organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3R,8S,9R,10S)-2,2-Di­chloro-3,7,7,10-tetra­methyl-9,10-ep­­oxy­tri­cyclo­[6.4.0.01,3]dodeca­ne

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences, Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta, BP 1014 Rabat, Morocco, and cUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: abenharref@yahoo.fr

(Received 26 October 2010; accepted 4 November 2010; online 10 November 2010)

The title compound, C16H24Cl2O, was synthesized from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzocyclo­heptene), which was isolated from the essential oil of the Atlas cedar (cedrus atlantica). The mol­ecule forms an extended sheet of two fused rings which exhibit different conformations. The six-membered ring has a half-chair conformation, while the seven-membered ring displays a chair conformation; the dihedral angle between the two rings is 38.2 (1)°.

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teiseire (1974[Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131-144.]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998[Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For its biological activity, see: Daoubi et al. (2004[Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Cl2O

  • Mr = 303.24

  • Orthorhombic, P 21 21 21

  • a = 8.4995 (3) Å

  • b = 10.2461 (4) Å

  • c = 18.1656 (6) Å

  • V = 1581.98 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.67 × 0.41 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008)[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.609, Tmax = 0.745

  • 7171 measured reflections

  • 3369 independent reflections

  • 2830 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.01

  • 3369 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1423 Friedel pairs

  • Flack parameter: 0.04 (7)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (Joseph & Dev (1968); Plattier & Teiseire(1974)). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties.(Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dichlorocarbene, generated in situ from chloroform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces only (1S,3R,8S)-2,2-dichloro-3,7,7,10- tetramethyltricyclo[6,4,0,01,3]dodec-9-ene (X) (El Jamili et al., 2002). Treatement of (X) with one equivalent of meta-chloroperbenzoic acid (mCPBA) leads to a mixture of two diastereisomers: (1S, 3R, 8S, 9S, 10R)-2,2-dichloro-9–10-epoxy-3,7,7,10-tetramethyl- tricyclo[6.4.0.01,3]dodecane (Y) and its isomer (1S, 3R, 8S, 9R, 10S)-2,2-dichloro-9–10-epoxy-3,7,7,10-tetramethyl-tricyclo[6.4.0.01,3]dodecane (Z) in an over-all yield of 80% and 30:70 ratio. In a previous work (Sbai et al., 2002), we have determined the structure and the stereochemistry of Y. In this paper we present the absolute configuration of Z established by single-crystal X-ray diffraction analysis. The molecule is built up from two fused six-membered and seven-membered rings (Fig. 1). The six-membered ring has a half chair conformation, as indicated by the total puckering amplitude QT = 0.513 (2) Å and spherical polar angle θ = 125.9 (2)° with φ = 138.1 (4)°, whereas the seven-membered ring displays an aproximate chair conformation with QT = 0.783 (3) Å, θ = 31.9 (3)°, φ2 = -50.3 (4)° and φ3 =-78.3 (2)° (Cremer & Pople, 1975). Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli (2000)) as C1(S), C3(R), C8(S), C9(R) and C10(S).

Related literature top

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teiseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the synthesis of compounds (1S, 3R, 8S, 9S, 10R)-2,2-dichloro-9–10- epoxy-3,7,7,10-tetramethyl-tricyclo[6.4.0.01,3]dodecane (Y) and its isomer (1S, 3R, 8S, 9R, 10S)-2,2-dichloro-9–10-epoxy-3,7,7,10- tetramethyl-tricyclo[6.4.0.01,3]dodecane (Z), a stoichiometric quantity of m-chloroperbenzoic acid (m-CPBA) was added to a 100 ml flask containing a solution of (1S,3R,8S)-2,2-dicchloro-3,7,7,10- tetramethyltricyclo[6,4,0,01,3]dodec-9-ene (X) (500 mg, 1.74 mmol) in CH2Cl2 (30 ml). The reaction mixture was stirred at ambient temperature for 2 h, then treated with a 10% solution of sodium hydrogencarbonate. The aqueous phase was extracted with ether and the organic phases were dried and concentrated. Chromatography of the residue on silica (hexane/ethyl acetate 97/3) allowed the isolation of both isomers Y and Z in a pure state. Crystallization of Z was carried out at room temperature from a hexane solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl).

Structure description top

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (Joseph & Dev (1968); Plattier & Teiseire(1974)). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological proprieties.(Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dichlorocarbene, generated in situ from chloroform in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, on β-himachalene produces only (1S,3R,8S)-2,2-dichloro-3,7,7,10- tetramethyltricyclo[6,4,0,01,3]dodec-9-ene (X) (El Jamili et al., 2002). Treatement of (X) with one equivalent of meta-chloroperbenzoic acid (mCPBA) leads to a mixture of two diastereisomers: (1S, 3R, 8S, 9S, 10R)-2,2-dichloro-9–10-epoxy-3,7,7,10-tetramethyl- tricyclo[6.4.0.01,3]dodecane (Y) and its isomer (1S, 3R, 8S, 9R, 10S)-2,2-dichloro-9–10-epoxy-3,7,7,10-tetramethyl-tricyclo[6.4.0.01,3]dodecane (Z) in an over-all yield of 80% and 30:70 ratio. In a previous work (Sbai et al., 2002), we have determined the structure and the stereochemistry of Y. In this paper we present the absolute configuration of Z established by single-crystal X-ray diffraction analysis. The molecule is built up from two fused six-membered and seven-membered rings (Fig. 1). The six-membered ring has a half chair conformation, as indicated by the total puckering amplitude QT = 0.513 (2) Å and spherical polar angle θ = 125.9 (2)° with φ = 138.1 (4)°, whereas the seven-membered ring displays an aproximate chair conformation with QT = 0.783 (3) Å, θ = 31.9 (3)°, φ2 = -50.3 (4)° and φ3 =-78.3 (2)° (Cremer & Pople, 1975). Owing to the presence of Cl atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli (2000)) as C1(S), C3(R), C8(S), C9(R) and C10(S).

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teiseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al. (2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S,3R,8S,9R,10S)-2,2-Dichloro- 3,7,7,10-tetramethyl-9,10-epoxytricyclo[6.4.0.01,3]dodecane top
Crystal data top
C16H24Cl2OF(000) = 648
Mr = 303.24Dx = 1.273 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3372 reflections
a = 8.4995 (3) Åθ = 2.3–26.9°
b = 10.2461 (4) ŵ = 0.40 mm1
c = 18.1656 (6) ÅT = 298 K
V = 1581.98 (10) Å3Prism, colourless
Z = 40.67 × 0.41 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
3369 independent reflections
Radiation source: fine-focus sealed tube2830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 26.9°, θmin = 2.3°
ω and φ scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1310
Tmin = 0.609, Tmax = 0.745l = 1622
7171 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1767P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.22 e Å3
3369 reflectionsΔρmin = 0.29 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.073 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack & Bernardinelli (2000), 1423 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (7)
Crystal data top
C16H24Cl2OV = 1581.98 (10) Å3
Mr = 303.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4995 (3) ŵ = 0.40 mm1
b = 10.2461 (4) ÅT = 298 K
c = 18.1656 (6) Å0.67 × 0.41 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
3369 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2830 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.745Rint = 0.025
7171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.22 e Å3
S = 1.01Δρmin = 0.29 e Å3
3369 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1423 Friedel pairs
177 parametersAbsolute structure parameter: 0.04 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6413 (2)0.5366 (2)0.38517 (10)0.0356 (4)
C20.5713 (3)0.5121 (2)0.46043 (13)0.0457 (5)
C30.6259 (3)0.3964 (2)0.41628 (12)0.0460 (5)
C40.7701 (3)0.3249 (3)0.44259 (15)0.0630 (7)
H4A0.73750.24450.46630.076*
H4B0.82300.37800.47920.076*
C50.8864 (3)0.2922 (3)0.38160 (18)0.0675 (8)
H5A0.94960.21800.39670.081*
H5B0.82850.26710.33780.081*
C60.9941 (3)0.4052 (3)0.36304 (16)0.0622 (7)
H6A1.07590.37200.33080.075*
H6B1.04510.43220.40830.075*
C70.9253 (3)0.5290 (2)0.32646 (13)0.0464 (5)
C80.8050 (2)0.59920 (19)0.37903 (11)0.0359 (4)
H80.85090.59360.42840.043*
C90.7899 (3)0.7442 (2)0.36270 (12)0.0417 (5)
H90.86870.79900.38710.050*
C100.6401 (3)0.8106 (2)0.34700 (12)0.0472 (5)
C110.4936 (3)0.7314 (2)0.34176 (14)0.0513 (6)
H11A0.42930.76500.30190.062*
H11B0.43440.74080.38710.062*
C120.5260 (3)0.5877 (2)0.32837 (12)0.0438 (5)
H12A0.42840.53890.33140.053*
H12B0.56920.57600.27940.053*
C130.5035 (4)0.3054 (3)0.38394 (17)0.0677 (8)
H13A0.47470.24110.41990.102*
H13B0.54620.26270.34130.102*
H13C0.41210.35470.37010.102*
C141.0652 (3)0.6208 (3)0.31365 (18)0.0665 (8)
H14A1.14440.57640.28550.100*
H14B1.10830.64690.36020.100*
H14C1.03030.69660.28720.100*
C150.8565 (3)0.4933 (3)0.25117 (13)0.0575 (6)
H15A0.81990.57100.22710.086*
H15B0.77020.43400.25770.086*
H15C0.93620.45270.22160.086*
C160.6208 (4)0.9531 (3)0.36539 (17)0.0711 (8)
H16A0.72090.99610.36190.107*
H16B0.58090.96170.41460.107*
H16C0.54840.99240.33140.107*
O0.7511 (2)0.78441 (15)0.28799 (9)0.0529 (4)
Cl10.66972 (9)0.56107 (8)0.54165 (3)0.0691 (2)
Cl20.36713 (8)0.53272 (8)0.47590 (4)0.0698 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0372 (10)0.0357 (10)0.0339 (9)0.0002 (9)0.0019 (9)0.0013 (8)
C20.0485 (11)0.0517 (13)0.0369 (11)0.0012 (10)0.0050 (10)0.0004 (10)
C30.0565 (13)0.0393 (12)0.0423 (11)0.0039 (10)0.0074 (11)0.0030 (9)
C40.0839 (18)0.0461 (14)0.0591 (16)0.0145 (13)0.0087 (14)0.0109 (12)
C50.0754 (18)0.0448 (14)0.0822 (19)0.0203 (13)0.0098 (16)0.0030 (13)
C60.0529 (15)0.0563 (16)0.0774 (17)0.0187 (12)0.0092 (14)0.0024 (13)
C70.0389 (11)0.0482 (13)0.0521 (12)0.0031 (10)0.0054 (10)0.0031 (11)
C80.0356 (10)0.0379 (11)0.0342 (10)0.0006 (9)0.0059 (9)0.0004 (8)
C90.0470 (12)0.0384 (11)0.0396 (11)0.0050 (9)0.0071 (10)0.0009 (9)
C100.0595 (14)0.0389 (12)0.0432 (11)0.0053 (10)0.0069 (11)0.0019 (9)
C110.0449 (13)0.0572 (15)0.0517 (14)0.0121 (11)0.0082 (11)0.0051 (11)
C120.0353 (11)0.0537 (13)0.0424 (11)0.0042 (10)0.0034 (9)0.0007 (10)
C130.081 (2)0.0477 (14)0.0743 (18)0.0225 (13)0.0173 (16)0.0033 (13)
C140.0397 (13)0.0759 (19)0.084 (2)0.0028 (12)0.0119 (14)0.0010 (15)
C150.0643 (15)0.0617 (15)0.0467 (13)0.0046 (13)0.0106 (12)0.0106 (11)
C160.095 (2)0.0450 (14)0.0737 (17)0.0165 (14)0.0216 (17)0.0008 (13)
O0.0632 (11)0.0497 (10)0.0458 (9)0.0048 (8)0.0006 (8)0.0107 (8)
Cl10.0888 (5)0.0842 (5)0.0342 (3)0.0068 (4)0.0030 (3)0.0063 (3)
Cl20.0547 (4)0.0862 (5)0.0683 (4)0.0017 (3)0.0248 (3)0.0005 (4)
Geometric parameters (Å, º) top
C1—C21.512 (3)C9—O1.456 (3)
C1—C121.517 (3)C9—C101.472 (3)
C1—C81.536 (3)C9—H90.9800
C1—C31.550 (3)C10—O1.453 (3)
C2—C31.505 (3)C10—C111.489 (3)
C2—Cl11.769 (2)C10—C161.507 (3)
C2—Cl21.770 (2)C11—C121.517 (3)
C3—C41.506 (3)C11—H11A0.9700
C3—C131.516 (4)C11—H11B0.9700
C4—C51.522 (4)C12—H12A0.9700
C4—H4A0.9700C12—H12B0.9700
C4—H4B0.9700C13—H13A0.9600
C5—C61.515 (4)C13—H13B0.9600
C5—H5A0.9700C13—H13C0.9600
C5—H5B0.9700C14—H14A0.9600
C6—C71.546 (3)C14—H14B0.9600
C6—H6A0.9700C14—H14C0.9600
C6—H6B0.9700C15—H15A0.9600
C7—C151.532 (3)C15—H15B0.9600
C7—C141.534 (4)C15—H15C0.9600
C7—C81.574 (3)C16—H16A0.9600
C8—C91.521 (3)C16—H16B0.9600
C8—H80.9800C16—H16C0.9600
C2—C1—C12114.70 (17)O—C9—C8118.51 (17)
C2—C1—C8119.45 (17)C10—C9—C8124.23 (19)
C12—C1—C8113.09 (17)O—C9—H9114.5
C2—C1—C358.86 (14)C10—C9—H9114.5
C12—C1—C3120.89 (19)C8—C9—H9114.5
C8—C1—C3119.35 (18)O—C10—C959.71 (14)
C3—C2—C161.81 (14)O—C10—C11113.26 (19)
C3—C2—Cl1121.47 (17)C9—C10—C11118.93 (18)
C1—C2—Cl1121.38 (16)O—C10—C16114.4 (2)
C3—C2—Cl2118.75 (17)C9—C10—C16120.0 (2)
C1—C2—Cl2120.64 (16)C11—C10—C16116.8 (2)
Cl1—C2—Cl2107.30 (12)C10—C11—C12112.81 (18)
C2—C3—C4117.7 (2)C10—C11—H11A109.0
C2—C3—C13118.7 (2)C12—C11—H11A109.0
C4—C3—C13112.5 (2)C10—C11—H11B109.0
C2—C3—C159.33 (14)C12—C11—H11B109.0
C4—C3—C1119.9 (2)H11A—C11—H11B107.8
C13—C3—C1119.2 (2)C1—C12—C11110.06 (18)
C3—C4—C5113.9 (2)C1—C12—H12A109.6
C3—C4—H4A108.8C11—C12—H12A109.6
C5—C4—H4A108.8C1—C12—H12B109.6
C3—C4—H4B108.8C11—C12—H12B109.6
C5—C4—H4B108.8H12A—C12—H12B108.2
H4A—C4—H4B107.7C3—C13—H13A109.5
C6—C5—C4112.7 (2)C3—C13—H13B109.5
C6—C5—H5A109.0H13A—C13—H13B109.5
C4—C5—H5A109.0C3—C13—H13C109.5
C6—C5—H5B109.0H13A—C13—H13C109.5
C4—C5—H5B109.0H13B—C13—H13C109.5
H5A—C5—H5B107.8C7—C14—H14A109.5
C5—C6—C7119.6 (2)C7—C14—H14B109.5
C5—C6—H6A107.4H14A—C14—H14B109.5
C7—C6—H6A107.4C7—C14—H14C109.5
C5—C6—H6B107.4H14A—C14—H14C109.5
C7—C6—H6B107.4H14B—C14—H14C109.5
H6A—C6—H6B107.0C7—C15—H15A109.5
C15—C7—C14107.9 (2)C7—C15—H15B109.5
C15—C7—C6109.4 (2)H15A—C15—H15B109.5
C14—C7—C6106.0 (2)C7—C15—H15C109.5
C15—C7—C8113.74 (18)H15A—C15—H15C109.5
C14—C7—C8108.4 (2)H15B—C15—H15C109.5
C6—C7—C8111.10 (19)C10—C16—H16A109.5
C9—C8—C1110.22 (17)C10—C16—H16B109.5
C9—C8—C7112.54 (18)H16A—C16—H16B109.5
C1—C8—C7116.23 (17)C10—C16—H16C109.5
C9—C8—H8105.6H16A—C16—H16C109.5
C1—C8—H8105.6H16B—C16—H16C109.5
C7—C8—H8105.6C10—O—C960.78 (14)
O—C9—C1059.51 (14)

Experimental details

Crystal data
Chemical formulaC16H24Cl2O
Mr303.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.4995 (3), 10.2461 (4), 18.1656 (6)
V3)1581.98 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.67 × 0.41 × 0.26
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.609, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
7171, 3369, 2830
Rint0.025
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.01
No. of reflections3369
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.29
Absolute structureFlack & Bernardinelli (2000), 1423 Friedel pairs
Absolute structure parameter0.04 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank the National Center of Scientific and Technological Research (CNRST) for support of our scientific research.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationDaoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science Google Scholar
First citationLassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS Google Scholar
First citationPlattier, M. & Teiseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds