organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-1,3-bis­­(4-chloro­phen­yl)propan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 2 November 2010; accepted 3 November 2010; online 13 November 2010)

In the title compound, C15H10Br2Cl2O, the terminal benzene rings make a dihedral angle of 31.1 (2)° with each other. In the crystal, mol­ecules are stacked along the a axis and consolidated by C—H⋯π inter­actions. Short Cl⋯Cl [3.1140 (17) Å] and Br⋯Cl [3.4565 (13) Å] contacts are observed.

Related literature

For general background to and the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Opletalova & Sedivy (1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). For the preparation of the title compound, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem 43, 1715-1720.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Shetty, S. & Kalluraya, B. (2010). Acta Cryst. E66, o3128.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Br2Cl2O

  • Mr = 436.95

  • Orthorhombic, P b c a

  • a = 5.7599 (3) Å

  • b = 17.1233 (8) Å

  • c = 30.1983 (13) Å

  • V = 2978.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.79 mm−1

  • T = 100 K

  • 0.52 × 0.48 × 0.34 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.154, Tmax = 0.241

  • 16656 measured reflections

  • 4100 independent reflections

  • 3459 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.130

  • S = 1.12

  • 4100 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11ACg1i 0.93 2.96 3.638 (5) 131
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are well known for their biological activities (Dimmock et al., 1999). These have been reported as potential antifungal, chemotherapeutic (Opletalova & Sedivy, 1999), anti-infective & anti-inflammatory agents (Nowakowska, 2007). Chalcones are prepared by the condensation of acetophenone with appropriately substituted aromatic aldehydes in ethanol medium employing sodium hydroxide as catalyst. Bromination of these propenones were carried out using bromine in glacial acetic acid medium to give dibromopropanones (Rai et al., 2008). In view of the importance of chalcones, the synthesis and crystal structure of the title compound has been carried out.

In the title molecule, Fig. 1, the benzene rings make a dihedral angle of 31.1 (2) ° with each other. There are short Cl1···Cl1 [symmetry code: -x, -y, -z; distance = 3.1140 (17) Å] and Br1···Cl1 [symmetry code: -1/2-x, 1/2+y, z; distance = 3.4565 (13) Å] contacts which are shorter than the sum of van der Waals radii of chlorine/chlorine and chlorine/bromine atoms. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a related structure (Fun et al., 2010).

In the crystal packing, Fig. 2, the molecules are stacked down the a axis and consolidated by C11—H11A···Cg1 (Table 1) interactions, where Cg1 is the centroid of the C1–C6 benzene ring. There is no significant hydrogen bond observed in this compound.

Related literature top

For general background to and the biological activity of chalcones, see: Dimmock et al. (1999); Opletalova & Sedivy (1999); Nowakowska (2007). For the preparation of the title compound, see: Rai et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For a related structure, see: Fun et al. (2010).

Experimental top

1,3-Bis(p-chlorophenyl)prop-2-en-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid [30% (w/v)] was added to it with constant stirring till the yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanones separated out were collected by filtration and washed with ethanol and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or0.98 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density peak is located at 1.07 Å from Br2 and the deepest hole is located at 1.79 Å from H11A.

Structure description top

Chalcones are well known for their biological activities (Dimmock et al., 1999). These have been reported as potential antifungal, chemotherapeutic (Opletalova & Sedivy, 1999), anti-infective & anti-inflammatory agents (Nowakowska, 2007). Chalcones are prepared by the condensation of acetophenone with appropriately substituted aromatic aldehydes in ethanol medium employing sodium hydroxide as catalyst. Bromination of these propenones were carried out using bromine in glacial acetic acid medium to give dibromopropanones (Rai et al., 2008). In view of the importance of chalcones, the synthesis and crystal structure of the title compound has been carried out.

In the title molecule, Fig. 1, the benzene rings make a dihedral angle of 31.1 (2) ° with each other. There are short Cl1···Cl1 [symmetry code: -x, -y, -z; distance = 3.1140 (17) Å] and Br1···Cl1 [symmetry code: -1/2-x, 1/2+y, z; distance = 3.4565 (13) Å] contacts which are shorter than the sum of van der Waals radii of chlorine/chlorine and chlorine/bromine atoms. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a related structure (Fun et al., 2010).

In the crystal packing, Fig. 2, the molecules are stacked down the a axis and consolidated by C11—H11A···Cg1 (Table 1) interactions, where Cg1 is the centroid of the C1–C6 benzene ring. There is no significant hydrogen bond observed in this compound.

For general background to and the biological activity of chalcones, see: Dimmock et al. (1999); Opletalova & Sedivy (1999); Nowakowska (2007). For the preparation of the title compound, see: Rai et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For a related structure, see: Fun et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis.
2,3-Dibromo-1,3-bis(4-chlorophenyl)propan-1-one top
Crystal data top
C15H10Br2Cl2OF(000) = 1696
Mr = 436.95Dx = 1.949 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7210 reflections
a = 5.7599 (3) Åθ = 2.5–29.4°
b = 17.1233 (8) ŵ = 5.79 mm1
c = 30.1983 (13) ÅT = 100 K
V = 2978.4 (2) Å3Block, light yellow
Z = 80.52 × 0.48 × 0.34 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4100 independent reflections
Radiation source: fine-focus sealed tube3459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 29.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 76
Tmin = 0.154, Tmax = 0.241k = 2322
16656 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0496P)2 + 11.6475P]
where P = (Fo2 + 2Fc2)/3
4100 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 1.58 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C15H10Br2Cl2OV = 2978.4 (2) Å3
Mr = 436.95Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 5.7599 (3) ŵ = 5.79 mm1
b = 17.1233 (8) ÅT = 100 K
c = 30.1983 (13) Å0.52 × 0.48 × 0.34 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4100 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3459 reflections with I > 2σ(I)
Tmin = 0.154, Tmax = 0.241Rint = 0.039
16656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0496P)2 + 11.6475P]
where P = (Fo2 + 2Fc2)/3
4100 reflectionsΔρmax = 1.58 e Å3
181 parametersΔρmin = 0.62 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.01792 (9)0.49293 (3)0.070047 (16)0.03500 (14)
Br20.29597 (8)0.43618 (3)0.207223 (14)0.02966 (13)
Cl10.0272 (2)0.08541 (7)0.01691 (4)0.0361 (3)
Cl20.3932 (2)0.76965 (7)0.21154 (4)0.0309 (2)
O10.4810 (6)0.3947 (2)0.10860 (12)0.0343 (8)
C10.0300 (8)0.2749 (3)0.09337 (15)0.0274 (9)
H1A0.13340.30060.11200.033*
C20.0933 (8)0.2049 (3)0.07360 (15)0.0279 (9)
H2A0.23620.18210.07980.034*
C30.0597 (8)0.1696 (3)0.04456 (15)0.0281 (9)
C40.2787 (8)0.2004 (3)0.03566 (15)0.0277 (9)
H4A0.37940.17560.01610.033*
C50.3415 (8)0.2684 (3)0.05661 (14)0.0267 (9)
H5A0.48850.28910.05170.032*
C60.1892 (8)0.3070 (3)0.08517 (14)0.0248 (8)
C70.2737 (8)0.3804 (3)0.10644 (15)0.0275 (9)
C80.0953 (8)0.4392 (3)0.12362 (15)0.0283 (9)
H8A0.03270.41200.13840.034*
C90.2020 (8)0.4987 (3)0.15432 (15)0.0298 (9)
H9A0.34220.51970.14030.036*
C100.0499 (8)0.5659 (3)0.16830 (15)0.0292 (9)
C110.1231 (8)0.6422 (3)0.16112 (15)0.0292 (9)
H11A0.26440.65130.14710.035*
C120.0117 (8)0.7051 (3)0.17457 (15)0.0287 (9)
H12A0.03930.75590.16980.034*
C130.2224 (8)0.6915 (3)0.19510 (14)0.0270 (9)
C140.2990 (8)0.6163 (3)0.20252 (15)0.0297 (9)
H14A0.44060.60770.21650.036*
C150.1632 (8)0.5529 (3)0.18901 (16)0.0299 (9)
H15A0.21480.50210.19380.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0440 (3)0.0307 (2)0.0303 (2)0.0071 (2)0.0066 (2)0.00027 (18)
Br20.0316 (2)0.0294 (2)0.0280 (2)0.00218 (17)0.00372 (17)0.00071 (17)
Cl10.0440 (6)0.0255 (5)0.0389 (6)0.0021 (5)0.0046 (5)0.0068 (4)
Cl20.0337 (6)0.0292 (5)0.0298 (5)0.0063 (4)0.0013 (4)0.0044 (4)
O10.0270 (16)0.0321 (18)0.0438 (19)0.0008 (13)0.0030 (14)0.0076 (14)
C10.026 (2)0.029 (2)0.028 (2)0.0040 (17)0.0015 (17)0.0029 (16)
C20.026 (2)0.027 (2)0.030 (2)0.0007 (17)0.0002 (18)0.0005 (17)
C30.036 (2)0.023 (2)0.025 (2)0.0025 (18)0.0001 (18)0.0002 (16)
C40.033 (2)0.024 (2)0.027 (2)0.0034 (18)0.0016 (18)0.0005 (16)
C50.026 (2)0.029 (2)0.0254 (19)0.0017 (17)0.0035 (17)0.0029 (16)
C60.025 (2)0.026 (2)0.0229 (18)0.0006 (16)0.0006 (16)0.0011 (16)
C70.031 (2)0.024 (2)0.027 (2)0.0023 (17)0.0016 (18)0.0017 (16)
C80.030 (2)0.022 (2)0.032 (2)0.0006 (17)0.0004 (18)0.0007 (17)
C90.028 (2)0.031 (2)0.031 (2)0.0003 (18)0.0003 (18)0.0021 (18)
C100.029 (2)0.028 (2)0.030 (2)0.0005 (18)0.0007 (18)0.0037 (17)
C110.026 (2)0.030 (2)0.031 (2)0.0004 (18)0.0027 (18)0.0051 (18)
C120.033 (2)0.024 (2)0.029 (2)0.0001 (18)0.0002 (19)0.0018 (17)
C130.032 (2)0.023 (2)0.0254 (19)0.0044 (17)0.0053 (18)0.0014 (16)
C140.026 (2)0.032 (2)0.032 (2)0.0006 (18)0.0003 (18)0.0002 (18)
C150.031 (2)0.022 (2)0.037 (2)0.0021 (17)0.0011 (19)0.0038 (17)
Geometric parameters (Å, º) top
Br1—C81.972 (5)C7—C81.529 (6)
Br2—C91.997 (5)C8—C91.508 (6)
Cl1—C31.740 (5)C8—H8A0.9800
Cl2—C131.733 (5)C9—C101.507 (6)
O1—C71.221 (6)C9—H9A0.9800
C1—C21.389 (6)C10—C111.390 (7)
C1—C61.399 (6)C10—C151.395 (7)
C1—H1A0.9300C11—C121.389 (6)
C2—C31.382 (6)C11—H11A0.9300
C2—H2A0.9300C12—C131.382 (7)
C3—C41.393 (7)C12—H12A0.9300
C4—C51.374 (6)C13—C141.380 (6)
C4—H4A0.9300C14—C151.399 (6)
C5—C61.397 (6)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—C71.493 (6)
C2—C1—C6120.0 (4)Br1—C8—H8A110.3
C2—C1—H1A120.0C10—C9—C8116.8 (4)
C6—C1—H1A120.0C10—C9—Br2110.0 (3)
C3—C2—C1118.9 (4)C8—C9—Br2103.9 (3)
C3—C2—H2A120.6C10—C9—H9A108.6
C1—C2—H2A120.6C8—C9—H9A108.6
C2—C3—C4122.3 (4)Br2—C9—H9A108.6
C2—C3—Cl1118.9 (4)C11—C10—C15119.1 (4)
C4—C3—Cl1118.8 (3)C11—C10—C9119.9 (4)
C5—C4—C3118.1 (4)C15—C10—C9121.0 (4)
C5—C4—H4A121.0C12—C11—C10120.9 (4)
C3—C4—H4A121.0C12—C11—H11A119.6
C4—C5—C6121.3 (4)C10—C11—H11A119.6
C4—C5—H5A119.3C13—C12—C11119.5 (4)
C6—C5—H5A119.3C13—C12—H12A120.3
C5—C6—C1119.4 (4)C11—C12—H12A120.3
C5—C6—C7117.3 (4)C14—C13—C12120.7 (4)
C1—C6—C7123.2 (4)C14—C13—Cl2119.5 (4)
O1—C7—C6120.7 (4)C12—C13—Cl2119.8 (4)
O1—C7—C8120.5 (4)C13—C14—C15119.9 (4)
C6—C7—C8118.8 (4)C13—C14—H14A120.1
C9—C8—C7112.3 (4)C15—C14—H14A120.1
C9—C8—Br1108.9 (3)C10—C15—C14119.9 (4)
C7—C8—Br1104.5 (3)C10—C15—H15A120.0
C9—C8—H8A110.3C14—C15—H15A120.0
C7—C8—H8A110.3
C6—C1—C2—C32.6 (7)C7—C8—C9—C10171.9 (4)
C1—C2—C3—C42.4 (7)Br1—C8—C9—C1056.6 (5)
C1—C2—C3—Cl1175.7 (3)C7—C8—C9—Br266.8 (4)
C2—C3—C4—C50.3 (7)Br1—C8—C9—Br2178.0 (2)
Cl1—C3—C4—C5177.8 (3)C8—C9—C10—C11124.5 (5)
C3—C4—C5—C61.6 (7)Br2—C9—C10—C11117.4 (4)
C4—C5—C6—C11.4 (7)C8—C9—C10—C1556.4 (6)
C4—C5—C6—C7179.9 (4)Br2—C9—C10—C1561.7 (5)
C2—C1—C6—C50.8 (7)C15—C10—C11—C120.5 (7)
C2—C1—C6—C7177.6 (4)C9—C10—C11—C12178.6 (4)
C5—C6—C7—O119.2 (6)C10—C11—C12—C130.5 (7)
C1—C6—C7—O1159.2 (5)C11—C12—C13—C140.4 (7)
C5—C6—C7—C8158.0 (4)C11—C12—C13—Cl2179.4 (4)
C1—C6—C7—C823.5 (6)C12—C13—C14—C150.3 (7)
O1—C7—C8—C917.8 (6)Cl2—C13—C14—C15179.5 (4)
C6—C7—C8—C9164.9 (4)C11—C10—C15—C140.5 (7)
O1—C7—C8—Br1100.1 (5)C9—C10—C15—C14178.6 (4)
C6—C7—C8—Br177.2 (4)C13—C14—C15—C100.4 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cg1i0.932.963.638 (5)131
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H10Br2Cl2O
Mr436.95
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)5.7599 (3), 17.1233 (8), 30.1983 (13)
V3)2978.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)5.79
Crystal size (mm)0.52 × 0.48 × 0.34
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.154, 0.241
No. of measured, independent and
observed [I > 2σ(I)] reflections
16656, 4100, 3459
Rint0.039
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.130, 1.12
No. of reflections4100
No. of parameters181
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0496P)2 + 11.6475P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.58, 0.62

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cg1i0.932.963.638 (5)131
Symmetry code: (i) x, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors wish to express their thanks to Universiti Sains Malysia (USM) for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFun, H.-K., Quah, C. K., Shetty, S. & Kalluraya, B. (2010). Acta Cryst. E66, o3128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds