organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

meso-Di­methyl 2,5-di­bromo­hexa­ne­dioate

aSchool of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China
*Correspondence e-mail: fzq@jit.edu.cn

(Received 27 October 2010; accepted 7 November 2010; online 13 November 2010)

The title compound, C8H12Br2O4, lies about a crystallographic center of inversion at the midpoint of the central C—C bond. The latter is also repsonsible for the observation of the meso form. There are no intra­molecular hydrogen bonds, but mol­ecules are connected by inter­molecular C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

The title compound is an important intermediate in organic synthesis. For the synthetic procedure, see: McDonald & Reitz (1972[McDonald, R. N. & Reitz, R. R. (1972). J. Org. Chem. 37, 2418-2423.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12Br2O4

  • Mr = 331.98

  • Monoclinic, P 21 /c

  • a = 4.5580 (9) Å

  • b = 12.134 (2) Å

  • c = 10.554 (2) Å

  • β = 90.36 (3)°

  • V = 583.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.93 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.338, Tmax = 0.544

  • 1428 measured reflections

  • 1271 independent reflections

  • 639 reflections with I > 2σ(I)

  • Rint = 0.071

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.072

  • S = 1.00

  • 1271 reflections

  • 64 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.98 2.59 3.33 (1) 132
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, meso-2,5-dibromo-hexanedioic acid dimethyl ester is an important intermediate for the synthesis of dimethyl cyclobut-1-ene-1,2-dicarboxylate. We herein report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles are within normal ranges (Allen et al., 1987).

The central C4—C4A bond of the title compound, C8H12Br2O4, represents a crystallographic center of inversion. The latter is also repsonsible for the observation of the meso form. There are no intramolecular hydrogen bonds, but molecules of the title compound are connected by C—H···O intermolecular interactions to form a three dimensional network (Table 1).

Related literature top

The title compound is an important organic synthesis intermediate. For the synthetic procedure, see: McDonald & Reitz (1972). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (McDonald & Reitz, 1972). Single crystals were obtained by dissolving (I) (0.5 g, 1.5 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement top

H atoms were positioned geometrically, with C—H = 0.96 Å for alkyl H, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C).

Structure description top

The tittle compound, meso-2,5-dibromo-hexanedioic acid dimethyl ester is an important intermediate for the synthesis of dimethyl cyclobut-1-ene-1,2-dicarboxylate. We herein report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles are within normal ranges (Allen et al., 1987).

The central C4—C4A bond of the title compound, C8H12Br2O4, represents a crystallographic center of inversion. The latter is also repsonsible for the observation of the meso form. There are no intramolecular hydrogen bonds, but molecules of the title compound are connected by C—H···O intermolecular interactions to form a three dimensional network (Table 1).

The title compound is an important organic synthesis intermediate. For the synthetic procedure, see: McDonald & Reitz (1972). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Atoms labeled with the suffixes A are generated by the symmetry operation (1/2 - x, 3/2 - y, 1 - z). Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram for (I). C—H···O hydrogen bonds are shown as dashed lines.
meso-Dimethyl 2,5-dibromohexanedioate top
Crystal data top
C8H12Br2O4F(000) = 324
Mr = 331.98Dx = 1.889 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.5580 (9) Åθ = 9–13°
b = 12.134 (2) ŵ = 6.93 mm1
c = 10.554 (2) ÅT = 293 K
β = 90.36 (3)°Block, colourless
V = 583.7 (2) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
639 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 27.1°, θmin = 2.6°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 150
Tmin = 0.338, Tmax = 0.544l = 1313
1428 measured reflections3 standard reflections every 200 reflections
1271 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
1271 reflections(Δ/σ)max < 0.001
64 parametersΔρmax = 0.33 e Å3
3 restraintsΔρmin = 0.37 e Å3
Crystal data top
C8H12Br2O4V = 583.7 (2) Å3
Mr = 331.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.5580 (9) ŵ = 6.93 mm1
b = 12.134 (2) ÅT = 293 K
c = 10.554 (2) Å0.20 × 0.10 × 0.10 mm
β = 90.36 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
639 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.071
Tmin = 0.338, Tmax = 0.5443 standard reflections every 200 reflections
1428 measured reflections intensity decay: 1%
1271 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
1271 reflectionsΔρmin = 0.37 e Å3
64 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.23822 (12)0.64074 (4)0.70596 (6)0.0813 (2)
O10.3762 (8)0.4221 (3)0.8857 (4)0.0888 (12)
O20.0821 (9)0.3620 (3)0.7400 (4)0.0980 (12)
C10.2255 (11)0.3583 (4)0.9715 (5)0.0872 (17)
H1A0.32630.35951.05160.131*
H1B0.21440.28390.94090.131*
H1C0.03100.38720.98170.131*
C20.2723 (12)0.4259 (4)0.7836 (5)0.0572 (12)
C30.4550 (10)0.4973 (3)0.6885 (4)0.0477 (11)
H3A0.65950.50440.71660.057*
C40.4369 (9)0.4614 (3)0.5570 (4)0.0475 (11)
H4A0.23150.44760.53840.057*
H4B0.53700.39110.55170.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0997 (4)0.0232 (2)0.1214 (5)0.0072 (3)0.0337 (3)0.0032 (4)
O10.111 (3)0.058 (2)0.098 (3)0.002 (2)0.007 (2)0.035 (2)
O20.119 (3)0.063 (3)0.112 (3)0.028 (3)0.023 (2)0.020 (3)
C10.123 (5)0.061 (4)0.078 (3)0.014 (4)0.029 (3)0.022 (3)
C20.062 (3)0.040 (3)0.070 (3)0.006 (3)0.022 (2)0.025 (3)
C30.070 (3)0.029 (2)0.043 (2)0.002 (2)0.0005 (19)0.0068 (19)
C40.063 (3)0.029 (2)0.050 (3)0.004 (2)0.006 (2)0.007 (2)
Geometric parameters (Å, º) top
Br—C32.011 (4)C2—C31.569 (6)
O1—C21.175 (5)C3—C41.456 (5)
O1—C11.378 (5)C3—H3A0.9800
O2—C21.249 (6)C4—C4i1.632 (7)
C1—H1A0.9600C4—H4A0.9700
C1—H1B0.9600C4—H4B0.9700
C1—H1C0.9600
C2—O1—C1115.1 (5)C4—C3—Br108.7 (3)
O1—C1—H1A109.5C2—C3—Br99.0 (3)
O1—C1—H1B109.5C4—C3—H3A111.3
H1A—C1—H1B109.5C2—C3—H3A111.3
O1—C1—H1C109.5Br—C3—H3A111.3
H1A—C1—H1C109.5C3—C4—C4i120.9 (4)
H1B—C1—H1C109.5C3—C4—H4A107.1
O1—C2—O2126.0 (5)C4i—C4—H4A107.1
O1—C2—C3113.3 (5)C3—C4—H4B107.1
O2—C2—C3118.5 (5)C4i—C4—H4B107.1
C4—C3—C2114.7 (4)H4A—C4—H4B106.8
C1—O1—C2—O215.8 (8)O1—C2—C3—Br95.3 (4)
C1—O1—C2—C3178.7 (4)O2—C2—C3—Br100.4 (4)
O1—C2—C3—C4149.2 (4)C2—C3—C4—C4i168.8 (4)
O2—C2—C3—C415.1 (6)Br—C3—C4—C4i59.1 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2ii0.982.593.33 (1)132
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H12Br2O4
Mr331.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.5580 (9), 12.134 (2), 10.554 (2)
β (°) 90.36 (3)
V3)583.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)6.93
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.338, 0.544
No. of measured, independent and
observed [I > 2σ(I)] reflections
1428, 1271, 639
Rint0.071
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.072, 1.00
No. of reflections1271
No. of parameters64
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.982.593.33 (1)132
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Science Fundamental Research Fund of the Education Department, Jiangsu Province (No. 09kjd150011). The authors also thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMcDonald, R. N. & Reitz, R. R. (1972). J. Org. Chem. 37, 2418–2423.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds