | 0.9300 | C22—H22 | 0.9300 |
C8—N3 | 1.334 (4) | C23—C24 | 1.511 (3) |
C8—H8 | 0.9300 | C24—O4 | 1.235 (3) |
C9—N4 | 1.337 (3) | C24—O3 | 1.253 (3) |
C9—C10 | 1.364 (4) | Mn1—O2 | 2.1255 (15) |
C9—H9 | 0.9300 | Mn1—O1W | 2.1619 (15) |
C10—C11 | 1.396 (3) | Mn1—N2 | 2.1995 (17) |
C10—H10 | 0.9300 | Mn1—N5 | 2.2401 (16) |
C11—N5 | 1.338 (3) | Mn1—N6 | 2.2861 (18) |
C11—C12 | 1.465 (3) | Mn1—N3 | 2.359 (2) |
C12—N6 | 1.338 (3) | N1—N2 | 1.339 (3) |
C12—C13 | 1.393 (3) | N1—H1A | 0.8600 |
C13—C14 | 1.370 (4) | N4—N5 | 1.347 (2) |
C13—H13 | 0.9300 | N4—H4 | 0.8600 |
C14—C16 | 1.364 (4) | N7—O6 | 1.203 (4) |
C14—H14 | 0.9300 | N7—O5 | 1.203 (4) |
C15—N6 | 1.334 (3) | O1W—H1W | 0.820 (12) |
C15—C16 | 1.375 (4) | O1W—H2W | 0.82 (2) |
N1—C1—C2 | 108.0 (3) | C18—C19—H19 | 119.5 |
N1—C1—H1 | 126.0 | C21—C20—C19 | 118.2 (2) |
C2—C1—H1 | 126.0 | C21—C20—H20 | 120.9 |
C1—C2—C3 | 105.2 (2) | C19—C20—H20 | 120.9 |
C1—C2—H2 | 127.4 | C20—C21—C22 | 122.3 (2) |
C3—C2—H2 | 127.4 | C20—C21—N7 | 118.6 (2) |
N2—C3—C2 | 109.7 (3) | C22—C21—N7 | 119.0 (2) |
N2—C3—C4 | 117.4 (2) | C21—C22—C23 | 119.7 (2) |
C2—C3—C4 | 132.9 (2) | C21—C22—H22 | 120.2 |
N3—C4—C5 | 121.6 (3) | C23—C22—H22 | 120.2 |
N3—C4—C3 | 115.1 (2) | C22—C23—C18 | 119.03 (19) |
C5—C4—C3 | 123.3 (2) | C22—C23—C24 | 117.40 (19) |
C6—C5—C4 | 119.2 (3) | C18—C23—C24 | 123.52 (19) |
C6—C5—H5 | 120.4 | O4—C24—O3 | 125.3 (2) |
C4—C5—H5 | 120.4 | O4—C24—C23 | 116.6 (2) |
C5—C6—C7 | 119.5 (3) | O3—C24—C23 | 118.0 (2) |
C5—C6—H6 | 120.2 | O2—Mn1—O1W | 86.45 (6) |
C7—C6—H6 | 120.2 | O2—Mn1—N2 | 93.74 (7) |
C6—C7—C8 | 118.3 (3) | O1W—Mn1—N2 | 99.70 (7) |
C6—C7—H7 | 120.9 | O2—Mn1—N5 | 101.41 (6) |
C8—C7—H7 | 120.9 | O1W—Mn1—N5 | 95.17 (6) |
N3—C8—C7 | 123.3 (3) | N2—Mn1—N5 | 159.38 (7) |
N3—C8—H8 | 118.3 | O2—Mn1—N6 | 89.68 (7) |
C7—C8—H8 | 118.3 | O1W—Mn1—N6 | 166.14 (7) |
N4—C9—C10 | 108.0 (2) | N2—Mn1—N6 | 93.83 (7) |
N4—C9—H9 | 126.0 | N5—Mn1—N6 | 72.55 (6) |
C10—C9—H9 | 126.0 | O2—Mn1—N3 | 164.44 (7) |
C9—C10—C11 | 105.0 (2) | O1W—Mn1—N3 | 94.04 (7) |
C9—C10—H10 | 127.5 | N2—Mn1—N3 | 70.82 (8) |
C11—C10—H10 | 127.5 | N5—Mn1—N3 | 94.05 (7) |
N5—C11—C10 | 110.3 (2) | N6—Mn1—N3 | 93.24 (7) |
N5—C11—C12 | 118.75 (18) | C1—N1—N2 | 110.7 (2) |
C10—C11—C12 | 131.0 (2) | C1—N1—H1A | 124.6 |
N6—C12—C13 | 121.9 (2) | N2—N1—H1A | 124.6 |
N6—C12—C11 | 115.00 (18) | C3—N2—N1 | 106.40 (18) |
C13—C12—C11 | 123.1 (2) | C3—N2—Mn1 | 120.74 (17) |
C14—C13—C12 | 119.1 (2) | N1—N2—Mn1 | 132.63 (15) |
C14—C13—H13 | 120.5 | C8—N3—C4 | 118.0 (2) |
C12—C13—H13 | 120.5 | C8—N3—Mn1 | 126.27 (17) |
C16—C14—C13 | 119.2 (2) | C4—N3—Mn1 | 115.70 (17) |
C16—C14—H14 | 120.4 | C9—N4—N5 | 111.07 (19) |
C13—C14—H14 | 120.4 | C9—N4—H4 | 124.5 |
N6—C15—C16 | 123.2 (3) | N5—N4—H4 | 124.5 |
N6—C15—H15 | 118.4 | C11—N5—N4 | 105.65 (16) |
C16—C15—H15 | 118.4 | C11—N5—Mn1 | 116.41 (13) |
C14—C16—C15 | 118.9 (3) | N4—N5—Mn1 | 137.92 (13) |
C14—C16—H16 | 120.6 | C15—N6—C12 | 117.8 (2) |
C15—C16—H16 | 120.6 | C15—N6—Mn1 | 125.06 (16) |
O1—C17—O2 | 125.8 (2) | C12—N6—Mn1 | 116.60 (14) |
O1—C17—C18 | 117.3 (2) | O6—N7—O5 | 123.3 (3) |
O2—C17—C18 | 116.67 (19) | O6—N7—C21 | 117.6 (3) |
C19—C18—C23 | 119.6 (2) | O5—N7—C21 | 119.1 (3) |
C19—C18—C17 | 117.4 (2) | C17—O2—Mn1 | 142.44 (15) |
C23—C18—C17 | 122.66 (19) | Mn1—O1W—H1W | 106 (2) |
C20—C19—C18 | 121.1 (2) | Mn1—O1W—H2W | 117 (2) |
C20—C19—H19 | 119.5 | H1W—O1W—H2W | 115 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O4i | 0.82 (2) | 1.80 (2) | 2.615 (2) | 171 (3) |
N1—H1A···O1 | 0.86 | 1.86 | 2.644 (3) | 152 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C8H3NO6)(C8H7N3)2(H2O)]·0.5H2O |
Mr | 581.41 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 10.5996 (7), 11.2654 (7), 11.9493 (7) |
α, β, γ (°) | 96.275 (2), 112.485 (2), 96.902 (2) |
V (Å3) | 1289.94 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.57 |
Crystal size (mm) | 0.12 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.935, 0.956 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13775, 4492, 4112 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.107, 1.00 |
No. of reflections | 4492 |
No. of parameters | 364 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.67, −0.56 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H2W···O4i | 0.82 (2) | 1.80 (2) | 2.615 (2) | 171 (3) |
N1—H1A···O1 | 0.86 | 1.86 | 2.644 (3) | 151.7 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Acknowledgements
The authors acknowledge financial support from the Science Foundation of Beihua University.
References
Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595–m597. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, B.-Y., Xie, T., Lu, S.-J., Xue, B. & Li, W. (2009). Acta Cryst. E65, m856–m857. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of metal-organic frameworks (MOFs) has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application (Xu et al. (2009); Guo & Guo (2007)). Here, we describe the synthesis and structural characterization of the title compound.
Single crystal X-ray diffraction analysis revealed that the asymmetric unit of the title compound, [(Mn(C8H7N3)2(C8H3NO6)(H2O)] × 0.5 H2O, consists of one Mn2+ ion that is octahedrally coordinated by two 2-(1H-pyrazol-3-yl)-pyridine ligands, one 4-nitro-phthalato ligand and one coordinated water molecule leading to an overall MnN4O2 coordination environment (Figure 1). Deviations of the two 2-(1H-pyrazol-3-yl)-pyridine moieties from planarity are 0.0187 (2) and 0.0601 (2) Å, respectively. The dihedral angle between the two 3-(2-pyridyl)-1H-pyrazole planes is 81.90 (6)°. The Mn-N and Mn-O bond distances are in the range of 2.200 (2)—2.359 (2) and 2.126 (2)—2.162 (2) Å, respectively. Intermolecular π-π stacking interactions with a face-to-face separation of 3.61 (1) Å between the 2-(1H-pyrazol-3-yl)-pyridine ligands is observed. Additionally, extensive hydrogen bonding involving solvent water (which are situated at a crystallographic center of inversion), coordinated water molecules and 2-(1H-pyrazol-3-yl)-pyridine ligands leads to a three dimensional network in the crystal structure (Figure 2).