metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Benzyl­di­phenyl­phosphane)chlorido­gold(I)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 2 November 2010; accepted 3 November 2010; online 10 November 2010)

In the title compound, [AuCl(C19H17P)], the AuI atom exists within a P and Cl donor set that constitutes an almost linear geometry. The three phenyl rings make dihedral angles of 38.33 (14), 81.26 (15) and 81.28 (14)° with each other. In the crystal, mol­ecules are linked into chains along the b axis by inter­molecular C—H⋯Cl hydrogen bonds.

Related literature

For general background to gold complexes, see: Parish & Cottrill (1987[Parish, R. & Cottrill, S. M. (1987). Gold Bull. 20, 3-12.]); Tiekink (2002[Tiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 42, 225-248.]); Baenziger et al. (1976[Baenziger, N. C., Bennett, W. E. & Soborofe, D. M. (1976). Acta Cryst. B32, 962-963.]); Chiu et al. (2009[Chiu, Y. C., Lin, C. H., Hung, J. Y., Chi, Y., Cheng, Y. M., Wang, K. W., Chung, M. W., Lee, G. H. & Chou, P. T. (2009). Inorg. Chem. 48, 8164-8172.]). For the synthesis of (CH3)2SAuCl, see: Francis (1901[Francis, C. P. (1901). J. Am. Chem. Soc. 23, 250-258.]). For a related structure, see: Shawkataly et al. (2010[Shawkataly, O. bin, Tariq, A., Ghani, S. S., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1217-m1218.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [AuCl(C19H17P)]

  • Mr = 508.71

  • Monoclinic, C 2/c

  • a = 16.1403 (11) Å

  • b = 9.0380 (7) Å

  • c = 23.5259 (17) Å

  • β = 91.012 (2)°

  • V = 3431.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.82 mm−1

  • T = 100 K

  • 0.27 × 0.22 × 0.12 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.196, Tmax = 0.408

  • 28002 measured reflections

  • 7489 independent reflections

  • 6751 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.053

  • S = 1.14

  • 7489 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −2.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—P1 2.2292 (7)
Au1—Cl1 2.2983 (7)
P1—Au1—Cl1 173.62 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯Cl1i 0.97 2.71 3.675 (3) 175
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Gold and gold compounds have been used for medicinal purposes over a long period of time (Parish and Cottrill, 1987). Phosphinegold (I) forms an important class of compounds of gold (Baenziger et al., 1976). Their thiolate derivatives are compounds with well known medicinal properties (Tiekink, 2002). They are conveniently prepared from their phosphinegold(I) chloride precursors and it is in this context that the title compound C6H5CH2P(C6H5)2AuCl, was prepared and characterized. Complex of Iridium (III) with benzyldiphenyl phospine is reported (Chiu et al., 2009), however, no such metal complex with gold (I) is known. Herein, we report the crystal structure of the title complex C6H5CH2P(C6H5)2AuCl.

In the title compound (Fig. 1), the P1–Au1–Cl1 is almost linear with an angle of 173.62 (2)°. The three phosphine-substituted phenyl rings (C1–C6, C8–C13 and C14–C19) make dihedral angles of 38.33 (14), 81.26 (15) and 81.28 (14)° with each other (C1–C6/C8–C13, C1–C6/C14–C19 and C8–C13/C14–C19). The geometric parameters are comparable to its related structure (Shawkataly et al., 2010). In the crystal structure, the molecules are linked into chains along the b axis by intermolecular C7—H7B···Cl1 hydrogen bonds (Fig. 2, Table 2).

Related literature top

For general background to gold complexes, see: Parish & Cottrill (1987); Tiekink (2002); Baenziger et al. (1976); Chiu et al. (2009). For the synthesis of (CH3)2SAuCl, see: Francis (1901). For a related structure, see: Shawkataly et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared by mixing equimolar quantities of Me2SAuCl, obtained as per conventional method (Francis, 1901) and C6H5CH2P(C6H5)2 (Strem Chemicals Co. Ltd.) in CH2Cl2 held at room temperature. The solution was stirred for 2 h and white crystalline solid was recovered after the removal of solvent under vacuum. The colourless plate-like crystals were obtained in 90% yield from the layering of methanol over a concentrated dichloromethane solution of the compound (m.p. 208 °C, decomposition) kept at refrigerator for couple of days.

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.43 and -2.38 e Å-3, respectively, were located 0.73 and 0.60 Å from the Au1 and Cl1 atom, respectively.

Structure description top

Gold and gold compounds have been used for medicinal purposes over a long period of time (Parish and Cottrill, 1987). Phosphinegold (I) forms an important class of compounds of gold (Baenziger et al., 1976). Their thiolate derivatives are compounds with well known medicinal properties (Tiekink, 2002). They are conveniently prepared from their phosphinegold(I) chloride precursors and it is in this context that the title compound C6H5CH2P(C6H5)2AuCl, was prepared and characterized. Complex of Iridium (III) with benzyldiphenyl phospine is reported (Chiu et al., 2009), however, no such metal complex with gold (I) is known. Herein, we report the crystal structure of the title complex C6H5CH2P(C6H5)2AuCl.

In the title compound (Fig. 1), the P1–Au1–Cl1 is almost linear with an angle of 173.62 (2)°. The three phosphine-substituted phenyl rings (C1–C6, C8–C13 and C14–C19) make dihedral angles of 38.33 (14), 81.26 (15) and 81.28 (14)° with each other (C1–C6/C8–C13, C1–C6/C14–C19 and C8–C13/C14–C19). The geometric parameters are comparable to its related structure (Shawkataly et al., 2010). In the crystal structure, the molecules are linked into chains along the b axis by intermolecular C7—H7B···Cl1 hydrogen bonds (Fig. 2, Table 2).

For general background to gold complexes, see: Parish & Cottrill (1987); Tiekink (2002); Baenziger et al. (1976); Chiu et al. (2009). For the synthesis of (CH3)2SAuCl, see: Francis (1901). For a related structure, see: Shawkataly et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into chains along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
(Benzyldiphenylphosphane)chloridogold(I) top
Crystal data top
[AuCl(C19H17P)]F(000) = 1936
Mr = 508.71Dx = 1.969 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9893 reflections
a = 16.1403 (11) Åθ = 2.7–37.4°
b = 9.0380 (7) ŵ = 8.82 mm1
c = 23.5259 (17) ÅT = 100 K
β = 91.012 (2)°Plate, colourless
V = 3431.3 (4) Å30.27 × 0.22 × 0.12 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7489 independent reflections
Radiation source: fine-focus sealed tube6751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 35.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2626
Tmin = 0.196, Tmax = 0.408k = 714
28002 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.P)2 + 12.0783P]
where P = (Fo2 + 2Fc2)/3
7489 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 2.38 e Å3
Crystal data top
[AuCl(C19H17P)]V = 3431.3 (4) Å3
Mr = 508.71Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.1403 (11) ŵ = 8.82 mm1
b = 9.0380 (7) ÅT = 100 K
c = 23.5259 (17) Å0.27 × 0.22 × 0.12 mm
β = 91.012 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7489 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6751 reflections with I > 2σ(I)
Tmin = 0.196, Tmax = 0.408Rint = 0.030
28002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.P)2 + 12.0783P]
where P = (Fo2 + 2Fc2)/3
7489 reflectionsΔρmax = 1.43 e Å3
199 parametersΔρmin = 2.38 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.323189 (5)0.699677 (10)0.101304 (4)0.01995 (3)
Cl10.31261 (4)0.94885 (7)0.08307 (3)0.02787 (12)
P10.34216 (4)0.45646 (7)0.11042 (3)0.01953 (11)
C10.11935 (17)0.4585 (3)0.08496 (12)0.0293 (5)
H1A0.13010.51680.05340.035*
C20.04361 (18)0.4704 (4)0.11189 (14)0.0354 (6)
H2A0.00390.53640.09800.042*
C30.02680 (18)0.3854 (4)0.15894 (14)0.0367 (7)
H3A0.02410.39370.17660.044*
C40.08609 (19)0.2873 (4)0.17987 (14)0.0353 (6)
H4A0.07540.23060.21190.042*
C50.16161 (18)0.2743 (3)0.15271 (13)0.0304 (5)
H5A0.20100.20770.16650.036*
C60.17911 (15)0.3596 (3)0.10519 (11)0.0243 (5)
C70.26100 (16)0.3445 (3)0.07589 (11)0.0238 (4)
H7A0.25450.37510.03650.029*
H7B0.27770.24140.07620.029*
C80.34892 (14)0.3852 (3)0.18224 (10)0.0210 (4)
C90.31074 (17)0.4608 (3)0.22617 (11)0.0264 (5)
H9A0.28670.55280.21950.032*
C100.3088 (2)0.3977 (4)0.27999 (12)0.0334 (6)
H10A0.28190.44650.30920.040*
C110.34654 (19)0.2628 (4)0.29046 (12)0.0305 (5)
H11A0.34610.22240.32680.037*
C120.38490 (18)0.1881 (3)0.24694 (13)0.0313 (5)
H12A0.40970.09690.25400.038*
C130.38647 (18)0.2485 (3)0.19300 (12)0.0284 (5)
H13A0.41250.19810.16380.034*
C140.43910 (15)0.4021 (3)0.07884 (10)0.0208 (4)
C150.51087 (17)0.4641 (4)0.10215 (13)0.0322 (6)
H15A0.50740.52930.13260.039*
C160.58762 (17)0.4292 (4)0.08027 (13)0.0305 (5)
H16A0.63550.47080.09600.037*
C170.59297 (17)0.3323 (3)0.03495 (12)0.0277 (5)
H17A0.64450.30800.02050.033*
C180.52207 (19)0.2721 (4)0.01125 (13)0.0349 (6)
H18A0.52590.20810.01960.042*
C190.44462 (17)0.3060 (3)0.03307 (12)0.0296 (5)
H19A0.39690.26450.01700.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01950 (4)0.01675 (4)0.02361 (4)0.00189 (3)0.00046 (3)0.00088 (3)
Cl10.0251 (3)0.0164 (2)0.0422 (3)0.0030 (2)0.0035 (2)0.0030 (2)
P10.0198 (2)0.0172 (3)0.0215 (3)0.0010 (2)0.0013 (2)0.0018 (2)
C10.0257 (11)0.0302 (13)0.0317 (13)0.0055 (10)0.0051 (10)0.0069 (10)
C20.0240 (12)0.0407 (17)0.0414 (16)0.0082 (11)0.0059 (11)0.0109 (13)
C30.0254 (12)0.0434 (18)0.0412 (16)0.0034 (12)0.0006 (11)0.0158 (13)
C40.0312 (13)0.0360 (16)0.0387 (15)0.0118 (12)0.0010 (11)0.0027 (12)
C50.0278 (12)0.0252 (13)0.0381 (14)0.0022 (10)0.0032 (10)0.0006 (10)
C60.0218 (10)0.0208 (11)0.0302 (12)0.0006 (8)0.0048 (9)0.0058 (9)
C70.0251 (10)0.0199 (10)0.0262 (11)0.0007 (9)0.0040 (9)0.0037 (8)
C80.0201 (9)0.0202 (10)0.0228 (10)0.0004 (8)0.0015 (8)0.0001 (8)
C90.0300 (12)0.0212 (11)0.0279 (12)0.0021 (9)0.0018 (9)0.0007 (9)
C100.0443 (16)0.0291 (13)0.0270 (12)0.0017 (12)0.0070 (11)0.0016 (10)
C110.0350 (13)0.0309 (14)0.0255 (12)0.0053 (11)0.0000 (10)0.0042 (10)
C120.0322 (13)0.0298 (14)0.0319 (13)0.0053 (11)0.0004 (10)0.0087 (11)
C130.0309 (12)0.0258 (12)0.0287 (12)0.0081 (10)0.0022 (10)0.0035 (10)
C140.0217 (9)0.0188 (10)0.0219 (10)0.0041 (8)0.0011 (8)0.0012 (8)
C150.0241 (11)0.0358 (15)0.0367 (14)0.0007 (11)0.0008 (10)0.0128 (12)
C160.0221 (11)0.0350 (15)0.0343 (13)0.0024 (10)0.0021 (10)0.0026 (11)
C170.0251 (11)0.0327 (14)0.0253 (11)0.0041 (10)0.0036 (9)0.0037 (10)
C180.0314 (13)0.0429 (18)0.0305 (13)0.0014 (12)0.0055 (11)0.0118 (12)
C190.0271 (11)0.0351 (14)0.0266 (12)0.0002 (11)0.0002 (9)0.0081 (11)
Geometric parameters (Å, º) top
Au1—P12.2292 (7)C9—C101.389 (4)
Au1—Cl12.2983 (7)C9—H9A0.9300
P1—C81.810 (3)C10—C111.383 (5)
P1—C141.812 (2)C10—H10A0.9300
P1—C71.834 (3)C11—C121.382 (4)
C1—C21.391 (4)C11—H11A0.9300
C1—C61.393 (4)C12—C131.382 (4)
C1—H1A0.9300C12—H12A0.9300
C2—C31.379 (5)C13—H13A0.9300
C2—H2A0.9300C14—C191.387 (4)
C3—C41.388 (5)C14—C151.391 (4)
C3—H3A0.9300C15—C161.386 (4)
C4—C51.391 (4)C15—H15A0.9300
C4—H4A0.9300C16—C171.383 (4)
C5—C61.391 (4)C16—H16A0.9300
C5—H5A0.9300C17—C181.376 (4)
C6—C71.508 (4)C17—H17A0.9300
C7—H7A0.9700C18—C191.394 (4)
C7—H7B0.9700C18—H18A0.9300
C8—C91.391 (4)C19—H19A0.9300
C8—C131.398 (4)
P1—Au1—Cl1173.62 (2)C10—C9—C8119.6 (3)
C8—P1—C14104.37 (11)C10—C9—H9A120.2
C8—P1—C7104.37 (12)C8—C9—H9A120.2
C14—P1—C7106.50 (12)C11—C10—C9120.4 (3)
C8—P1—Au1116.52 (8)C11—C10—H10A119.8
C14—P1—Au1110.26 (8)C9—C10—H10A119.8
C7—P1—Au1113.94 (9)C12—C11—C10120.0 (3)
C2—C1—C6120.2 (3)C12—C11—H11A120.0
C2—C1—H1A119.9C10—C11—H11A120.0
C6—C1—H1A119.9C13—C12—C11120.2 (3)
C3—C2—C1120.6 (3)C13—C12—H12A119.9
C3—C2—H2A119.7C11—C12—H12A119.9
C1—C2—H2A119.7C12—C13—C8120.0 (3)
C2—C3—C4119.8 (3)C12—C13—H13A120.0
C2—C3—H3A120.1C8—C13—H13A120.0
C4—C3—H3A120.1C19—C14—C15119.6 (2)
C3—C4—C5119.7 (3)C19—C14—P1123.8 (2)
C3—C4—H4A120.2C15—C14—P1116.63 (19)
C5—C4—H4A120.2C16—C15—C14120.4 (3)
C6—C5—C4120.9 (3)C16—C15—H15A119.8
C6—C5—H5A119.5C14—C15—H15A119.8
C4—C5—H5A119.5C17—C16—C15119.9 (3)
C5—C6—C1118.8 (3)C17—C16—H16A120.0
C5—C6—C7120.6 (2)C15—C16—H16A120.0
C1—C6—C7120.6 (3)C18—C17—C16120.0 (3)
C6—C7—P1111.89 (17)C18—C17—H17A120.0
C6—C7—H7A109.2C16—C17—H17A120.0
P1—C7—H7A109.2C17—C18—C19120.6 (3)
C6—C7—H7B109.2C17—C18—H18A119.7
P1—C7—H7B109.2C19—C18—H18A119.7
H7A—C7—H7B107.9C14—C19—C18119.6 (3)
C9—C8—C13119.7 (2)C14—C19—H19A120.2
C9—C8—P1119.93 (19)C18—C19—H19A120.2
C13—C8—P1120.16 (19)
C6—C1—C2—C30.3 (5)C8—C9—C10—C111.9 (5)
C1—C2—C3—C40.3 (5)C9—C10—C11—C121.5 (5)
C2—C3—C4—C50.8 (5)C10—C11—C12—C130.7 (5)
C3—C4—C5—C60.8 (5)C11—C12—C13—C80.3 (5)
C4—C5—C6—C10.2 (4)C9—C8—C13—C120.6 (4)
C4—C5—C6—C7179.8 (3)P1—C8—C13—C12174.1 (2)
C2—C1—C6—C50.4 (4)C8—P1—C14—C19116.6 (2)
C2—C1—C6—C7179.3 (3)C7—P1—C14—C196.5 (3)
C5—C6—C7—P183.8 (3)Au1—P1—C14—C19117.6 (2)
C1—C6—C7—P196.6 (3)C8—P1—C14—C1564.5 (2)
C8—P1—C7—C660.1 (2)C7—P1—C14—C15174.6 (2)
C14—P1—C7—C6170.15 (18)Au1—P1—C14—C1561.3 (2)
Au1—P1—C7—C668.1 (2)C19—C14—C15—C160.6 (5)
C14—P1—C8—C9147.9 (2)P1—C14—C15—C16179.6 (2)
C7—P1—C8—C9100.5 (2)C14—C15—C16—C170.1 (5)
Au1—P1—C8—C926.0 (2)C15—C16—C17—C180.7 (5)
C14—P1—C8—C1337.4 (2)C16—C17—C18—C190.9 (5)
C7—P1—C8—C1374.2 (2)C15—C14—C19—C180.4 (4)
Au1—P1—C8—C13159.25 (19)P1—C14—C19—C18179.2 (2)
C13—C8—C9—C101.4 (4)C17—C18—C19—C140.4 (5)
P1—C8—C9—C10173.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cl1i0.972.713.675 (3)175
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[AuCl(C19H17P)]
Mr508.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.1403 (11), 9.0380 (7), 23.5259 (17)
β (°) 91.012 (2)
V3)3431.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)8.82
Crystal size (mm)0.27 × 0.22 × 0.12
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.196, 0.408
No. of measured, independent and
observed [I > 2σ(I)] reflections
28002, 7489, 6751
Rint0.030
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.053, 1.14
No. of reflections7489
No. of parameters199
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.P)2 + 12.0783P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.43, 2.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Au1—P12.2292 (7)Au1—Cl12.2983 (7)
P1—Au1—Cl1173.62 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cl1i0.972.713.675 (3)175
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) under the University Research Grant 1001/PJJAUH/811115. AT is grateful to USM for a Post-Doctoral Fellowship. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBaenziger, N. C., Bennett, W. E. & Soborofe, D. M. (1976). Acta Cryst. B32, 962–963.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiu, Y. C., Lin, C. H., Hung, J. Y., Chi, Y., Cheng, Y. M., Wang, K. W., Chung, M. W., Lee, G. H. & Chou, P. T. (2009). Inorg. Chem. 48, 8164–8172.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrancis, C. P. (1901). J. Am. Chem. Soc. 23, 250–258.  Google Scholar
First citationParish, R. & Cottrill, S. M. (1987). Gold Bull. 20, 3–12.  CrossRef CAS Google Scholar
First citationShawkataly, O. bin, Tariq, A., Ghani, S. S., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1217–m1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 42, 225–248.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds