organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­benzoic acid–quinoline (1/1)

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 3 November 2010; accepted 10 November 2010; online 17 November 2010)

In the title compound, C7H5ClO2·C9H7N, the 4-chloro­benzoic acid mol­ecule is almost planar, with a dihedral angle of 2.9 (14)° between the carb­oxy group and the benzene ring. In the crystal, the two components are connected by an O—H⋯N hydrogen bond. In the hydrogen-bonded unit, the dihedral angle between the quinoline ring system and the benzene ring of the benzoic acid is 44.75 (4)°. The two components are further linked by inter­molecular C—H⋯O hydrogen bonds, forming a layer parallel to the ab plane.

Related literature

For related structures, see, for example: Gotoh & Ishida (2007[Gotoh, K. & Ishida, H. (2007). Acta Cryst. E63, o4500.], 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]); Ishida & Fukunaga (2004[Ishida, H. & Fukunaga, T. (2004). Acta Cryst. E60, o1664-o1665.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5ClO2·C9H7N

  • Mr = 285.73

  • Orthorhombic, P c a 21

  • a = 13.2385 (5) Å

  • b = 3.8307 (2) Å

  • c = 26.2464 (9) Å

  • V = 1331.03 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 185 K

  • 0.30 × 0.26 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.933, Tmax = 0.950

  • 21775 measured reflections

  • 3907 independent reflections

  • 3777 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.07

  • 3907 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1909 Friedel pairs

  • Flack parameter: 0.03 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (2) 1.82 (2) 2.659 (1) 176 (2)
C5—H5⋯O2i 0.95 2.46 3.159 (1) 130
C8—H8⋯O2ii 0.95 2.57 3.252 (2) 129
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–benzoic acid systems (Gotoh & Ishida, 2007, 2009; Ishida & Fukunaga, 2004).

In the crystal structure of the title compound, no acid-base interaction involving proton transfer is observed between the two components, which are are linked by an O—H···N hydrogen bond (Table 1 and Fig. 1). In the hydrogen-bonded unit, the dihedral angle between the quinoline ring system and the benzene ring of the benzoic acid is 44.75 (4)°. The carboxy plane makes dihedral angles of 42.2 (1) and 2.9 (14)°, respectively, with the quinoline ring system and the benzene ring. The two components are further linked by intermolecular C—H···O hydrogen bonds (Table 1), forming a layer parallel to the ab plane (Fig. 2). No significant interaction is observed between the layers.

Related literature top

For related structures, see, for example: Gotoh & Ishida (2007, 2009); Ishida & Fukunaga (2004).

Experimental top

Single crystals were obtained by slow evaporation from an acetonitrile solution (65 ml) of 4-chlorobenzoic acid (156 mg) and quinoline (167 mg) at room temperature.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The O-bound H atom was found in a difference Fourier map and refined isotropically. The refined O—H distance is 0.84 (2) Å.

Structure description top

The title compound was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–benzoic acid systems (Gotoh & Ishida, 2007, 2009; Ishida & Fukunaga, 2004).

In the crystal structure of the title compound, no acid-base interaction involving proton transfer is observed between the two components, which are are linked by an O—H···N hydrogen bond (Table 1 and Fig. 1). In the hydrogen-bonded unit, the dihedral angle between the quinoline ring system and the benzene ring of the benzoic acid is 44.75 (4)°. The carboxy plane makes dihedral angles of 42.2 (1) and 2.9 (14)°, respectively, with the quinoline ring system and the benzene ring. The two components are further linked by intermolecular C—H···O hydrogen bonds (Table 1), forming a layer parallel to the ab plane (Fig. 2). No significant interaction is observed between the layers.

For related structures, see, for example: Gotoh & Ishida (2007, 2009); Ishida & Fukunaga (2004).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed line indicates the O—H···N hydrogen bond.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the layered structure formed by O—H···N and C—H···O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted.
4-Chlorobenzoic acid–quinoline (1/1) top
Crystal data top
C7H5ClO2·C9H7NF(000) = 592.00
Mr = 285.73Dx = 1.426 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2acCell parameters from 20625 reflections
a = 13.2385 (5) Åθ = 3.1–30.0°
b = 3.8307 (2) ŵ = 0.29 mm1
c = 26.2464 (9) ÅT = 185 K
V = 1331.03 (10) Å3Block, colorless
Z = 40.30 × 0.26 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3777 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.017
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1817
Tmin = 0.933, Tmax = 0.950k = 55
21775 measured reflectionsl = 3636
3907 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0837P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3907 reflectionsΔρmax = 0.29 e Å3
185 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1909 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
C7H5ClO2·C9H7NV = 1331.03 (10) Å3
Mr = 285.73Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 13.2385 (5) ŵ = 0.29 mm1
b = 3.8307 (2) ÅT = 185 K
c = 26.2464 (9) Å0.30 × 0.26 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3907 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3777 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.950Rint = 0.017
21775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.29 e Å3
S = 1.07Δρmin = 0.15 e Å3
3907 reflectionsAbsolute structure: Flack (1983), 1909 Friedel pairs
185 parametersAbsolute structure parameter: 0.03 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16026 (2)1.03905 (7)0.806049 (12)0.03662 (8)
O10.40632 (7)0.4457 (3)0.60147 (3)0.03433 (19)
O20.53847 (6)0.6264 (3)0.64747 (3)0.03630 (19)
N10.54986 (7)0.2446 (2)0.53696 (4)0.02677 (17)
C10.37402 (7)0.6999 (3)0.68200 (4)0.02308 (18)
C20.41115 (8)0.8623 (3)0.72551 (4)0.02695 (19)
H20.48170.90150.72890.032*
C30.34608 (9)0.9674 (3)0.76389 (4)0.0283 (2)
H30.37131.07960.79360.034*
C40.24300 (9)0.9056 (3)0.75818 (4)0.02659 (19)
C50.20408 (8)0.7420 (3)0.71540 (4)0.0284 (2)
H50.13360.70100.71230.034*
C60.27012 (7)0.6389 (3)0.67712 (4)0.02561 (19)
H60.24470.52660.64750.031*
C70.44796 (8)0.5884 (3)0.64212 (4)0.02529 (19)
C80.63210 (9)0.1038 (3)0.55654 (5)0.0312 (2)
H80.63460.06850.59230.037*
C90.71666 (9)0.0024 (3)0.52725 (5)0.0323 (2)
H90.77420.09890.54300.039*
C100.71388 (8)0.0531 (3)0.47574 (5)0.0297 (2)
H100.76960.01440.45520.036*
C110.62751 (7)0.2070 (3)0.45316 (4)0.02400 (18)
C120.61876 (9)0.2723 (3)0.40025 (4)0.0304 (2)
H120.67300.21400.37810.037*
C130.53272 (10)0.4190 (3)0.38070 (4)0.0331 (2)
H130.52750.45980.34510.040*
C140.45165 (10)0.5100 (3)0.41306 (5)0.0314 (2)
H140.39220.61060.39900.038*
C150.45801 (8)0.4545 (3)0.46454 (5)0.0272 (2)
H150.40350.51890.48610.033*
C160.54610 (7)0.3005 (2)0.48551 (4)0.02275 (18)
H10.4522 (17)0.392 (6)0.5808 (9)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04236 (14)0.03938 (14)0.02811 (12)0.00840 (10)0.00809 (12)0.00104 (13)
O10.0260 (4)0.0509 (5)0.0261 (4)0.0014 (3)0.0017 (3)0.0079 (3)
O20.0238 (4)0.0525 (5)0.0326 (4)0.0001 (4)0.0006 (3)0.0010 (4)
N10.0264 (4)0.0293 (4)0.0246 (4)0.0015 (3)0.0013 (3)0.0015 (3)
C10.0232 (4)0.0249 (4)0.0211 (4)0.0006 (3)0.0009 (4)0.0027 (3)
C20.0265 (4)0.0305 (5)0.0238 (4)0.0040 (4)0.0027 (4)0.0023 (4)
C30.0356 (5)0.0272 (5)0.0221 (5)0.0033 (4)0.0037 (4)0.0006 (4)
C40.0332 (5)0.0246 (4)0.0220 (4)0.0041 (4)0.0035 (4)0.0021 (3)
C50.0251 (5)0.0320 (5)0.0280 (5)0.0017 (4)0.0015 (4)0.0004 (4)
C60.0238 (4)0.0303 (5)0.0228 (4)0.0014 (4)0.0034 (4)0.0003 (4)
C70.0255 (5)0.0281 (4)0.0222 (4)0.0013 (4)0.0006 (4)0.0038 (3)
C80.0330 (5)0.0319 (5)0.0286 (5)0.0034 (4)0.0030 (4)0.0018 (4)
C90.0260 (5)0.0303 (5)0.0406 (7)0.0021 (4)0.0066 (5)0.0001 (4)
C100.0225 (4)0.0278 (5)0.0387 (6)0.0006 (4)0.0022 (4)0.0047 (4)
C110.0220 (4)0.0229 (4)0.0271 (4)0.0034 (3)0.0022 (4)0.0043 (3)
C120.0330 (5)0.0318 (5)0.0266 (5)0.0053 (4)0.0060 (4)0.0050 (4)
C130.0427 (6)0.0319 (5)0.0248 (5)0.0065 (4)0.0016 (5)0.0007 (4)
C140.0325 (5)0.0290 (5)0.0328 (6)0.0008 (4)0.0064 (4)0.0016 (4)
C150.0240 (5)0.0268 (5)0.0308 (5)0.0018 (4)0.0004 (4)0.0016 (4)
C160.0228 (4)0.0210 (4)0.0245 (4)0.0028 (3)0.0019 (4)0.0022 (3)
Geometric parameters (Å, º) top
Cl1—C41.7434 (11)C8—C91.4123 (18)
O1—C71.3194 (14)C8—H80.9500
O1—H10.84 (2)C9—C101.3666 (18)
O2—C71.2151 (14)C9—H90.9500
N1—C81.3194 (15)C10—C111.4162 (15)
N1—C161.3681 (13)C10—H100.9500
C1—C21.3903 (14)C11—C121.4160 (15)
C1—C61.4010 (14)C11—C161.4179 (13)
C1—C71.4953 (14)C12—C131.3697 (18)
C2—C31.3854 (16)C12—H120.9500
C2—H20.9500C13—C141.4125 (18)
C3—C41.3931 (16)C13—H130.9500
C3—H30.9500C14—C151.3703 (16)
C4—C51.3854 (16)C14—H140.9500
C5—C61.3891 (15)C15—C161.4180 (14)
C5—H50.9500C15—H150.9500
C6—H60.9500
C7—O1—H1108.7 (15)C9—C8—H8118.2
C8—N1—C16118.58 (10)C10—C9—C8118.55 (11)
C2—C1—C6119.79 (9)C10—C9—H9120.7
C2—C1—C7118.11 (9)C8—C9—H9120.7
C6—C1—C7122.08 (9)C9—C10—C11119.66 (10)
C3—C2—C1120.50 (10)C9—C10—H10120.2
C3—C2—H2119.8C11—C10—H10120.2
C1—C2—H2119.8C12—C11—C10123.36 (10)
C2—C3—C4118.78 (10)C12—C11—C16118.71 (10)
C2—C3—H3120.6C10—C11—C16117.92 (10)
C4—C3—H3120.6C13—C12—C11120.53 (10)
C5—C4—C3121.90 (10)C13—C12—H12119.7
C5—C4—Cl1118.89 (9)C11—C12—H12119.7
C3—C4—Cl1119.21 (9)C12—C13—C14120.52 (11)
C4—C5—C6118.74 (10)C12—C13—H13119.7
C4—C5—H5120.6C14—C13—H13119.7
C6—C5—H5120.6C15—C14—C13120.52 (11)
C5—C6—C1120.29 (10)C15—C14—H14119.7
C5—C6—H6119.9C13—C14—H14119.7
C1—C6—H6119.9C14—C15—C16119.86 (11)
O2—C7—O1123.72 (11)C14—C15—H15120.1
O2—C7—C1122.03 (10)C16—C15—H15120.1
O1—C7—C1114.25 (9)N1—C16—C11121.59 (9)
N1—C8—C9123.68 (11)N1—C16—C15118.55 (9)
N1—C8—H8118.2C11—C16—C15119.85 (9)
C6—C1—C2—C30.61 (16)C8—C9—C10—C110.47 (17)
C7—C1—C2—C3179.29 (10)C9—C10—C11—C12179.31 (11)
C1—C2—C3—C40.35 (16)C9—C10—C11—C160.50 (15)
C2—C3—C4—C50.13 (16)C10—C11—C12—C13179.38 (10)
C2—C3—C4—Cl1179.61 (8)C16—C11—C12—C130.81 (15)
C3—C4—C5—C60.34 (16)C11—C12—C13—C140.51 (17)
Cl1—C4—C5—C6179.40 (8)C12—C13—C14—C150.29 (18)
C4—C5—C6—C10.07 (16)C13—C14—C15—C160.77 (17)
C2—C1—C6—C50.40 (16)C8—N1—C16—C110.75 (15)
C7—C1—C6—C5179.02 (10)C8—N1—C16—C15179.50 (10)
C2—C1—C7—O22.21 (16)C12—C11—C16—N1179.93 (9)
C6—C1—C7—O2176.43 (11)C10—C11—C16—N10.11 (14)
C2—C1—C7—O1178.14 (10)C12—C11—C16—C150.33 (14)
C6—C1—C7—O13.21 (14)C10—C11—C16—C15179.85 (9)
C16—N1—C8—C90.81 (17)C14—C15—C16—N1179.29 (10)
N1—C8—C9—C100.20 (18)C14—C15—C16—C110.45 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (2)1.82 (2)2.659 (1)176 (2)
C5—H5···O2i0.952.463.159 (1)130
C8—H8···O2ii0.952.573.252 (2)129
Symmetry codes: (i) x1/2, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC7H5ClO2·C9H7N
Mr285.73
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)185
a, b, c (Å)13.2385 (5), 3.8307 (2), 26.2464 (9)
V3)1331.03 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.26 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID II
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.933, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
21775, 3907, 3777
Rint0.017
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.07
No. of reflections3907
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.15
Absolute structureFlack (1983), 1909 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (2)1.82 (2)2.659 (1)176 (2)
C5—H5···O2i0.952.463.159 (1)130
C8—H8···O2ii0.952.573.252 (2)129
Symmetry codes: (i) x1/2, y+1, z; (ii) x, y1, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2007). Acta Cryst. E63, o4500.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshida, H. & Fukunaga, T. (2004). Acta Cryst. E60, o1664–o1665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds