organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-[(4-Eth­­oxy­phen­yl)(hy­dr­oxy)methyl­­idene]-1-iso­propyl­pyrrolidine-2,4-dione

aCollege of Chemistry, Tianjin Normal University, 393 Binshuixi Road, Xiqing District, Tianjin 300387, People's Republic of China, and bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: hxxyxhz@126.com

(Received 8 November 2010; accepted 10 November 2010; online 17 November 2010)

In the title compound, C16H19NO4, a potent new herbicide, the dihedral angle between the benzene and pyrrolidine rings is 11.09 (8)°. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds are observed.

Related literature

For the anti­biotic activity of 3-acyl­pyrrolidine-2,4-dione compounds, see: van der Baan et al. (1978[Baan, J. L. van der, Barnick, J. W. F. K. & Bickelhaupt, F. (1978). Tetrahedron, 34, 223-231.]); Holzapfel et al. (1970[Holzapfel, C. W., Hutchison, R. D. & Wilkins, D. C. (1970). Tetrahedron, 26, 5239-5246.]); Mackellar et al. (1971[Mackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J., Branfman, A. R. & Rinehart, K. L. Jr (1971). J. Am. Chem. Soc. 93, 4943-4945.]); Rinehart et al. (1963[Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. & Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038-4039.]); Sticking (1959[Sticking, C. E. (1959). Biochem. J. 72, 332-334.]); Wu et al. (2002[Wu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222-2228.]). For a related structure, see: Ellis & Spek (2001[Ellis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433-434.]). For the synthesis, see: Matsuo et al. (1980[Matsuo, K., Kitaguchi, I., Takata, Y. & Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494-2502.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO4

  • Mr = 289.32

  • Monoclinic, P 21

  • a = 11.3390 (15) Å

  • b = 5.3830 (8) Å

  • c = 12.0490 (18) Å

  • β = 91.581 (7)°

  • V = 735.16 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.42 × 0.26 × 0.10 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.962, Tmax = 0.991

  • 9386 measured reflections

  • 1933 independent reflections

  • 1668 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.03

  • 1933 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.84 1.68 2.4701 (16) 155
C11—H11⋯O3 0.95 2.08 2.945 (2) 150

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity. Some of them are tenuazonic (Sticking, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Mackellar et al., 1971), malonomycin (Baan et al., 1978), alpha-cyclopiazonic acid (Sticking, 1959) and bata-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid moiety as a tricarbonylmethane structure and their hydrogen chemical shift of the enol hydroxy is about 11 p.p.m. (Wu et al., 2002). On the other hand, most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their bioactivity. Up to now, we have synthesized a series of 3-(un)substituted aroyl-1-benzylpyrrolidine-2,4-dione compounds and some of them have high herbicidal activity. The structure of the title compound, (I), helps us to investigate the relationship between structure and herbicidal activity.

The molecular structure of (I) is shown in Fig. 1. Atom H1A, involved in intramolecular hydrogen bonding between O1 and O3, was assigned to O1 rather than to O2, based on bond lengths. The C3—O2 distance is 1.267 (2) Å, which is longer than the C5—O3 distance of 1.222 (2) Å. In contrast, the C1—O1 distance [1.324 (2) Å] is intermediate between the normal carbonyl bond and the C—O single bond length (Allen et al. 1987). A similar situation has been found in 3-(1-hydroxyethylidene)-1- phenylpyrrolidine-2,4-dione, which contains the same pyrrolidine skeleton (Ellis & Spek, 2001).

Related literature top

For the antibiotic activity of 3-acylpyrrolidine-2,4-dione compounds, see: van der Baan et al. (1978); Holzapfel et al. (1970); Mackellar et al. (1971); Rinehart et al. (1963); Sticking (1959); Wu et al. (2002). For a related structure, see: Ellis & Spek (2001). For the synthesis, see: Matsuo et al. (1980). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained according to the reported procedure of Matsuo et al. (1980). Colourless single crystals were obtained by recrystallization of the title compound from petroleum ether and ethyl acetate.

Refinement top

H atoms were placed in calculated positions, with C—H = 0.95–1.00 Å and O—H = 0.84 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). Friedel pairs were merged before the final refinement.

Structure description top

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity. Some of them are tenuazonic (Sticking, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Mackellar et al., 1971), malonomycin (Baan et al., 1978), alpha-cyclopiazonic acid (Sticking, 1959) and bata-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid moiety as a tricarbonylmethane structure and their hydrogen chemical shift of the enol hydroxy is about 11 p.p.m. (Wu et al., 2002). On the other hand, most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their bioactivity. Up to now, we have synthesized a series of 3-(un)substituted aroyl-1-benzylpyrrolidine-2,4-dione compounds and some of them have high herbicidal activity. The structure of the title compound, (I), helps us to investigate the relationship between structure and herbicidal activity.

The molecular structure of (I) is shown in Fig. 1. Atom H1A, involved in intramolecular hydrogen bonding between O1 and O3, was assigned to O1 rather than to O2, based on bond lengths. The C3—O2 distance is 1.267 (2) Å, which is longer than the C5—O3 distance of 1.222 (2) Å. In contrast, the C1—O1 distance [1.324 (2) Å] is intermediate between the normal carbonyl bond and the C—O single bond length (Allen et al. 1987). A similar situation has been found in 3-(1-hydroxyethylidene)-1- phenylpyrrolidine-2,4-dione, which contains the same pyrrolidine skeleton (Ellis & Spek, 2001).

For the antibiotic activity of 3-acylpyrrolidine-2,4-dione compounds, see: van der Baan et al. (1978); Holzapfel et al. (1970); Mackellar et al. (1971); Rinehart et al. (1963); Sticking (1959); Wu et al. (2002). For a related structure, see: Ellis & Spek (2001). For the synthesis, see: Matsuo et al. (1980). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(Z)-3-[(4-Ethoxyphenyl)(hydroxy)methylidene]-1-isopropylpyrrolidine-2,4- dione top
Crystal data top
C16H19NO4F(000) = 308
Mr = 289.32Dx = 1.307 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 2865 reflections
a = 11.3390 (15) Åθ = 1.8–27.9°
b = 5.3830 (8) ŵ = 0.09 mm1
c = 12.0490 (18) ÅT = 113 K
β = 91.581 (7)°Prism, colorless
V = 735.16 (18) Å30.42 × 0.26 × 0.10 mm
Z = 2
Data collection top
Rigaku Saturn724 CCD
diffractometer
1933 independent reflections
Radiation source: rotating anode1668 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.040
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 77
Tmin = 0.962, Tmax = 0.991l = 1515
9386 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
1933 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C16H19NO4V = 735.16 (18) Å3
Mr = 289.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.3390 (15) ŵ = 0.09 mm1
b = 5.3830 (8) ÅT = 113 K
c = 12.0490 (18) Å0.42 × 0.26 × 0.10 mm
β = 91.581 (7)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
1933 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
1668 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.991Rint = 0.040
9386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.079H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
1933 reflectionsΔρmin = 0.14 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70417 (9)0.6075 (2)0.35972 (9)0.0257 (3)
H1A0.74350.60200.30170.039*
O20.84775 (9)0.4899 (2)0.21845 (9)0.0251 (3)
O30.89526 (9)0.0316 (2)0.53336 (9)0.0251 (3)
O40.48151 (10)0.4135 (3)0.82015 (9)0.0299 (3)
N10.96813 (11)0.1603 (3)0.26539 (10)0.0203 (3)
C10.74116 (13)0.4313 (3)0.42897 (13)0.0193 (3)
C20.83157 (13)0.2766 (3)0.39424 (13)0.0186 (3)
C30.88176 (13)0.3211 (3)0.28521 (13)0.0192 (3)
C40.99039 (13)0.0049 (3)0.35867 (12)0.0204 (3)
H4A1.07170.01650.38920.024*
H4B0.97910.18050.33640.024*
C50.89965 (13)0.0726 (3)0.44344 (13)0.0192 (4)
C60.67596 (12)0.4261 (3)0.53246 (13)0.0188 (3)
C70.59784 (13)0.6206 (3)0.55394 (13)0.0220 (4)
H70.59040.75370.50240.026*
C80.53130 (13)0.6236 (3)0.64833 (13)0.0233 (4)
H80.47860.75700.66120.028*
C90.54203 (13)0.4304 (4)0.72421 (13)0.0227 (4)
C100.61937 (14)0.2358 (3)0.70400 (14)0.0248 (4)
H100.62660.10290.75560.030*
C110.68552 (14)0.2340 (3)0.60987 (14)0.0236 (4)
H110.73830.10040.59750.028*
C120.39293 (16)0.5968 (4)0.83947 (16)0.0361 (5)
H12A0.33440.60010.77690.043*
H12B0.42920.76350.84660.043*
C130.3340 (2)0.5264 (5)0.94565 (16)0.0554 (7)
H13A0.29920.36050.93770.067*
H13B0.27190.64720.96120.067*
H13C0.39260.52581.00700.067*
C141.04354 (13)0.1741 (3)0.16876 (13)0.0222 (4)
H141.00840.29900.11600.027*
C151.16687 (15)0.2627 (5)0.20292 (15)0.0356 (5)
H15A1.16140.42200.24180.043*
H15B1.21410.28340.13660.043*
H15C1.20450.13970.25230.043*
C161.0475 (2)0.0729 (5)0.10959 (16)0.0481 (6)
H16A1.08950.19420.15670.058*
H16B1.08880.05360.03970.058*
H16C0.96690.13130.09390.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (6)0.0265 (7)0.0247 (6)0.0059 (5)0.0053 (5)0.0076 (6)
O20.0245 (6)0.0277 (7)0.0231 (6)0.0011 (5)0.0015 (4)0.0074 (6)
O30.0269 (6)0.0281 (7)0.0206 (6)0.0076 (5)0.0045 (4)0.0060 (6)
O40.0266 (6)0.0393 (8)0.0242 (6)0.0102 (6)0.0078 (5)0.0036 (6)
N10.0208 (6)0.0248 (8)0.0155 (6)0.0013 (6)0.0028 (5)0.0015 (6)
C10.0176 (7)0.0179 (9)0.0223 (8)0.0034 (6)0.0023 (6)0.0004 (7)
C20.0179 (7)0.0206 (9)0.0174 (8)0.0034 (6)0.0008 (6)0.0015 (7)
C30.0180 (7)0.0205 (9)0.0191 (8)0.0042 (7)0.0010 (6)0.0007 (7)
C40.0228 (7)0.0208 (9)0.0176 (7)0.0019 (7)0.0028 (6)0.0019 (7)
C50.0194 (7)0.0186 (9)0.0196 (8)0.0019 (6)0.0002 (6)0.0022 (6)
C60.0154 (7)0.0198 (8)0.0213 (7)0.0010 (7)0.0008 (6)0.0005 (7)
C70.0218 (7)0.0205 (9)0.0235 (8)0.0005 (7)0.0006 (6)0.0019 (8)
C80.0209 (8)0.0234 (9)0.0256 (9)0.0047 (7)0.0008 (6)0.0038 (8)
C90.0170 (7)0.0294 (9)0.0219 (8)0.0005 (7)0.0028 (6)0.0007 (8)
C100.0247 (8)0.0241 (10)0.0258 (9)0.0038 (7)0.0043 (7)0.0048 (8)
C110.0200 (8)0.0233 (9)0.0277 (9)0.0032 (7)0.0044 (7)0.0018 (8)
C120.0312 (9)0.0451 (12)0.0326 (10)0.0143 (9)0.0100 (8)0.0009 (10)
C130.0514 (13)0.0781 (19)0.0381 (12)0.0272 (13)0.0241 (10)0.0097 (13)
C140.0225 (8)0.0282 (10)0.0162 (8)0.0014 (7)0.0039 (6)0.0007 (7)
C150.0266 (9)0.0562 (14)0.0244 (9)0.0101 (9)0.0047 (7)0.0001 (10)
C160.0606 (14)0.0485 (14)0.0366 (11)0.0181 (12)0.0245 (10)0.0199 (11)
Geometric parameters (Å, º) top
O1—C11.324 (2)C8—H80.9500
O1—H1A0.8400C9—C101.392 (2)
O2—C31.2665 (19)C10—C111.377 (2)
O3—C51.2222 (19)C10—H100.9500
O4—C91.3635 (18)C11—H110.9500
O4—C121.432 (2)C12—C131.508 (3)
N1—C31.334 (2)C12—H12A0.9900
N1—C41.450 (2)C12—H12B0.9900
N1—C141.4654 (18)C13—H13A0.9800
C1—C21.394 (2)C13—H13B0.9800
C1—C61.467 (2)C13—H13C0.9800
C2—C51.459 (2)C14—C161.510 (3)
C2—C31.466 (2)C14—C151.523 (2)
C4—C51.528 (2)C14—H141.0000
C4—H4A0.9900C15—H15A0.9800
C4—H4B0.9900C15—H15B0.9800
C6—C111.395 (2)C15—H15C0.9800
C6—C71.400 (2)C16—H16A0.9800
C7—C81.382 (2)C16—H16B0.9800
C7—H70.9500C16—H16C0.9800
C8—C91.388 (2)
C1—O1—H1A109.5C11—C10—H10119.7
C9—O4—C12117.63 (14)C9—C10—H10119.7
C3—N1—C4111.86 (12)C10—C11—C6120.77 (16)
C3—N1—C14123.82 (14)C10—C11—H11119.6
C4—N1—C14123.67 (12)C6—C11—H11119.6
O1—C1—C2117.49 (14)O4—C12—C13107.10 (18)
O1—C1—C6113.02 (13)O4—C12—H12A110.3
C2—C1—C6129.47 (14)C13—C12—H12A110.3
C1—C2—C5135.48 (14)O4—C12—H12B110.3
C1—C2—C3118.59 (14)C13—C12—H12B110.3
C5—C2—C3105.84 (13)H12A—C12—H12B108.5
O2—C3—N1124.35 (14)C12—C13—H13A109.5
O2—C3—C2124.57 (14)C12—C13—H13B109.5
N1—C3—C2111.08 (13)H13A—C13—H13B109.5
N1—C4—C5104.16 (13)C12—C13—H13C109.5
N1—C4—H4A110.9H13A—C13—H13C109.5
C5—C4—H4A110.9H13B—C13—H13C109.5
N1—C4—H4B110.9N1—C14—C16110.85 (14)
C5—C4—H4B110.9N1—C14—C15110.65 (12)
H4A—C4—H4B108.9C16—C14—C15111.34 (16)
O3—C5—C2132.20 (15)N1—C14—H14108.0
O3—C5—C4120.79 (15)C16—C14—H14108.0
C2—C5—C4107.01 (13)C15—C14—H14108.0
C11—C6—C7117.94 (15)C14—C15—H15A109.5
C11—C6—C1123.43 (14)C14—C15—H15B109.5
C7—C6—C1118.61 (14)H15A—C15—H15B109.5
C8—C7—C6121.55 (16)C14—C15—H15C109.5
C8—C7—H7119.2H15A—C15—H15C109.5
C6—C7—H7119.2H15B—C15—H15C109.5
C7—C8—C9119.57 (16)C14—C16—H16A109.5
C7—C8—H8120.2C14—C16—H16B109.5
C9—C8—H8120.2H16A—C16—H16B109.5
O4—C9—C8124.84 (15)C14—C16—H16C109.5
O4—C9—C10115.63 (15)H16A—C16—H16C109.5
C8—C9—C10119.53 (15)H16B—C16—H16C109.5
C11—C10—C9120.63 (16)
O1—C1—C2—C5177.26 (17)C2—C1—C6—C119.0 (2)
C6—C1—C2—C54.6 (3)O1—C1—C6—C79.19 (19)
O1—C1—C2—C31.3 (2)C2—C1—C6—C7172.57 (16)
C6—C1—C2—C3179.52 (15)C11—C6—C7—C80.3 (2)
C4—N1—C3—O2177.77 (14)C1—C6—C7—C8178.19 (14)
C14—N1—C3—O26.7 (2)C6—C7—C8—C90.3 (2)
C4—N1—C3—C22.23 (18)C12—O4—C9—C85.8 (2)
C14—N1—C3—C2173.26 (13)C12—O4—C9—C10174.26 (16)
C1—C2—C3—O21.0 (2)C7—C8—C9—O4179.75 (15)
C5—C2—C3—O2178.00 (14)C7—C8—C9—C100.2 (2)
C1—C2—C3—N1179.02 (14)O4—C9—C10—C11179.68 (14)
C5—C2—C3—N12.00 (17)C8—C9—C10—C110.3 (2)
C3—N1—C4—C51.48 (17)C9—C10—C11—C60.4 (2)
C14—N1—C4—C5172.53 (14)C7—C6—C11—C100.4 (2)
C1—C2—C5—O32.1 (3)C1—C6—C11—C10178.04 (14)
C3—C2—C5—O3178.34 (17)C9—O4—C12—C13176.02 (16)
C1—C2—C5—C4177.28 (17)C3—N1—C14—C16129.11 (18)
C3—C2—C5—C41.00 (16)C4—N1—C14—C1660.9 (2)
N1—C4—C5—O3179.62 (14)C3—N1—C14—C15106.86 (18)
N1—C4—C5—C20.19 (16)C4—N1—C14—C1563.1 (2)
O1—C1—C6—C11169.26 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.682.4701 (16)155
C11—H11···O30.952.082.945 (2)150

Experimental details

Crystal data
Chemical formulaC16H19NO4
Mr289.32
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)11.3390 (15), 5.3830 (8), 12.0490 (18)
β (°) 91.581 (7)
V3)735.16 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.26 × 0.10
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.962, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9386, 1933, 1668
Rint0.040
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.03
No. of reflections1933
No. of parameters193
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.682.4701 (16)155
C11—H11···O30.952.082.945 (2)150
 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 20772066).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBaan, J. L. van der, Barnick, J. W. F. K. & Bickelhaupt, F. (1978). Tetrahedron, 34, 223–231.  CrossRef Web of Science Google Scholar
First citationEllis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433–434.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHolzapfel, C. W., Hutchison, R. D. & Wilkins, D. C. (1970). Tetrahedron, 26, 5239–5246.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J., Branfman, A. R. & Rinehart, K. L. Jr (1971). J. Am. Chem. Soc. 93, 4943–4945.  CAS PubMed Web of Science Google Scholar
First citationMatsuo, K., Kitaguchi, I., Takata, Y. & Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494–2502.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. & Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038–4039.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSticking, C. E. (1959). Biochem. J. 72, 332–334.  PubMed CAS Web of Science Google Scholar
First citationWu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222–2228.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds