organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Crotylphthalimide

aFacultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04360, DF, Mexico
*Correspondence e-mail: morgadomoreno@yahoo.com.mx

(Received 27 October 2010; accepted 8 November 2010; online 17 November 2010)

In the title compound {systematic name: 2-[(E)-but-2-en-1-yl]isoindoline-1,3-dione}, C12H11NO2, the phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1) Å, while the plane of the N-crotyl substituent is orthogonal to the phthalimide ring system, making a dihedral angle of 87.5 (1)°.

Related literature

For related structures, see: Warzecha, Görner & Griesbeck (2006[Warzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356-3363.]): Warzecha, Lex & Griesbeck (2006[Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o5445-o5447.]); Mustaphi et al. (2001[Mustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176-o177.]). For details of inter­molecular inter­actions, see: Desiraju (1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For the synthesis of N-crotylphtalimide, see: Roberts & Mazur (1951[Roberts, J. D. & Mazur, R. H. (1951). J. Am. Chem. Soc. 72, 2509-2520.]); Mowery et al. (2007[Mowery, B. P., Lee, S. E., Kissounko, D. A., Epand, R. F., Epand, R. M., Weisblum, B., Stahl, S. S. & Gellman, S. H. (2007). J. Am. Chem. Soc. 129, 15474-15476.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO2

  • Mr = 201.22

  • Monoclinic, P 21 /c

  • a = 8.1880 (4) Å

  • b = 12.0830 (5) Å

  • c = 10.8080 (5) Å

  • β = 110.431 (4)°

  • V = 1002.03 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.36 × 0.32 × 0.2 mm

Data collection
  • Oxford Diffraction Gemini Atlas CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.973, Tmax = 0.983

  • 7022 measured reflections

  • 1959 independent reflections

  • 1669 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.06

  • 1959 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction (2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Structure-activity relationship studies on N-allylphthalimide derivatives indicated that the influence of the allylic substituent on the photophysical and electrochemical properties of the phthalimide chromophore, which plays an important role as an electron acceptor in photo-induced electron-transfer reactions (Warzecha, Görner & Griesbeck, 2006).

The structure of N-crotylphthalimide (I) is shown in Fig. 1. The 2-butenyl substituent at the imide N atom of the planar phthalimide adopts an antiperiplanar conformation with torsion angles C1—N1—C9—C10 and N1—C9—C10—C11 of 92.53 and -131.59 (1)°; to difference of the orientation synperiplanar of N-Allylphthalimide (Mustaphi et al., 2001; Warzecha, Lex & Griesbeck, 2006). The phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1)Å for atom C1 and dihedral angle of 0.13 to 1.39 (1)°, for other hand, the dihedral angle of 92.53 (1)° evidence that the N-crotyl group is orthogonal to the the phthalimide ring plane.

In the crystal structure, the intermolecular contact of 2.649 (1) Å between each molecule features pairs of Cvinyl—H and O=C bonds (Desiraju, 1991; Steiner, 2002) to its neighbours related by the symmetry operations x,-y + 1/2,+z + 1/2 and x,-y + 1/2,+z - 1/2 mainly. These interactions of van der Waals lead to infinite ribbons of R22 (13) motifs (Etter & MacDonald, 1990), as illustrated in Fig. 2. The ribbons run in the direction of the crystallographic c axis.

Related literature top

For related structures, see: Warzecha, Görner & Griesbeck (2006): Warzecha, Lex & Griesbeck (2006); Mustaphi et al. (2001). For details of intermolecular interactions, see: Desiraju (1991); Steiner (2002); Etter et al. (1990). For the synthesis of N-crotylphtalimide, see: Roberts & Mazur (1951); Mowery et al. (2007).

Experimental top

N-crotylphtalimide (I) was prepared according to the procedure reported (Roberts & Mazur, 1951). Under argon, crotyl bromide (85% pure; 25 g; 157.4 mmol) was added with stirring at room temperature to a white suspension of potassium phthalimide (43.7 g; 236 mmol) in dimethylformamide (150 ml). The mixture was heated at 120° C for 30 minutes and then at 160° C for an additional 30 minutes. The hot mixture was poured over 50 g of ice-water and extracted with chloroform (4 × 20 ml). The combined extracts were washed successively with 1 N NaOH, water, 0.5 N HCl and again with water. The chloroform solution was dried over MgSO4 and filtered.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl groups.

Structure description top

Structure-activity relationship studies on N-allylphthalimide derivatives indicated that the influence of the allylic substituent on the photophysical and electrochemical properties of the phthalimide chromophore, which plays an important role as an electron acceptor in photo-induced electron-transfer reactions (Warzecha, Görner & Griesbeck, 2006).

The structure of N-crotylphthalimide (I) is shown in Fig. 1. The 2-butenyl substituent at the imide N atom of the planar phthalimide adopts an antiperiplanar conformation with torsion angles C1—N1—C9—C10 and N1—C9—C10—C11 of 92.53 and -131.59 (1)°; to difference of the orientation synperiplanar of N-Allylphthalimide (Mustaphi et al., 2001; Warzecha, Lex & Griesbeck, 2006). The phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1)Å for atom C1 and dihedral angle of 0.13 to 1.39 (1)°, for other hand, the dihedral angle of 92.53 (1)° evidence that the N-crotyl group is orthogonal to the the phthalimide ring plane.

In the crystal structure, the intermolecular contact of 2.649 (1) Å between each molecule features pairs of Cvinyl—H and O=C bonds (Desiraju, 1991; Steiner, 2002) to its neighbours related by the symmetry operations x,-y + 1/2,+z + 1/2 and x,-y + 1/2,+z - 1/2 mainly. These interactions of van der Waals lead to infinite ribbons of R22 (13) motifs (Etter & MacDonald, 1990), as illustrated in Fig. 2. The ribbons run in the direction of the crystallographic c axis.

For related structures, see: Warzecha, Görner & Griesbeck (2006): Warzecha, Lex & Griesbeck (2006); Mustaphi et al. (2001). For details of intermolecular interactions, see: Desiraju (1991); Steiner (2002); Etter et al. (1990). For the synthesis of N-crotylphtalimide, see: Roberts & Mazur (1951); Mowery et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction (2009); cell refinement: CrysAlis RED (Oxford Diffraction 2009); data reduction: CrysAlis RED (Oxford Diffraction 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and the atom-labelling scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. Intermolecular contacts of van der Waals (dashed lines) in the crystal structure of (I), forming cross-linked ribbons of R22 (13) motifs.
2-[(E)-but-2-en-1-yl]isoindoline-1,3-dione top
Crystal data top
C12H11NO2F(000) = 424
Mr = 201.22Dx = 1.334 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1880 (4) ÅCell parameters from 4695 reflections
b = 12.0830 (5) Åθ = 3.8–26.0°
c = 10.8080 (5) ŵ = 0.09 mm1
β = 110.431 (4)°T = 123 K
V = 1002.03 (8) Å3Block, colorless
Z = 40.36 × 0.32 × 0.2 mm
Data collection top
Oxford Diffraction Gemini Atlas CCD
diffractometer
1959 independent reflections
Graphite monochromator1669 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.016
ω scansθmax = 26.1°, θmin = 3.9°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.973, Tmax = 0.983k = 1413
7022 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.204P]
where P = (Fo2 + 2Fc2)/3
1959 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H11NO2V = 1002.03 (8) Å3
Mr = 201.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1880 (4) ŵ = 0.09 mm1
b = 12.0830 (5) ÅT = 123 K
c = 10.8080 (5) Å0.36 × 0.32 × 0.2 mm
β = 110.431 (4)°
Data collection top
Oxford Diffraction Gemini Atlas CCD
diffractometer
1959 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
1669 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.983Rint = 0.016
7022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
1959 reflectionsΔρmin = 0.19 e Å3
137 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32549 (11)0.11878 (7)0.22557 (8)0.0293 (2)
O20.00316 (11)0.09982 (7)0.21251 (8)0.0299 (2)
N10.13954 (11)0.13240 (7)0.00921 (9)0.0201 (2)
C30.21517 (14)0.02776 (9)0.07262 (11)0.0200 (2)
C10.26809 (13)0.08188 (9)0.11487 (10)0.0202 (2)
C80.31372 (14)0.02229 (9)0.06096 (11)0.0200 (2)
C70.43062 (14)0.10496 (10)0.12205 (12)0.0260 (3)
H70.49630.10170.21160.031*
C110.19618 (14)0.42523 (9)0.04805 (11)0.0237 (3)
H110.1750.42840.12710.028*
C20.10193 (14)0.07222 (9)0.10729 (10)0.0204 (2)
C120.27941 (15)0.52388 (9)0.01158 (12)0.0276 (3)
H12A0.3030.50850.06770.041*
H12B0.38660.54050.08190.041*
H12C0.20220.58620.00290.041*
C40.23032 (15)0.11498 (9)0.15043 (12)0.0259 (3)
H40.16430.11810.240.031*
C90.05901 (14)0.23939 (9)0.01554 (11)0.0229 (3)
H9A0.06050.25120.10470.027*
H9B0.06170.23790.04290.027*
C60.44640 (15)0.19339 (10)0.04444 (13)0.0307 (3)
H60.52390.25030.08290.037*
C50.34873 (16)0.19817 (10)0.08913 (13)0.0307 (3)
H50.36250.2580.13870.037*
C100.15001 (14)0.33373 (9)0.02266 (11)0.0217 (3)
H100.17530.32770.09990.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0324 (5)0.0331 (5)0.0201 (4)0.0027 (4)0.0062 (4)0.0045 (3)
O20.0310 (5)0.0331 (5)0.0208 (4)0.0034 (4)0.0031 (4)0.0009 (3)
N10.0217 (5)0.0184 (5)0.0202 (5)0.0006 (4)0.0073 (4)0.0009 (4)
C30.0203 (5)0.0184 (5)0.0235 (6)0.0041 (4)0.0106 (4)0.0005 (4)
C10.0197 (5)0.0218 (6)0.0201 (6)0.0037 (4)0.0081 (5)0.0013 (4)
C80.0188 (5)0.0194 (6)0.0239 (6)0.0039 (4)0.0099 (4)0.0015 (4)
C70.0210 (6)0.0256 (6)0.0312 (6)0.0014 (5)0.0088 (5)0.0071 (5)
C110.0219 (6)0.0254 (6)0.0243 (6)0.0029 (5)0.0084 (5)0.0019 (5)
C20.0199 (5)0.0215 (6)0.0204 (6)0.0036 (4)0.0079 (5)0.0001 (4)
C120.0249 (6)0.0228 (6)0.0335 (7)0.0003 (5)0.0083 (5)0.0007 (5)
C40.0304 (6)0.0220 (6)0.0293 (6)0.0064 (5)0.0154 (5)0.0039 (5)
C90.0228 (6)0.0199 (6)0.0278 (6)0.0023 (4)0.0112 (5)0.0013 (4)
C60.0254 (6)0.0206 (6)0.0503 (8)0.0025 (5)0.0185 (6)0.0080 (5)
C50.0360 (7)0.0181 (6)0.0470 (8)0.0027 (5)0.0259 (6)0.0035 (5)
C100.0202 (5)0.0219 (6)0.0242 (6)0.0033 (4)0.0093 (5)0.0021 (4)
Geometric parameters (Å, º) top
O1—C11.2076 (13)C11—H110.93
O2—C21.2091 (13)C12—H12A0.96
N1—C21.3923 (14)C12—H12B0.96
N1—C11.3948 (14)C12—H12C0.96
N1—C91.4637 (14)C4—C51.3931 (17)
C3—C41.3807 (15)C4—H40.93
C3—C81.3880 (16)C9—C101.4966 (15)
C3—C21.4888 (15)C9—H9A0.97
C1—C81.4885 (15)C9—H9B0.97
C8—C71.3815 (16)C6—C51.3860 (18)
C7—C61.3920 (17)C6—H60.93
C7—H70.93C5—H50.93
C11—C101.3220 (16)C10—H100.93
C11—C121.4926 (16)
C2—N1—C1112.17 (9)H12A—C12—H12B109.5
C2—N1—C9122.86 (9)C11—C12—H12C109.5
C1—N1—C9124.88 (9)H12A—C12—H12C109.5
C4—C3—C8121.78 (10)H12B—C12—H12C109.5
C4—C3—C2130.28 (10)C3—C4—C5117.17 (11)
C8—C3—C2107.94 (9)C3—C4—H4121.4
O1—C1—N1124.83 (10)C5—C4—H4121.4
O1—C1—C8129.49 (10)N1—C9—C10112.59 (9)
N1—C1—C8105.68 (9)N1—C9—H9A109.1
C7—C8—C3121.13 (10)C10—C9—H9A109.1
C7—C8—C1130.62 (10)N1—C9—H9B109.1
C3—C8—C1108.25 (9)C10—C9—H9B109.1
C8—C7—C6117.49 (11)H9A—C9—H9B107.8
C8—C7—H7121.3C5—C6—C7121.23 (11)
C6—C7—H7121.3C5—C6—H6119.4
C10—C11—C12125.45 (11)C7—C6—H6119.4
C10—C11—H11117.3C6—C5—C4121.20 (11)
C12—C11—H11117.3C6—C5—H5119.4
O2—C2—N1124.52 (10)C4—C5—H5119.4
O2—C2—C3129.55 (10)C11—C10—C9123.16 (10)
N1—C2—C3105.93 (9)C11—C10—H10118.4
C11—C12—H12A109.5C9—C10—H10118.4
C11—C12—H12B109.5
C2—N1—C1—O1178.65 (10)C1—N1—C2—C31.06 (12)
C9—N1—C1—O12.11 (17)C9—N1—C2—C3177.68 (9)
C2—N1—C1—C81.51 (12)C4—C3—C2—O20.1 (2)
C9—N1—C1—C8178.05 (9)C8—C3—C2—O2179.95 (11)
C4—C3—C8—C70.57 (16)C4—C3—C2—N1179.84 (11)
C2—C3—C8—C7179.40 (9)C8—C3—C2—N10.13 (11)
C4—C3—C8—C1179.26 (10)C8—C3—C4—C50.25 (16)
C2—C3—C8—C10.77 (11)C2—C3—C4—C5179.71 (10)
O1—C1—C8—C71.02 (19)C2—N1—C9—C1083.65 (12)
N1—C1—C8—C7178.81 (11)C1—N1—C9—C1092.53 (12)
O1—C1—C8—C3178.78 (11)C8—C7—C6—C50.12 (17)
N1—C1—C8—C31.39 (11)C7—C6—C5—C40.43 (17)
C3—C8—C7—C60.37 (16)C3—C4—C5—C60.24 (16)
C1—C8—C7—C6179.42 (10)C12—C11—C10—C9176.94 (10)
C1—N1—C2—O2179.01 (10)N1—C9—C10—C11131.59 (11)
C9—N1—C2—O22.39 (16)

Experimental details

Crystal data
Chemical formulaC12H11NO2
Mr201.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.1880 (4), 12.0830 (5), 10.8080 (5)
β (°) 110.431 (4)
V3)1002.03 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.32 × 0.2
Data collection
DiffractometerOxford Diffraction Gemini Atlas CCD
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.973, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7022, 1959, 1669
Rint0.016
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.06
No. of reflections1959
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction (2009), CrysAlis RED (Oxford Diffraction 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors express their gratitude to the Department of Inorganic Chemistry and Nuclear, Facultad de Química-UNAM, for the facilities to perform the experimental work.

References

First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMowery, B. P., Lee, S. E., Kissounko, D. A., Epand, R. F., Epand, R. M., Weisblum, B., Stahl, S. S. & Gellman, S. H. (2007). J. Am. Chem. Soc. 129, 15474–15476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176–o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoberts, J. D. & Mazur, R. H. (1951). J. Am. Chem. Soc. 72, 2509–2520.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWarzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356–3363.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWarzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o5445–o5447.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds