organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-4-(2-phenyl­ethen­yl)chroman-2-one

aDepartment of Chemistry, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon 443-760, Republic of Korea
*Correspondence e-mail: sgkim123@kgu.ac.kr

(Received 2 November 2010; accepted 3 November 2010; online 6 November 2010)

The title compound, C17H13ClO2, was obtained from the oxidation of 6-chloro-4-(2-phenyl­ethen­yl)chroman-2-ol, which was synthesized by the reaction of of (E)-3-(5-chloro-2-hy­droxy­phen­yl)acryl­aldehyde with styrylboronic acid using diethyl­amine as a catalyst. The six-membered pyran­one ring of the chromane system has a screw-boat conformation. The dihedral angle between the least-squares planes of the chromane ring system and the styryl group is 85.28 (9)°.

Related literature

For the synthesis of the title compound, see: Choi & Kim (2010[Choi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett. 51, 5203-5206.]). For the biological activity of chromenes, see: Ellis & Lockhart (2007[Ellis, G. P. & Lockhart, I. M. (2007). The Chemistry of Heterocyclic Compounds, Chromenes, Chromanones, and Chromones, Vol. 31, edited by G. P. Ellis, pp. 1-119. New York: Wiley-VCH.]); Green et al. (1996)[Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry II: Pyrans and their Benzo Derivatives: Applications, Vol. 5, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 469-500. Oxford: Pergamon Press.]; Horton et al. (2003[Horton, D. A., Boume, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13ClO2

  • Mr = 284.72

  • Monoclinic, P 21 /c

  • a = 15.6682 (3) Å

  • b = 6.2800 (1) Å

  • c = 14.9383 (3) Å

  • β = 115.129 (1)°

  • V = 1330.76 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.28 × 0.13 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.986

  • 12258 measured reflections

  • 3325 independent reflections

  • 2839 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.06

  • 3325 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chromanes (dihydrobenzopyranes) are ubiquitously found in numerous biologically active natural products. Molecules containing chromane scaffolds exhibit a broad range of bioactivities, such as antiviral, antitumor, antimicrobial, sex pheromone, and those of the central nervous system activity (Ellis & Lockhart, 2007; Green et al., 1996; Horton et al. 2003). We report herein the crystal structure of the title compound, which belongs to this class of compounds.

In the title compound, the six-membered pyranone ring of the chromane system has a screw-boat conformation. The dihedral angle between the least-squares planes of the chromane ring system and the styryl group is 85.28 (9)°.

Related literature top

For the synthesis of the title compound, see: Choi & Kim (2010). For the biological activity of chromenes, see: Ellis & Lockhart (2007); Green et al. (1996); Horton et al. (2003).

Experimental top

To a solution of triethylamine (0.10 mmol) in CH2Cl2 (1.5 ml) was added styrylboronic acid (0.60 mmol) at room temperature. The solution was stirred for 5 min before addition of (E)-3-(5-chloro-2-hydroxyphenyl)acrylaldehyde (0.50 mmol). After stirring for 3 h, the resulting mixture was direct purified by silica gel chromatography to afford 6-chloro-3,4-dihydro-4-styryl-2H-chromen-2-ol. Oxidation of 6-chloro-3,4-dihydro-4-styryl-2H-chromen-2-ol (0.40 mmol) was performed in CH2Cl2 (2.0 ml) by adding of pyridinium chlorochromate (0.40 mmol) at room temperature. After 3 h, additional pyridinium chlorochromate (0.40 mmol) was added and after 6 h purification by silica gel chromatography was afforded the title compound (Fig. 2). Crystals suitable for X-ray analysis were obtained by slow evaporation from an n-hexane/CH2Cl2 solution.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

Chromanes (dihydrobenzopyranes) are ubiquitously found in numerous biologically active natural products. Molecules containing chromane scaffolds exhibit a broad range of bioactivities, such as antiviral, antitumor, antimicrobial, sex pheromone, and those of the central nervous system activity (Ellis & Lockhart, 2007; Green et al., 1996; Horton et al. 2003). We report herein the crystal structure of the title compound, which belongs to this class of compounds.

In the title compound, the six-membered pyranone ring of the chromane system has a screw-boat conformation. The dihedral angle between the least-squares planes of the chromane ring system and the styryl group is 85.28 (9)°.

For the synthesis of the title compound, see: Choi & Kim (2010). For the biological activity of chromenes, see: Ellis & Lockhart (2007); Green et al. (1996); Horton et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The preparation scheme of the title compound.
6-Chloro-4-(2-phenylethenyl)chroman-2-one top
Crystal data top
C17H13ClO2F(000) = 592
Mr = 284.72Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5561 reflections
a = 15.6682 (3) Åθ = 3.6–28.3°
b = 6.2800 (1) ŵ = 0.29 mm1
c = 14.9383 (3) ÅT = 100 K
β = 115.129 (1)°Block, silver
V = 1330.76 (4) Å30.28 × 0.13 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3325 independent reflections
Radiation source: fine-focus sealed tube2839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1820
Tmin = 0.925, Tmax = 0.986k = 88
12258 measured reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.755P]
where P = (Fo2 + 2Fc2)/3
3325 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H13ClO2V = 1330.76 (4) Å3
Mr = 284.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6682 (3) ŵ = 0.29 mm1
b = 6.2800 (1) ÅT = 100 K
c = 14.9383 (3) Å0.28 × 0.13 × 0.05 mm
β = 115.129 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2839 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.986Rint = 0.021
12258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
3325 reflectionsΔρmin = 0.25 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64583 (2)0.83763 (5)0.61691 (2)0.02134 (9)
O10.35931 (6)0.24736 (14)0.62698 (7)0.0185 (2)
O20.21611 (7)0.17409 (16)0.60995 (8)0.0267 (2)
C10.39949 (9)0.6045 (2)0.59464 (9)0.0149 (2)
C20.42529 (9)0.3975 (2)0.62766 (9)0.0156 (2)
C30.51713 (9)0.3250 (2)0.65950 (9)0.0176 (3)
H3A0.53250.18640.68270.021*
C40.58581 (9)0.4603 (2)0.65657 (9)0.0186 (3)
H4A0.64770.41410.67770.022*
C50.56024 (9)0.6657 (2)0.62152 (9)0.0166 (3)
C60.46877 (9)0.7392 (2)0.59102 (9)0.0161 (2)
H6A0.45360.87810.56820.019*
C70.27232 (9)0.3112 (2)0.61886 (10)0.0186 (3)
C80.25822 (9)0.5461 (2)0.62445 (10)0.0181 (3)
H8A0.28810.59070.69310.022*
H8B0.19130.57530.59980.022*
C90.29900 (9)0.6771 (2)0.56459 (9)0.0158 (2)
H9A0.29980.82750.58240.019*
C100.24087 (9)0.6545 (2)0.45496 (9)0.0163 (2)
H10A0.23620.52080.42650.020*
C110.19575 (9)0.8170 (2)0.39674 (10)0.0170 (3)
H11A0.20350.94960.42690.020*
C120.13500 (9)0.8094 (2)0.28984 (9)0.0158 (2)
C130.07977 (9)0.9877 (2)0.24476 (10)0.0189 (3)
H13A0.08561.11060.28160.023*
C140.01637 (9)0.9834 (2)0.14573 (10)0.0213 (3)
H14A0.02001.10290.11690.026*
C150.00700 (9)0.8019 (2)0.08960 (10)0.0209 (3)
H15A0.03670.79760.02380.025*
C160.06374 (9)0.6256 (2)0.13271 (10)0.0202 (3)
H16A0.05910.50480.09490.024*
C170.12697 (9)0.6293 (2)0.23151 (10)0.0184 (3)
H17A0.16450.51090.25940.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01884 (16)0.02132 (17)0.02491 (18)0.00529 (12)0.01029 (13)0.00125 (13)
O10.0182 (4)0.0133 (4)0.0248 (5)0.0015 (4)0.0099 (4)0.0013 (4)
O20.0231 (5)0.0219 (5)0.0368 (6)0.0055 (4)0.0142 (5)0.0006 (4)
C10.0160 (6)0.0155 (6)0.0117 (6)0.0004 (5)0.0044 (5)0.0005 (5)
C20.0172 (6)0.0153 (6)0.0138 (6)0.0027 (5)0.0062 (5)0.0011 (5)
C30.0196 (6)0.0145 (6)0.0169 (6)0.0023 (5)0.0061 (5)0.0020 (5)
C40.0156 (6)0.0203 (6)0.0180 (6)0.0011 (5)0.0053 (5)0.0005 (5)
C50.0173 (6)0.0174 (6)0.0156 (6)0.0044 (5)0.0073 (5)0.0019 (5)
C60.0198 (6)0.0136 (6)0.0138 (6)0.0009 (5)0.0060 (5)0.0000 (5)
C70.0188 (6)0.0209 (7)0.0168 (6)0.0015 (5)0.0081 (5)0.0003 (5)
C80.0177 (6)0.0191 (6)0.0187 (6)0.0002 (5)0.0087 (5)0.0008 (5)
C90.0160 (6)0.0134 (6)0.0169 (6)0.0003 (5)0.0059 (5)0.0006 (5)
C100.0154 (6)0.0153 (6)0.0176 (6)0.0010 (5)0.0064 (5)0.0020 (5)
C110.0160 (6)0.0166 (6)0.0195 (6)0.0009 (5)0.0087 (5)0.0008 (5)
C120.0137 (5)0.0173 (6)0.0173 (6)0.0005 (5)0.0076 (5)0.0027 (5)
C130.0211 (6)0.0175 (6)0.0214 (7)0.0022 (5)0.0123 (5)0.0013 (5)
C140.0206 (6)0.0235 (7)0.0218 (7)0.0074 (5)0.0110 (5)0.0069 (5)
C150.0170 (6)0.0297 (7)0.0158 (6)0.0015 (5)0.0067 (5)0.0029 (5)
C160.0200 (6)0.0216 (7)0.0201 (7)0.0018 (5)0.0096 (5)0.0031 (5)
C170.0176 (6)0.0167 (6)0.0217 (7)0.0031 (5)0.0092 (5)0.0030 (5)
Geometric parameters (Å, º) top
Cl1—C51.7456 (13)C9—C101.5049 (17)
O1—C71.3758 (15)C9—H9A0.9800
O1—C21.3962 (15)C10—C111.3322 (18)
O2—C71.1981 (16)C10—H10A0.9300
C1—C21.3880 (18)C11—C121.4722 (18)
C1—C61.3953 (17)C11—H11A0.9300
C1—C91.5127 (17)C12—C131.4002 (18)
C2—C31.3867 (18)C12—C171.4004 (18)
C3—C41.3863 (18)C13—C141.3884 (19)
C3—H3A0.9300C13—H13A0.9300
C4—C51.3861 (19)C14—C151.385 (2)
C4—H4A0.9300C14—H14A0.9300
C5—C61.3856 (18)C15—C161.3945 (19)
C6—H6A0.9300C15—H15A0.9300
C7—C81.4990 (19)C16—C171.3851 (19)
C8—C91.5394 (17)C16—H16A0.9300
C8—H8A0.9700C17—H17A0.9300
C8—H8B0.9700
C7—O1—C2120.43 (10)C10—C9—C8111.91 (10)
C2—C1—C6117.87 (11)C1—C9—C8107.64 (10)
C2—C1—C9119.80 (11)C10—C9—H9A108.6
C6—C1—C9122.32 (11)C1—C9—H9A108.6
C3—C2—C1122.19 (12)C8—C9—H9A108.6
C3—C2—O1115.96 (11)C11—C10—C9123.12 (12)
C1—C2—O1121.80 (11)C11—C10—H10A118.4
C4—C3—C2119.62 (12)C9—C10—H10A118.4
C4—C3—H3A120.2C10—C11—C12127.08 (12)
C2—C3—H3A120.2C10—C11—H11A116.5
C5—C4—C3118.59 (12)C12—C11—H11A116.5
C5—C4—H4A120.7C13—C12—C17118.20 (12)
C3—C4—H4A120.7C13—C12—C11118.61 (12)
C6—C5—C4121.80 (12)C17—C12—C11123.15 (12)
C6—C5—Cl1119.05 (10)C14—C13—C12120.90 (12)
C4—C5—Cl1119.14 (10)C14—C13—H13A119.6
C5—C6—C1119.89 (12)C12—C13—H13A119.6
C5—C6—H6A120.1C15—C14—C13120.31 (13)
C1—C6—H6A120.1C15—C14—H14A119.8
O2—C7—O1117.02 (12)C13—C14—H14A119.8
O2—C7—C8126.49 (12)C14—C15—C16119.39 (13)
O1—C7—C8116.47 (11)C14—C15—H15A120.3
C7—C8—C9112.71 (10)C16—C15—H15A120.3
C7—C8—H8A109.0C17—C16—C15120.39 (12)
C9—C8—H8A109.0C17—C16—H16A119.8
C7—C8—H8B109.0C15—C16—H16A119.8
C9—C8—H8B109.0C16—C17—C12120.75 (12)
H8A—C8—H8B107.8C16—C17—H17A119.6
C10—C9—C1111.54 (10)C12—C17—H17A119.6
C6—C1—C2—C32.07 (19)C2—C1—C9—C1094.72 (14)
C9—C1—C2—C3177.61 (12)C6—C1—C9—C1085.61 (14)
C6—C1—C2—O1175.28 (11)C2—C1—C9—C828.41 (15)
C9—C1—C2—O15.04 (18)C6—C1—C9—C8151.26 (12)
C7—O1—C2—C3165.08 (11)C7—C8—C9—C1072.17 (14)
C7—O1—C2—C117.41 (17)C7—C8—C9—C150.73 (14)
C1—C2—C3—C41.5 (2)C1—C9—C10—C11122.70 (13)
O1—C2—C3—C4175.98 (11)C8—C9—C10—C11116.65 (13)
C2—C3—C4—C50.02 (19)C9—C10—C11—C12177.86 (11)
C3—C4—C5—C60.96 (19)C10—C11—C12—C13168.28 (12)
C3—C4—C5—Cl1179.75 (10)C10—C11—C12—C179.2 (2)
C4—C5—C6—C10.38 (19)C17—C12—C13—C142.21 (18)
Cl1—C5—C6—C1179.67 (9)C11—C12—C13—C14175.41 (11)
C2—C1—C6—C51.11 (18)C12—C13—C14—C150.25 (19)
C9—C1—C6—C5178.56 (11)C13—C14—C15—C161.82 (19)
C2—O1—C7—O2173.59 (12)C14—C15—C16—C171.90 (19)
C2—O1—C7—C87.79 (17)C15—C16—C17—C120.10 (19)
O2—C7—C8—C9138.65 (14)C13—C12—C17—C162.13 (18)
O1—C7—C8—C942.87 (16)C11—C12—C17—C16175.38 (12)

Experimental details

Crystal data
Chemical formulaC17H13ClO2
Mr284.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.6682 (3), 6.2800 (1), 14.9383 (3)
β (°) 115.129 (1)
V3)1330.76 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.13 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.925, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
12258, 3325, 2839
Rint0.021
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.06
No. of reflections3325
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0004139).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, K.-S. & Kim, S.-G. (2010). Tetrahedron Lett. 51, 5203–5206.  Web of Science CrossRef CAS Google Scholar
First citationEllis, G. P. & Lockhart, I. M. (2007). The Chemistry of Heterocyclic Compounds, Chromenes, Chromanones, and Chromones, Vol. 31, edited by G. P. Ellis, pp. 1–119. New York: Wiley–VCH.  Google Scholar
First citationGeen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry II: Pyrans and their Benzo Derivatives: Applications, Vol. 5, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 469–500. Oxford: Pergamon Press.  Google Scholar
First citationHorton, D. A., Boume, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds