organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-{Bis[2-(2-hy­dr­oxy-5-nitro­benzyl­­idene­amino)­eth­yl]amino}­eth­yl)imino­meth­yl]-4-nitro­phenol aceto­nitrile monosolvate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 9 November 2010; accepted 14 November 2010; online 20 November 2010)

In the title compound, C27H27N7O9·CH3CN, the three nitro groups of the polydentate tripodal Schiff base are located approximately parallel to their respective carrier benzene rings, making dihedral angles of 3.9 (4), 5.0 (4) and 6.3 (4)°. Intra­molecular O—H⋯N hydrogen bonds between the hy­droxy O atoms and the imine N atoms, with O⋯N distances in the range 2.607 (3)–2.665 (3) Å, form nearly planar six-membered rings. In the crystal, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds occur and several intra- and inter­molecular ππ inter­actions are present between adjacent benzene rings, with a shortest centroid–centroid distance of 3.507 (2) Å.

Related literature

For the crystal structure of tris­{2-[(5-bromo­salicyl­idene)amino]­eth­yl}amine, see: Kanesato et al. (2001[Kanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001). Anal. Sci. 17, 471-472.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27N7O9·C2H3N

  • Mr = 634.61

  • Triclinic, [P \overline 1]

  • a = 10.6097 (9) Å

  • b = 11.8168 (9) Å

  • c = 12.8003 (10) Å

  • α = 79.054 (2)°

  • β = 68.293 (2)°

  • γ = 88.527 (2)°

  • V = 1462.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.32 × 0.13 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.846, Tmax = 0.988

  • 9227 measured reflections

  • 5688 independent reflections

  • 3102 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.175

  • S = 1.03

  • 5688 reflections

  • 419 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2 0.84 1.87 2.627 (3) 149
O4—H4O⋯N4 0.84 1.92 2.665 (3) 147
O7—H7O⋯N6 0.84 1.85 2.607 (3) 149
C1—H1A⋯N8i 0.99 2.56 3.369 (5) 139
C1—H1B⋯O4ii 0.99 2.41 3.290 (4) 148
C2—H2B⋯O2iii 0.99 2.44 3.300 (4) 146
C3—H3⋯O7 0.95 2.53 3.297 (4) 138
C6—H6⋯N8iv 0.95 2.49 3.360 (5) 153
C9—H9⋯O7 0.95 2.55 3.328 (4) 139
C11—H11A⋯O5v 0.99 2.40 3.331 (4) 157
C12—H12⋯O5v 0.95 2.54 3.339 (4) 142
C16—H16⋯O6vi 0.95 2.51 3.330 (4) 145
C25—H25⋯O9vii 0.95 2.48 3.359 (4) 153
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z; (iii) -x+2, -y, -z+1; (iv) x+1, y-1, z; (v) -x+1, -y, -z+1; (vi) -x+1, -y-1, -z+1; (vii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C27H27N7O9.CH3CN, consists of a polydentate tripodal Schiff base and an acetonitrile solvent molecule (Fig. 1). The Schiff base can act as a tribasic hexa- or heptadentate ligand, that is, the N3O3 or N4O3 donor atoms can coordinate to a metal ion or metal ions. In the crystal structure, the Schiff base reveals an approximate threefold axis, when viewed down the apical amine N atom (N1) through the plane formed by the atoms C1, C10 and C19, and three nitro groups are located approximately parallel to their respective carrier benzene rings. The N—C bond lengths and the C—N—C bond angles indicate that the apical N1 atom is sp3-hybridized [d(N1—C) = 1.470 (4)–1.480 (4) Å; <C—N1—C = 109.5 (2)–111.7 (2)°] and the other imine N atoms (N2, N4, N6) are sp2-hybridized [d(NC) = 1.291 (4)–1.307 (4) Å and d(N—C) = 1.460 (4)–1.469 (4) Å; <C—N—C = 122.7 (3)–123.9 (3)°]. The compound displays strong intramolecular O—H···N hydrogen bonds between the hydroxy O atoms and the imine N atoms with d(O···N) = 2.607 (3)–2.665 (3) Å thus forming a nearly planar six-membered ring (Fig. 2, Table 1). There are also weak intermolecular C—H···O and C—H···N hydrogen bonds with d(C···O) = 3.290 (4)–3.359 (4) Å and d(C···N) = 3.360 (5)–3.369 (5) Å. Moreover, several intra- and intermolecular ππ interactions between the adjacent benzene rings are present, with a shortest ring centroid-centroid distance of 3.507 (2) Å, and the dihedral angle between the ring planes is 5.1 (2)°.

Related literature top

For the crystal structure of tris{2-[(5-bromosalicylidene)amino]ethyl}amine, see: Kanesato et al. (2001).

Experimental top

Tris(2-aminoethyl)amine (0.7305 g, 4.995 mmol) and 5-nitrosalicylaldehyde (2.5077 g, 15.005 mmol) in EtOH (30 ml) were stirred for 3 h at room temperature. The precipitate was then separated by filtration, washed with ether, and dried at 50 °C, to give a yellow powder (2.9135 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3) and O—H = 0.84 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O)].

Structure description top

The title compound, C27H27N7O9.CH3CN, consists of a polydentate tripodal Schiff base and an acetonitrile solvent molecule (Fig. 1). The Schiff base can act as a tribasic hexa- or heptadentate ligand, that is, the N3O3 or N4O3 donor atoms can coordinate to a metal ion or metal ions. In the crystal structure, the Schiff base reveals an approximate threefold axis, when viewed down the apical amine N atom (N1) through the plane formed by the atoms C1, C10 and C19, and three nitro groups are located approximately parallel to their respective carrier benzene rings. The N—C bond lengths and the C—N—C bond angles indicate that the apical N1 atom is sp3-hybridized [d(N1—C) = 1.470 (4)–1.480 (4) Å; <C—N1—C = 109.5 (2)–111.7 (2)°] and the other imine N atoms (N2, N4, N6) are sp2-hybridized [d(NC) = 1.291 (4)–1.307 (4) Å and d(N—C) = 1.460 (4)–1.469 (4) Å; <C—N—C = 122.7 (3)–123.9 (3)°]. The compound displays strong intramolecular O—H···N hydrogen bonds between the hydroxy O atoms and the imine N atoms with d(O···N) = 2.607 (3)–2.665 (3) Å thus forming a nearly planar six-membered ring (Fig. 2, Table 1). There are also weak intermolecular C—H···O and C—H···N hydrogen bonds with d(C···O) = 3.290 (4)–3.359 (4) Å and d(C···N) = 3.360 (5)–3.369 (5) Å. Moreover, several intra- and intermolecular ππ interactions between the adjacent benzene rings are present, with a shortest ring centroid-centroid distance of 3.507 (2) Å, and the dihedral angle between the ring planes is 5.1 (2)°.

For the crystal structure of tris{2-[(5-bromosalicylidene)amino]ethyl}amine, see: Kanesato et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
2-[(2-{Bis[2-(2-hydroxy-5- nitrobenzylideneamino)ethyl]amino}ethyl)iminomethyl]-4-nitrophenol acetonitrile monosolvate top
Crystal data top
C27H27N7O9·C2H3NZ = 2
Mr = 634.61F(000) = 664
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6097 (9) ÅCell parameters from 2046 reflections
b = 11.8168 (9) Åθ = 2.2–25.2°
c = 12.8003 (10) ŵ = 0.11 mm1
α = 79.054 (2)°T = 200 K
β = 68.293 (2)°Block, yellow
γ = 88.527 (2)°0.32 × 0.13 × 0.11 mm
V = 1462.1 (2) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
5688 independent reflections
Radiation source: fine-focus sealed tube3102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.846, Tmax = 0.988k = 1413
9227 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.0868P]
where P = (Fo2 + 2Fc2)/3
5688 reflections(Δ/σ)max < 0.001
419 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C27H27N7O9·C2H3Nγ = 88.527 (2)°
Mr = 634.61V = 1462.1 (2) Å3
Triclinic, P1Z = 2
a = 10.6097 (9) ÅMo Kα radiation
b = 11.8168 (9) ŵ = 0.11 mm1
c = 12.8003 (10) ÅT = 200 K
α = 79.054 (2)°0.32 × 0.13 × 0.11 mm
β = 68.293 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5688 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3102 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.988Rint = 0.038
9227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
5688 reflectionsΔρmin = 0.42 e Å3
419 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1867 (3)0.08637 (18)0.09431 (18)0.0448 (6)
H1O1.19370.01540.09280.067*
O20.8123 (3)0.2527 (2)0.6061 (2)0.0621 (8)
O30.8574 (3)0.4164 (2)0.5510 (2)0.0703 (8)
O40.8089 (3)0.13330 (19)0.10667 (19)0.0595 (8)
H4O0.79750.06220.09250.089*
O50.4797 (3)0.2368 (2)0.6310 (2)0.0608 (8)
O60.4974 (3)0.4093 (2)0.5958 (2)0.0658 (8)
O70.7816 (3)0.09156 (19)0.4737 (2)0.0502 (7)
H7O0.81860.15130.42520.075*
O80.4783 (3)0.3083 (3)0.9032 (2)0.0830 (10)
O90.4522 (3)0.1281 (3)0.9805 (2)0.0913 (11)
N10.9339 (3)0.2871 (2)0.1376 (2)0.0324 (6)
N21.1352 (3)0.1102 (2)0.1657 (2)0.0352 (6)
N30.8708 (3)0.3096 (3)0.5314 (3)0.0458 (7)
N40.7479 (3)0.0770 (2)0.1510 (2)0.0354 (7)
N50.5246 (3)0.3041 (3)0.5642 (3)0.0455 (7)
N60.8372 (3)0.3109 (2)0.3871 (2)0.0361 (7)
N70.4978 (3)0.2066 (3)0.8974 (3)0.0566 (9)
C11.0834 (3)0.3037 (3)0.0811 (3)0.0381 (8)
H1A1.10880.38670.06800.046*
H1B1.11200.28130.00520.046*
C21.1598 (3)0.2351 (2)0.1490 (3)0.0381 (8)
H2A1.25830.25440.10840.046*
H2B1.13190.25750.22480.046*
C31.0620 (3)0.0478 (3)0.2639 (3)0.0336 (8)
H31.01760.08620.32560.040*
C41.0438 (3)0.0738 (3)0.2849 (3)0.0308 (7)
C51.1155 (3)0.1371 (3)0.1946 (3)0.0324 (8)
C61.1040 (3)0.2603 (3)0.2275 (3)0.0389 (8)
H61.15180.30510.17210.047*
C71.0271 (3)0.3153 (3)0.3355 (3)0.0377 (8)
H71.02230.39710.35470.045*
C80.9544 (3)0.2504 (3)0.4190 (3)0.0343 (8)
C90.9646 (3)0.1321 (3)0.3945 (3)0.0323 (7)
H90.91750.08980.45240.039*
C100.8749 (3)0.2637 (3)0.0560 (3)0.0366 (8)
H10A0.93750.21690.00440.044*
H10B0.86650.33780.00830.044*
C110.7373 (3)0.2011 (3)0.1132 (3)0.0381 (8)
H11A0.68270.23470.18030.046*
H11B0.68960.21220.05890.046*
C120.7036 (3)0.0251 (3)0.2570 (3)0.0345 (8)
H120.67200.07120.31400.041*
C130.6991 (3)0.0966 (3)0.2943 (3)0.0317 (7)
C140.7506 (4)0.1716 (3)0.2118 (3)0.0388 (8)
C150.7267 (4)0.2933 (3)0.2577 (3)0.0448 (9)
H150.76190.34560.20710.054*
C160.6556 (3)0.3364 (3)0.3706 (3)0.0401 (8)
H160.63890.41730.39770.048*
C170.6071 (3)0.2591 (3)0.4471 (3)0.0329 (8)
C180.6295 (3)0.1425 (3)0.4103 (3)0.0329 (8)
H180.59770.09250.46370.039*
C190.8723 (4)0.3882 (3)0.1849 (3)0.0386 (8)
H19A0.77260.38060.20690.046*
H19B0.90620.45830.12450.046*
C200.9027 (4)0.4034 (3)0.2889 (3)0.0394 (8)
H20A1.00210.40430.26940.047*
H20B0.87030.47850.30930.047*
C210.7671 (3)0.3281 (3)0.4904 (3)0.0359 (8)
H210.75780.40520.50250.043*
C220.7048 (3)0.2381 (3)0.5843 (3)0.0344 (8)
C230.7173 (3)0.1188 (3)0.5718 (3)0.0378 (8)
C240.6567 (3)0.0327 (3)0.6723 (3)0.0436 (9)
H240.66500.04630.66660.052*
C250.5872 (3)0.0604 (3)0.7763 (3)0.0446 (9)
H250.54840.00120.84210.054*
C260.5731 (3)0.1773 (3)0.7858 (3)0.0419 (9)
C270.6304 (3)0.2637 (3)0.6931 (3)0.0400 (8)
H270.62010.34190.70180.048*
N80.2620 (4)0.5168 (3)0.1139 (4)0.0889 (14)
C280.4516 (4)0.4093 (4)0.1626 (4)0.0712 (13)
H28A0.41230.33950.22050.107*
H28B0.49750.45870.19240.107*
H28C0.51730.38770.09310.107*
C290.3459 (4)0.4707 (3)0.1358 (3)0.0549 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0633 (17)0.0335 (13)0.0328 (14)0.0035 (13)0.0115 (12)0.0087 (11)
O20.072 (2)0.0692 (18)0.0320 (15)0.0026 (15)0.0059 (13)0.0066 (14)
O30.084 (2)0.0460 (17)0.0602 (19)0.0093 (15)0.0123 (16)0.0112 (15)
O40.094 (2)0.0395 (14)0.0328 (15)0.0145 (15)0.0087 (14)0.0099 (12)
O50.0694 (19)0.0594 (17)0.0357 (15)0.0137 (14)0.0020 (13)0.0127 (14)
O60.084 (2)0.0493 (17)0.0494 (17)0.0176 (15)0.0115 (15)0.0005 (14)
O70.0633 (18)0.0406 (14)0.0415 (15)0.0102 (13)0.0127 (13)0.0110 (12)
O80.103 (3)0.076 (2)0.0479 (18)0.0262 (19)0.0065 (16)0.0275 (17)
O90.087 (2)0.101 (2)0.0378 (17)0.029 (2)0.0163 (16)0.0149 (17)
N10.0443 (17)0.0281 (14)0.0238 (14)0.0091 (12)0.0097 (13)0.0097 (12)
N20.0330 (16)0.0322 (15)0.0364 (16)0.0019 (13)0.0102 (13)0.0029 (13)
N30.0440 (19)0.054 (2)0.0355 (18)0.0034 (16)0.0133 (15)0.0012 (16)
N40.0418 (17)0.0320 (15)0.0285 (15)0.0032 (13)0.0096 (13)0.0040 (13)
N50.0449 (19)0.0459 (19)0.0407 (18)0.0015 (16)0.0109 (15)0.0072 (16)
N60.0416 (17)0.0404 (16)0.0278 (15)0.0046 (13)0.0122 (13)0.0117 (13)
N70.041 (2)0.080 (3)0.039 (2)0.0021 (19)0.0043 (16)0.010 (2)
C10.046 (2)0.0312 (18)0.0274 (18)0.0015 (16)0.0009 (16)0.0082 (15)
C20.042 (2)0.0310 (18)0.039 (2)0.0011 (16)0.0113 (17)0.0085 (16)
C30.0307 (19)0.0388 (19)0.0314 (18)0.0094 (15)0.0090 (15)0.0130 (16)
C40.0327 (19)0.0322 (18)0.0291 (18)0.0045 (15)0.0124 (15)0.0086 (15)
C50.0358 (19)0.0339 (18)0.0292 (19)0.0031 (15)0.0150 (16)0.0044 (16)
C60.045 (2)0.0383 (19)0.038 (2)0.0089 (17)0.0175 (17)0.0149 (17)
C70.050 (2)0.0295 (17)0.042 (2)0.0021 (16)0.0262 (19)0.0080 (16)
C80.0319 (19)0.042 (2)0.0293 (18)0.0027 (16)0.0135 (15)0.0030 (16)
C90.0291 (18)0.0388 (19)0.0294 (18)0.0076 (15)0.0106 (15)0.0087 (15)
C100.050 (2)0.0351 (18)0.0230 (17)0.0054 (16)0.0114 (16)0.0071 (15)
C110.048 (2)0.0372 (19)0.0299 (18)0.0109 (17)0.0148 (17)0.0092 (16)
C120.0306 (19)0.041 (2)0.036 (2)0.0067 (15)0.0126 (16)0.0181 (17)
C130.0313 (19)0.0330 (18)0.0311 (18)0.0050 (15)0.0101 (15)0.0106 (15)
C140.045 (2)0.040 (2)0.032 (2)0.0098 (17)0.0143 (17)0.0088 (17)
C150.059 (2)0.038 (2)0.038 (2)0.0122 (18)0.0147 (19)0.0171 (17)
C160.045 (2)0.0348 (19)0.043 (2)0.0058 (16)0.0190 (18)0.0093 (17)
C170.0287 (19)0.0395 (19)0.0290 (18)0.0020 (15)0.0091 (15)0.0068 (16)
C180.0311 (19)0.0385 (19)0.0328 (19)0.0054 (15)0.0123 (15)0.0152 (16)
C190.057 (2)0.0314 (18)0.0251 (18)0.0093 (16)0.0133 (16)0.0057 (15)
C200.050 (2)0.0349 (19)0.0307 (19)0.0044 (17)0.0093 (16)0.0114 (16)
C210.040 (2)0.0373 (19)0.034 (2)0.0062 (16)0.0170 (17)0.0110 (16)
C220.0310 (19)0.041 (2)0.036 (2)0.0057 (15)0.0157 (16)0.0123 (17)
C230.0314 (19)0.046 (2)0.039 (2)0.0077 (16)0.0170 (17)0.0101 (18)
C240.037 (2)0.042 (2)0.050 (2)0.0075 (17)0.0165 (18)0.0051 (19)
C250.030 (2)0.053 (2)0.044 (2)0.0003 (17)0.0125 (17)0.0064 (19)
C260.032 (2)0.061 (2)0.032 (2)0.0016 (18)0.0102 (16)0.0096 (18)
C270.037 (2)0.047 (2)0.037 (2)0.0007 (17)0.0115 (17)0.0134 (18)
N80.091 (3)0.051 (2)0.151 (4)0.020 (2)0.069 (3)0.033 (2)
C280.069 (3)0.075 (3)0.066 (3)0.011 (3)0.029 (2)0.000 (2)
C290.063 (3)0.039 (2)0.063 (3)0.003 (2)0.022 (2)0.014 (2)
Geometric parameters (Å, º) top
O1—C51.262 (4)C9—H90.9500
O1—H1O0.8400C10—C111.507 (4)
O2—N31.239 (3)C10—H10A0.9900
O3—N31.240 (4)C10—H10B0.9900
O4—C141.252 (4)C11—H11A0.9900
O4—H4O0.8400C11—H11B0.9900
O5—N51.236 (3)C12—C131.422 (4)
O6—N51.238 (3)C12—H120.9500
O7—C231.286 (4)C13—C181.396 (4)
O7—H7O0.8400C13—C141.450 (4)
O8—N71.227 (4)C14—C151.436 (4)
O9—N71.222 (4)C15—C161.361 (4)
N1—C101.470 (4)C15—H150.9500
N1—C191.471 (4)C16—C171.414 (4)
N1—C11.480 (4)C16—H160.9500
N2—C31.297 (4)C17—C181.366 (4)
N2—C21.466 (4)C18—H180.9500
N3—C81.432 (4)C19—C201.523 (4)
N4—C121.291 (4)C19—H19A0.9900
N4—C111.469 (4)C19—H19B0.9900
N5—C171.431 (4)C20—H20A0.9900
N6—C211.307 (4)C20—H20B0.9900
N6—C201.460 (4)C21—C221.406 (4)
N7—C261.458 (4)C21—H210.9500
C1—C21.514 (4)C22—C271.410 (4)
C1—H1A0.9900C22—C231.446 (4)
C1—H1B0.9900C23—C241.424 (5)
C2—H2A0.9900C24—C251.359 (5)
C2—H2B0.9900C24—H240.9500
C3—C41.416 (4)C25—C261.410 (5)
C3—H30.9500C25—H250.9500
C4—C91.393 (4)C26—C271.364 (4)
C4—C51.457 (4)C27—H270.9500
C5—C61.432 (4)N8—C291.126 (5)
C6—C71.360 (4)C28—C291.432 (5)
C6—H60.9500C28—H28A0.9800
C7—C81.413 (4)C28—H28B0.9800
C7—H70.9500C28—H28C0.9800
C8—C91.372 (4)
C5—O1—H1O109.5H11A—C11—H11B107.9
C14—O4—H4O109.5N4—C12—C13124.4 (3)
C23—O7—H7O109.5N4—C12—H12117.8
C10—N1—C19109.5 (2)C13—C12—H12117.8
C10—N1—C1110.2 (2)C18—C13—C12118.3 (3)
C19—N1—C1111.7 (2)C18—C13—C14120.7 (3)
C3—N2—C2122.7 (3)C12—C13—C14120.6 (3)
O2—N3—O3121.7 (3)O4—C14—C15121.7 (3)
O2—N3—C8119.1 (3)O4—C14—C13122.4 (3)
O3—N3—C8119.2 (3)C15—C14—C13115.9 (3)
C12—N4—C11123.9 (3)C16—C15—C14122.6 (3)
O5—N5—O6121.5 (3)C16—C15—H15118.7
O5—N5—C17119.3 (3)C14—C15—H15118.7
O6—N5—C17119.2 (3)C15—C16—C17119.0 (3)
C21—N6—C20123.8 (3)C15—C16—H16120.5
O9—N7—O8122.7 (3)C17—C16—H16120.5
O9—N7—C26118.5 (4)C18—C17—C16121.7 (3)
O8—N7—C26118.8 (3)C18—C17—N5119.3 (3)
N1—C1—C2113.8 (3)C16—C17—N5118.9 (3)
N1—C1—H1A108.8C17—C18—C13120.0 (3)
C2—C1—H1A108.8C17—C18—H18120.0
N1—C1—H1B108.8C13—C18—H18120.0
C2—C1—H1B108.8N1—C19—C20113.4 (3)
H1A—C1—H1B107.7N1—C19—H19A108.9
N2—C2—C1112.5 (3)C20—C19—H19A108.9
N2—C2—H2A109.1N1—C19—H19B108.9
C1—C2—H2A109.1C20—C19—H19B108.9
N2—C2—H2B109.1H19A—C19—H19B107.7
C1—C2—H2B109.1N6—C20—C19111.5 (3)
H2A—C2—H2B107.8N6—C20—H20A109.3
N2—C3—C4124.2 (3)C19—C20—H20A109.3
N2—C3—H3117.9N6—C20—H20B109.3
C4—C3—H3117.9C19—C20—H20B109.3
C9—C4—C3119.2 (3)H20A—C20—H20B108.0
C9—C4—C5120.8 (3)N6—C21—C22123.3 (3)
C3—C4—C5119.9 (3)N6—C21—H21118.4
O1—C5—C6122.0 (3)C22—C21—H21118.4
O1—C5—C4122.0 (3)C21—C22—C27119.9 (3)
C6—C5—C4116.0 (3)C21—C22—C23121.0 (3)
C7—C6—C5122.2 (3)C27—C22—C23119.1 (3)
C7—C6—H6118.9O7—C23—C24121.3 (3)
C5—C6—H6118.9O7—C23—C22121.2 (3)
C6—C7—C8119.9 (3)C24—C23—C22117.5 (3)
C6—C7—H7120.0C25—C24—C23121.9 (3)
C8—C7—H7120.0C25—C24—H24119.1
C9—C8—C7121.0 (3)C23—C24—H24119.1
C9—C8—N3119.8 (3)C24—C25—C26119.6 (3)
C7—C8—N3119.3 (3)C24—C25—H25120.2
C8—C9—C4120.1 (3)C26—C25—H25120.2
C8—C9—H9119.9C27—C26—C25121.3 (3)
C4—C9—H9119.9C27—C26—N7119.3 (3)
N1—C10—C11113.3 (3)C25—C26—N7119.5 (3)
N1—C10—H10A108.9C26—C27—C22120.6 (3)
C11—C10—H10A108.9C26—C27—H27119.7
N1—C10—H10B108.9C22—C27—H27119.7
C11—C10—H10B108.9C29—C28—H28A109.5
H10A—C10—H10B107.7C29—C28—H28B109.5
N4—C11—C10111.9 (3)H28A—C28—H28B109.5
N4—C11—H11A109.2C29—C28—H28C109.5
C10—C11—H11A109.2H28A—C28—H28C109.5
N4—C11—H11B109.2H28B—C28—H28C109.5
C10—C11—H11B109.2N8—C29—C28178.4 (4)
C10—N1—C1—C2131.8 (3)C13—C14—C15—C162.5 (5)
C19—N1—C1—C2106.1 (3)C14—C15—C16—C172.2 (5)
C3—N2—C2—C1107.8 (3)C15—C16—C17—C180.1 (5)
N1—C1—C2—N262.4 (3)C15—C16—C17—N5175.8 (3)
C2—N2—C3—C4175.4 (3)O5—N5—C17—C182.8 (4)
N2—C3—C4—C9178.9 (3)O6—N5—C17—C18175.5 (3)
N2—C3—C4—C53.2 (5)O5—N5—C17—C16178.6 (3)
C9—C4—C5—O1179.2 (3)O6—N5—C17—C160.3 (4)
C3—C4—C5—O15.1 (5)C16—C17—C18—C131.6 (5)
C9—C4—C5—C62.9 (4)N5—C17—C18—C13174.1 (3)
C3—C4—C5—C6172.7 (3)C12—C13—C18—C17171.2 (3)
O1—C5—C6—C7179.9 (3)C14—C13—C18—C171.2 (4)
C4—C5—C6—C72.3 (4)C10—N1—C19—C20167.1 (3)
C5—C6—C7—C80.5 (5)C1—N1—C19—C2070.5 (3)
C6—C7—C8—C92.8 (5)C21—N6—C20—C19132.3 (3)
C6—C7—C8—N3178.3 (3)N1—C19—C20—N667.3 (4)
O2—N3—C8—C92.3 (4)C20—N6—C21—C22179.8 (3)
O3—N3—C8—C9176.7 (3)N6—C21—C22—C27179.8 (3)
O2—N3—C8—C7176.6 (3)N6—C21—C22—C231.2 (5)
O3—N3—C8—C74.5 (4)C21—C22—C23—O72.5 (5)
C7—C8—C9—C42.2 (4)C27—C22—C23—O7178.4 (3)
N3—C8—C9—C4179.0 (3)C21—C22—C23—C24177.0 (3)
C3—C4—C9—C8174.9 (3)C27—C22—C23—C242.0 (4)
C5—C4—C9—C80.8 (4)O7—C23—C24—C25179.3 (3)
C19—N1—C10—C1179.5 (3)C22—C23—C24—C251.2 (5)
C1—N1—C10—C11157.2 (2)C23—C24—C25—C260.5 (5)
C12—N4—C11—C10114.6 (3)C24—C25—C26—C271.5 (5)
N1—C10—C11—N478.8 (3)C24—C25—C26—N7179.6 (3)
C11—N4—C12—C13172.5 (3)O9—N7—C26—C27176.8 (3)
N4—C12—C13—C18170.1 (3)O8—N7—C26—C276.0 (5)
N4—C12—C13—C142.4 (5)O9—N7—C26—C252.1 (5)
C18—C13—C14—O4177.3 (3)O8—N7—C26—C25175.1 (3)
C12—C13—C14—O45.0 (5)C25—C26—C27—C220.6 (5)
C18—C13—C14—C150.8 (4)N7—C26—C27—C22179.5 (3)
C12—C13—C14—C15173.0 (3)C21—C22—C27—C26177.9 (3)
O4—C14—C15—C16175.5 (3)C23—C22—C27—C261.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.841.872.627 (3)149
O4—H4O···N40.841.922.665 (3)147
O7—H7O···N60.841.852.607 (3)149
C1—H1A···N8i0.992.563.369 (5)139
C1—H1B···O4ii0.992.413.290 (4)148
C2—H2B···O2iii0.992.443.300 (4)146
C3—H3···O70.952.533.297 (4)138
C6—H6···N8iv0.952.493.360 (5)153
C9—H9···O70.952.553.328 (4)139
C11—H11A···O5v0.992.403.331 (4)157
C12—H12···O5v0.952.543.339 (4)142
C16—H16···O6vi0.952.513.330 (4)145
C25—H25···O9vii0.952.483.359 (4)153
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+2, y, z+1; (iv) x+1, y1, z; (v) x+1, y, z+1; (vi) x+1, y1, z+1; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC27H27N7O9·C2H3N
Mr634.61
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)10.6097 (9), 11.8168 (9), 12.8003 (10)
α, β, γ (°)79.054 (2), 68.293 (2), 88.527 (2)
V3)1462.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.13 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.846, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9227, 5688, 3102
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.175, 1.03
No. of reflections5688
No. of parameters419
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N20.841.872.627 (3)148.7
O4—H4O···N40.841.922.665 (3)147.4
O7—H7O···N60.841.852.607 (3)148.7
C1—H1A···N8i0.992.563.369 (5)139.3
C1—H1B···O4ii0.992.413.290 (4)148.0
C2—H2B···O2iii0.992.443.300 (4)145.5
C3—H3···O70.952.533.297 (4)138.0
C6—H6···N8iv0.952.493.360 (5)153.0
C9—H9···O70.952.553.328 (4)139.0
C11—H11A···O5v0.992.403.331 (4)157.1
C12—H12···O5v0.952.543.339 (4)142.1
C16—H16···O6vi0.952.513.330 (4)144.8
C25—H25···O9vii0.952.483.359 (4)153.3
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+2, y, z+1; (iv) x+1, y1, z; (v) x+1, y, z+1; (vi) x+1, y1, z+1; (vii) x+1, y, z+2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKanesato, M., Ngassapa, F. N. & Yokoyama, T. (2001). Anal. Sci. 17, 471–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds