organic compounds
N-Crotylphthalimide
aFacultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04360, DF, Mexico
*Correspondence e-mail: morgadomoreno@yahoo.com.mx
In the title compound {systematic name: 2-[(E)-but-2-en-1-yl]isoindoline-1,3-dione}, C12H11NO2, the phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1) Å, while the plane of the N-crotyl substituent is orthogonal to the phthalimide ring system, making a dihedral angle of 87.5 (1)°.
Related literature
For related structures, see: Warzecha, Görner & Griesbeck (2006): Warzecha, Lex & Griesbeck (2006); Mustaphi et al. (2001). For details of intermolecular interactions, see: Desiraju (1991); Steiner (2002); Etter et al. (1990). For the synthesis of N-crotylphtalimide, see: Roberts & Mazur (1951); Mowery et al. (2007).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction (2009); cell CrysAlis RED (Oxford Diffraction 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810046039/is2623sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046039/is2623Isup2.hkl
N-crotylphtalimide (I) was prepared according to the procedure reported (Roberts & Mazur, 1951). Under argon, crotyl bromide (85% pure; 25 g; 157.4 mmol) was added with stirring at room temperature to a white suspension of potassium phthalimide (43.7 g; 236 mmol) in dimethylformamide (150 ml). The mixture was heated at 120° C for 30 minutes and then at 160° C for an additional 30 minutes. The hot mixture was poured over 50 g of ice-water and extracted with chloroform (4 × 20 ml). The combined extracts were washed successively with 1 N NaOH, water, 0.5 N HCl and again with water. The chloroform solution was dried over MgSO4 and filtered.
H atoms attached to C atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl groups.
Structure-activity relationship studies on N-allylphthalimide derivatives indicated that the influence of the allylic substituent on the photophysical and electrochemical properties of the phthalimide chromophore, which plays an important role as an
in photo-induced electron-transfer reactions (Warzecha, Görner & Griesbeck, 2006).The structure of N-crotylphthalimide (I) is shown in Fig. 1. The 2-butenyl substituent at the imide N atom of the planar phthalimide adopts an antiperiplanar conformation with torsion angles C1—N1—C9—C10 and N1—C9—C10—C11 of 92.53 and -131.59 (1)°; to difference of the orientation
of N-Allylphthalimide (Mustaphi et al., 2001; Warzecha, Lex & Griesbeck, 2006). The phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1)Å for atom C1 and dihedral angle of 0.13 to 1.39 (1)°, for other hand, the dihedral angle of 92.53 (1)° evidence that the N-crotyl group is orthogonal to the the phthalimide ring plane.In the
the intermolecular contact of 2.649 (1) Å between each molecule features pairs of Cvinyl—H and O=C bonds (Desiraju, 1991; Steiner, 2002) to its neighbours related by the symmetry operations x,-y + 1/2,+z + 1/2 and x,-y + 1/2,+z - 1/2 mainly. These interactions of van der Waals lead to infinite ribbons of R22 (13) motifs (Etter & MacDonald, 1990), as illustrated in Fig. 2. The ribbons run in the direction of the crystallographic c axis.For related structures, see: Warzecha, Görner & Griesbeck (2006): Warzecha, Lex & Griesbeck (2006); Mustaphi et al. (2001). For details of intermolecular interactions, see: Desiraju (1991); Steiner (2002); Etter et al. (1990). For the synthesis of N-crotylphtalimide, see: Roberts & Mazur (1951); Mowery et al. (2007).
Data collection: CrysAlis CCD (Oxford Diffraction (2009); cell
CrysAlis RED (Oxford Diffraction 2009); data reduction: CrysAlis RED (Oxford Diffraction 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H11NO2 | F(000) = 424 |
Mr = 201.22 | Dx = 1.334 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1880 (4) Å | Cell parameters from 4695 reflections |
b = 12.0830 (5) Å | θ = 3.8–26.0° |
c = 10.8080 (5) Å | µ = 0.09 mm−1 |
β = 110.431 (4)° | T = 123 K |
V = 1002.03 (8) Å3 | Block, colorless |
Z = 4 | 0.36 × 0.32 × 0.2 mm |
Oxford Diffraction Gemini Atlas CCD diffractometer | 1959 independent reflections |
Graphite monochromator | 1669 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.016 |
ω scans | θmax = 26.1°, θmin = 3.9° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009) | h = −10→10 |
Tmin = 0.973, Tmax = 0.983 | k = −14→13 |
7022 measured reflections | l = −13→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0389P)2 + 0.204P] where P = (Fo2 + 2Fc2)/3 |
1959 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C12H11NO2 | V = 1002.03 (8) Å3 |
Mr = 201.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.1880 (4) Å | µ = 0.09 mm−1 |
b = 12.0830 (5) Å | T = 123 K |
c = 10.8080 (5) Å | 0.36 × 0.32 × 0.2 mm |
β = 110.431 (4)° |
Oxford Diffraction Gemini Atlas CCD diffractometer | 1959 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009) | 1669 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 0.983 | Rint = 0.016 |
7022 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.20 e Å−3 |
1959 reflections | Δρmin = −0.19 e Å−3 |
137 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.32549 (11) | 0.11878 (7) | 0.22557 (8) | 0.0293 (2) | |
O2 | −0.00316 (11) | 0.09982 (7) | −0.21251 (8) | 0.0299 (2) | |
N1 | 0.13954 (11) | 0.13240 (7) | 0.00921 (9) | 0.0201 (2) | |
C3 | 0.21517 (14) | −0.02776 (9) | −0.07262 (11) | 0.0200 (2) | |
C1 | 0.26809 (13) | 0.08188 (9) | 0.11487 (10) | 0.0202 (2) | |
C8 | 0.31372 (14) | −0.02229 (9) | 0.06096 (11) | 0.0200 (2) | |
C7 | 0.43062 (14) | −0.10496 (10) | 0.12205 (12) | 0.0260 (3) | |
H7 | 0.4963 | −0.1017 | 0.2116 | 0.031* | |
C11 | 0.19618 (14) | 0.42523 (9) | 0.04805 (11) | 0.0237 (3) | |
H11 | 0.175 | 0.4284 | 0.1271 | 0.028* | |
C2 | 0.10193 (14) | 0.07222 (9) | −0.10729 (10) | 0.0204 (2) | |
C12 | 0.27941 (15) | 0.52388 (9) | 0.01158 (12) | 0.0276 (3) | |
H12A | 0.303 | 0.5085 | −0.0677 | 0.041* | |
H12B | 0.3866 | 0.5405 | 0.0819 | 0.041* | |
H12C | 0.2022 | 0.5862 | −0.0029 | 0.041* | |
C4 | 0.23032 (15) | −0.11498 (9) | −0.15043 (12) | 0.0259 (3) | |
H4 | 0.1643 | −0.1181 | −0.24 | 0.031* | |
C9 | 0.05901 (14) | 0.23939 (9) | 0.01554 (11) | 0.0229 (3) | |
H9A | 0.0605 | 0.2512 | 0.1047 | 0.027* | |
H9B | −0.0617 | 0.2379 | −0.0429 | 0.027* | |
C6 | 0.44640 (15) | −0.19339 (10) | 0.04444 (13) | 0.0307 (3) | |
H6 | 0.5239 | −0.2503 | 0.0829 | 0.037* | |
C5 | 0.34873 (16) | −0.19817 (10) | −0.08913 (13) | 0.0307 (3) | |
H5 | 0.3625 | −0.258 | −0.1387 | 0.037* | |
C10 | 0.15001 (14) | 0.33373 (9) | −0.02266 (11) | 0.0217 (3) | |
H10 | 0.1753 | 0.3277 | −0.0999 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0324 (5) | 0.0331 (5) | 0.0201 (4) | −0.0027 (4) | 0.0062 (4) | −0.0045 (3) |
O2 | 0.0310 (5) | 0.0331 (5) | 0.0208 (4) | 0.0034 (4) | 0.0031 (4) | 0.0009 (3) |
N1 | 0.0217 (5) | 0.0184 (5) | 0.0202 (5) | 0.0006 (4) | 0.0073 (4) | −0.0009 (4) |
C3 | 0.0203 (5) | 0.0184 (5) | 0.0235 (6) | −0.0041 (4) | 0.0106 (4) | 0.0005 (4) |
C1 | 0.0197 (5) | 0.0218 (6) | 0.0201 (6) | −0.0037 (4) | 0.0081 (5) | 0.0013 (4) |
C8 | 0.0188 (5) | 0.0194 (6) | 0.0239 (6) | −0.0039 (4) | 0.0099 (4) | 0.0015 (4) |
C7 | 0.0210 (6) | 0.0256 (6) | 0.0312 (6) | −0.0014 (5) | 0.0088 (5) | 0.0071 (5) |
C11 | 0.0219 (6) | 0.0254 (6) | 0.0243 (6) | 0.0029 (5) | 0.0084 (5) | 0.0019 (5) |
C2 | 0.0199 (5) | 0.0215 (6) | 0.0204 (6) | −0.0036 (4) | 0.0079 (5) | 0.0001 (4) |
C12 | 0.0249 (6) | 0.0228 (6) | 0.0335 (7) | 0.0003 (5) | 0.0083 (5) | 0.0007 (5) |
C4 | 0.0304 (6) | 0.0220 (6) | 0.0293 (6) | −0.0064 (5) | 0.0154 (5) | −0.0039 (5) |
C9 | 0.0228 (6) | 0.0199 (6) | 0.0278 (6) | 0.0023 (4) | 0.0112 (5) | −0.0013 (4) |
C6 | 0.0254 (6) | 0.0206 (6) | 0.0503 (8) | 0.0025 (5) | 0.0185 (6) | 0.0080 (5) |
C5 | 0.0360 (7) | 0.0181 (6) | 0.0470 (8) | −0.0027 (5) | 0.0259 (6) | −0.0035 (5) |
C10 | 0.0202 (5) | 0.0219 (6) | 0.0242 (6) | 0.0033 (4) | 0.0093 (5) | 0.0021 (4) |
O1—C1 | 1.2076 (13) | C11—H11 | 0.93 |
O2—C2 | 1.2091 (13) | C12—H12A | 0.96 |
N1—C2 | 1.3923 (14) | C12—H12B | 0.96 |
N1—C1 | 1.3948 (14) | C12—H12C | 0.96 |
N1—C9 | 1.4637 (14) | C4—C5 | 1.3931 (17) |
C3—C4 | 1.3807 (15) | C4—H4 | 0.93 |
C3—C8 | 1.3880 (16) | C9—C10 | 1.4966 (15) |
C3—C2 | 1.4888 (15) | C9—H9A | 0.97 |
C1—C8 | 1.4885 (15) | C9—H9B | 0.97 |
C8—C7 | 1.3815 (16) | C6—C5 | 1.3860 (18) |
C7—C6 | 1.3920 (17) | C6—H6 | 0.93 |
C7—H7 | 0.93 | C5—H5 | 0.93 |
C11—C10 | 1.3220 (16) | C10—H10 | 0.93 |
C11—C12 | 1.4926 (16) | ||
C2—N1—C1 | 112.17 (9) | H12A—C12—H12B | 109.5 |
C2—N1—C9 | 122.86 (9) | C11—C12—H12C | 109.5 |
C1—N1—C9 | 124.88 (9) | H12A—C12—H12C | 109.5 |
C4—C3—C8 | 121.78 (10) | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 130.28 (10) | C3—C4—C5 | 117.17 (11) |
C8—C3—C2 | 107.94 (9) | C3—C4—H4 | 121.4 |
O1—C1—N1 | 124.83 (10) | C5—C4—H4 | 121.4 |
O1—C1—C8 | 129.49 (10) | N1—C9—C10 | 112.59 (9) |
N1—C1—C8 | 105.68 (9) | N1—C9—H9A | 109.1 |
C7—C8—C3 | 121.13 (10) | C10—C9—H9A | 109.1 |
C7—C8—C1 | 130.62 (10) | N1—C9—H9B | 109.1 |
C3—C8—C1 | 108.25 (9) | C10—C9—H9B | 109.1 |
C8—C7—C6 | 117.49 (11) | H9A—C9—H9B | 107.8 |
C8—C7—H7 | 121.3 | C5—C6—C7 | 121.23 (11) |
C6—C7—H7 | 121.3 | C5—C6—H6 | 119.4 |
C10—C11—C12 | 125.45 (11) | C7—C6—H6 | 119.4 |
C10—C11—H11 | 117.3 | C6—C5—C4 | 121.20 (11) |
C12—C11—H11 | 117.3 | C6—C5—H5 | 119.4 |
O2—C2—N1 | 124.52 (10) | C4—C5—H5 | 119.4 |
O2—C2—C3 | 129.55 (10) | C11—C10—C9 | 123.16 (10) |
N1—C2—C3 | 105.93 (9) | C11—C10—H10 | 118.4 |
C11—C12—H12A | 109.5 | C9—C10—H10 | 118.4 |
C11—C12—H12B | 109.5 | ||
C2—N1—C1—O1 | 178.65 (10) | C1—N1—C2—C3 | 1.06 (12) |
C9—N1—C1—O1 | 2.11 (17) | C9—N1—C2—C3 | 177.68 (9) |
C2—N1—C1—C8 | −1.51 (12) | C4—C3—C2—O2 | −0.1 (2) |
C9—N1—C1—C8 | −178.05 (9) | C8—C3—C2—O2 | 179.95 (11) |
C4—C3—C8—C7 | −0.57 (16) | C4—C3—C2—N1 | 179.84 (11) |
C2—C3—C8—C7 | 179.40 (9) | C8—C3—C2—N1 | −0.13 (11) |
C4—C3—C8—C1 | 179.26 (10) | C8—C3—C4—C5 | 0.25 (16) |
C2—C3—C8—C1 | −0.77 (11) | C2—C3—C4—C5 | −179.71 (10) |
O1—C1—C8—C7 | 1.02 (19) | C2—N1—C9—C10 | −83.65 (12) |
N1—C1—C8—C7 | −178.81 (11) | C1—N1—C9—C10 | 92.53 (12) |
O1—C1—C8—C3 | −178.78 (11) | C8—C7—C6—C5 | 0.12 (17) |
N1—C1—C8—C3 | 1.39 (11) | C7—C6—C5—C4 | −0.43 (17) |
C3—C8—C7—C6 | 0.37 (16) | C3—C4—C5—C6 | 0.24 (16) |
C1—C8—C7—C6 | −179.42 (10) | C12—C11—C10—C9 | −176.94 (10) |
C1—N1—C2—O2 | −179.01 (10) | N1—C9—C10—C11 | −131.59 (11) |
C9—N1—C2—O2 | −2.39 (16) |
Experimental details
Crystal data | |
Chemical formula | C12H11NO2 |
Mr | 201.22 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 8.1880 (4), 12.0830 (5), 10.8080 (5) |
β (°) | 110.431 (4) |
V (Å3) | 1002.03 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.36 × 0.32 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini Atlas CCD |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.973, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7022, 1959, 1669 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.080, 1.06 |
No. of reflections | 1959 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.19 |
Computer programs: CrysAlis CCD (Oxford Diffraction (2009), CrysAlis RED (Oxford Diffraction 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors express their gratitude to the Department of Inorganic Chemistry and Nuclear, Facultad de Química-UNAM, for the facilities to perform the experimental work.
References
Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Mowery, B. P., Lee, S. E., Kissounko, D. A., Epand, R. F., Epand, R. M., Weisblum, B., Stahl, S. S. & Gellman, S. H. (2007). J. Am. Chem. Soc. 129, 15474–15476. Web of Science CrossRef PubMed CAS Google Scholar
Mustaphi, N. E., Ferfra, S., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o176–o177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Roberts, J. D. & Mazur, R. H. (1951). J. Am. Chem. Soc. 72, 2509–2520. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Warzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356–3363. Web of Science CrossRef PubMed CAS Google Scholar
Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o5445–o5447. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Structure-activity relationship studies on N-allylphthalimide derivatives indicated that the influence of the allylic substituent on the photophysical and electrochemical properties of the phthalimide chromophore, which plays an important role as an electron acceptor in photo-induced electron-transfer reactions (Warzecha, Görner & Griesbeck, 2006).
The structure of N-crotylphthalimide (I) is shown in Fig. 1. The 2-butenyl substituent at the imide N atom of the planar phthalimide adopts an antiperiplanar conformation with torsion angles C1—N1—C9—C10 and N1—C9—C10—C11 of 92.53 and -131.59 (1)°; to difference of the orientation synperiplanar of N-Allylphthalimide (Mustaphi et al., 2001; Warzecha, Lex & Griesbeck, 2006). The phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1)Å for atom C1 and dihedral angle of 0.13 to 1.39 (1)°, for other hand, the dihedral angle of 92.53 (1)° evidence that the N-crotyl group is orthogonal to the the phthalimide ring plane.
In the crystal structure, the intermolecular contact of 2.649 (1) Å between each molecule features pairs of Cvinyl—H and O=C bonds (Desiraju, 1991; Steiner, 2002) to its neighbours related by the symmetry operations x,-y + 1/2,+z + 1/2 and x,-y + 1/2,+z - 1/2 mainly. These interactions of van der Waals lead to infinite ribbons of R22 (13) motifs (Etter & MacDonald, 1990), as illustrated in Fig. 2. The ribbons run in the direction of the crystallographic c axis.