organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-7-oxabi­cyclo­[2.2.1]hept-5-ene-2,3-dicarboximide

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 11 November 2010; accepted 16 November 2010; online 20 November 2010)

In the title racemic compound, C14H10ClNO3, which contains four stereogenic centres, the cyclo­hexane ring tends towards a boat conformation, while the tetra­hydro­furan and dihydro­furan rings adopt envelope conformations. The dihedral angle between the mean planes of the pyrrolidine-2,5-dione unit and the 4-chloro­phenyl ring is 49.0 (2)°.

Related literature

For the biological activity of 7-oxa-bicyclo­[2,2,1]hept-5-ene-2,3-dicarb­oxy­lic anhydride, see: Deng & Hu (2007[Deng, L. P. & Hu, Y. Z. (2007). J. Heterocycl. Chem. 44, 597-601.]). For related structures, see: Goh et al. (2008[Goh, Y. W., Pool, B. R. & White, J. M. (2008). J. Org. Chem. 73, 151-156.]); Hart et al. (2004[Hart, M. E., Chamberlin, A. R., Walkom, C., Sakoff, J. A. & McCluskey, A. (2004). Bioorg. Med. Chem. Lett. 14, 1969-1973.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClNO3

  • Mr = 275.68

  • Monoclinic, P 21 /c

  • a = 10.4946 (11) Å

  • b = 8.2890 (8) Å

  • c = 14.0871 (13) Å

  • β = 91.538 (1)°

  • V = 1225.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.40 × 0.33 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.937

  • 5907 measured reflections

  • 2156 independent reflections

  • 1466 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.07

  • 2156 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

7-Oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride has been widely employed in clinical practice, as it is less toxic and much easier to be synthesized (Deng & Hu, 2007). Its derivatives are also pharmacologically active (Hart et al., 2004). In this paper, the structure of the title compound, (I), is reported (Fig. 1). The bond lengths and angles are as expected and comparable to those in the similar compounds (Goh et al., 2008). The dihedral angle between the pyrrolidine-2,5-dione plane and 4-chlorophenyl plane is 49.0 (2)°.

Related literature top

For the biological activity of 7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride, see: Deng & Hu (2007). For related structures, see: Goh et al. (2008); Hart et al. (2004).

Experimental top

A mixture of exo-7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride (0.332 g, 2 mmol) and p-chloroaniline (0.255 g, 2 mmol) in methanol (5 ml) was stirred for 5 h at room temperature, and then refluxed for 1 h. After cooling, the precipitate was filtered and dried. The crude product of 20 mg was dissolved in methanol of 10 ml. The solution was filtered to remove impurities, and then the filtrate was left for crystallization at room temperature. Single-crystals suitable for X-ray diffraction were obtained by evaporation from the methanol solution after 5 d.

Refinement top

H atoms were initially located from difference maps and then refined in a riding model, with C—H = 0.93 or 0.98 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

7-Oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride has been widely employed in clinical practice, as it is less toxic and much easier to be synthesized (Deng & Hu, 2007). Its derivatives are also pharmacologically active (Hart et al., 2004). In this paper, the structure of the title compound, (I), is reported (Fig. 1). The bond lengths and angles are as expected and comparable to those in the similar compounds (Goh et al., 2008). The dihedral angle between the pyrrolidine-2,5-dione plane and 4-chlorophenyl plane is 49.0 (2)°.

For the biological activity of 7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride, see: Deng & Hu (2007). For related structures, see: Goh et al. (2008); Hart et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
N-(4-Chlorophenyl)-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide top
Crystal data top
C14H10ClNO3F(000) = 568
Mr = 275.68Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1615 reflections
a = 10.4946 (11) Åθ = 2.9–24.8°
b = 8.2890 (8) ŵ = 0.31 mm1
c = 14.0871 (13) ÅT = 298 K
β = 91.538 (1)°Block, light yellow
V = 1225.0 (2) Å30.40 × 0.33 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2156 independent reflections
Radiation source: fine-focus sealed tube1466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.885, Tmax = 0.937k = 99
5907 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4264P]
where P = (Fo2 + 2Fc2)/3
2156 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H10ClNO3V = 1225.0 (2) Å3
Mr = 275.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4946 (11) ŵ = 0.31 mm1
b = 8.2890 (8) ÅT = 298 K
c = 14.0871 (13) Å0.40 × 0.33 × 0.21 mm
β = 91.538 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2156 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1466 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.937Rint = 0.040
5907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
2156 reflectionsΔρmin = 0.33 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.06821 (7)0.52842 (11)0.16059 (6)0.0601 (3)
N10.58629 (19)0.2856 (3)0.31440 (13)0.0349 (5)
O10.66611 (17)0.1666 (3)0.45091 (12)0.0482 (5)
O20.45183 (18)0.3870 (3)0.19755 (13)0.0556 (6)
O30.37280 (17)0.4471 (2)0.44140 (13)0.0444 (5)
C10.5766 (3)0.2056 (3)0.40149 (18)0.0369 (6)
C20.4383 (2)0.1821 (3)0.42057 (17)0.0361 (6)
H20.41760.06970.43540.043*
C30.3661 (2)0.2439 (3)0.33183 (17)0.0353 (6)
H30.31570.15980.29940.042*
C40.4678 (2)0.3141 (3)0.27085 (18)0.0369 (6)
C50.7041 (2)0.3409 (3)0.27702 (17)0.0325 (6)
C60.7316 (2)0.3134 (3)0.18301 (17)0.0377 (7)
H60.67480.25580.14420.045*
C70.8436 (2)0.3715 (3)0.14685 (18)0.0397 (7)
H70.86230.35450.08350.048*
C80.9268 (2)0.4544 (3)0.2053 (2)0.0407 (7)
C90.9002 (2)0.4827 (3)0.2991 (2)0.0432 (7)
H90.95750.53980.33770.052*
C100.7882 (2)0.4258 (3)0.33505 (18)0.0381 (7)
H100.76920.44450.39820.046*
C110.3888 (3)0.3030 (4)0.49633 (18)0.0427 (7)
H110.44270.31380.55390.051*
C120.2531 (3)0.2520 (4)0.5124 (2)0.0519 (8)
H120.22200.19810.56480.062*
C130.1885 (3)0.3001 (4)0.4365 (2)0.0501 (8)
H130.10150.28750.42430.060*
C140.2830 (2)0.3796 (3)0.37332 (19)0.0432 (7)
H140.24690.45590.32680.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0375 (4)0.0665 (6)0.0769 (6)0.0031 (4)0.0100 (4)0.0018 (4)
N10.0347 (12)0.0361 (14)0.0336 (12)0.0010 (10)0.0036 (9)0.0051 (10)
O10.0459 (12)0.0553 (14)0.0429 (11)0.0061 (10)0.0086 (9)0.0132 (10)
O20.0503 (12)0.0730 (16)0.0430 (12)0.0006 (11)0.0072 (9)0.0236 (11)
O30.0454 (11)0.0324 (11)0.0551 (12)0.0050 (9)0.0040 (9)0.0061 (9)
C10.0467 (16)0.0283 (16)0.0354 (14)0.0026 (13)0.0017 (12)0.0011 (12)
C20.0396 (15)0.0312 (15)0.0376 (14)0.0008 (12)0.0009 (12)0.0058 (12)
C30.0364 (15)0.0312 (15)0.0380 (14)0.0059 (12)0.0040 (11)0.0003 (12)
C40.0413 (16)0.0339 (16)0.0351 (15)0.0025 (13)0.0059 (12)0.0018 (13)
C50.0348 (14)0.0275 (15)0.0351 (14)0.0032 (11)0.0015 (11)0.0025 (11)
C60.0389 (15)0.0378 (17)0.0362 (15)0.0007 (13)0.0059 (12)0.0006 (13)
C70.0443 (16)0.0386 (17)0.0364 (15)0.0044 (14)0.0039 (12)0.0004 (13)
C80.0340 (15)0.0359 (17)0.0521 (18)0.0043 (13)0.0035 (13)0.0038 (14)
C90.0344 (15)0.0430 (18)0.0516 (18)0.0021 (13)0.0069 (13)0.0070 (14)
C100.0423 (15)0.0387 (17)0.0330 (14)0.0028 (13)0.0018 (12)0.0036 (12)
C110.0461 (17)0.0462 (18)0.0355 (15)0.0017 (14)0.0021 (12)0.0004 (13)
C120.0538 (19)0.050 (2)0.0523 (18)0.0059 (16)0.0158 (15)0.0042 (16)
C130.0371 (16)0.049 (2)0.065 (2)0.0053 (14)0.0093 (15)0.0124 (16)
C140.0392 (15)0.0390 (17)0.0510 (17)0.0016 (14)0.0083 (13)0.0028 (14)
Geometric parameters (Å, º) top
Cl1—C81.740 (3)C5—C61.382 (3)
N1—C41.392 (3)C6—C71.380 (3)
N1—C11.400 (3)C6—H60.9300
N1—C51.432 (3)C7—C81.369 (4)
O1—C11.199 (3)C7—H70.9300
O2—C41.204 (3)C8—C91.378 (4)
O3—C111.431 (3)C9—C101.376 (4)
O3—C141.440 (3)C9—H90.9300
C1—C21.496 (4)C10—H100.9300
C2—C31.533 (3)C11—C121.508 (4)
C2—C111.563 (4)C11—H110.9800
C2—H20.9800C12—C131.313 (4)
C3—C41.505 (4)C12—H120.9300
C3—C141.547 (4)C13—C141.503 (4)
C3—H30.9800C13—H130.9300
C5—C101.380 (3)C14—H140.9800
C4—N1—C1112.4 (2)C8—C7—H7120.4
C4—N1—C5123.6 (2)C6—C7—H7120.4
C1—N1—C5123.9 (2)C7—C8—C9121.3 (2)
C11—O3—C1495.76 (19)C7—C8—Cl1119.7 (2)
O1—C1—N1124.2 (2)C9—C8—Cl1118.9 (2)
O1—C1—C2127.6 (2)C10—C9—C8119.5 (3)
N1—C1—C2108.2 (2)C10—C9—H9120.3
C1—C2—C3105.7 (2)C8—C9—H9120.3
C1—C2—C11112.4 (2)C9—C10—C5119.7 (2)
C3—C2—C11100.1 (2)C9—C10—H10120.1
C1—C2—H2112.6C5—C10—H10120.1
C3—C2—H2112.6O3—C11—C12102.6 (2)
C11—C2—H2112.6O3—C11—C2101.68 (19)
C4—C3—C2104.6 (2)C12—C11—C2104.8 (2)
C4—C3—C14110.5 (2)O3—C11—H11115.3
C2—C3—C14101.9 (2)C12—C11—H11115.3
C4—C3—H3113.0C2—C11—H11115.3
C2—C3—H3113.0C13—C12—C11105.2 (3)
C14—C3—H3113.0C13—C12—H12127.4
O2—C4—N1124.4 (2)C11—C12—H12127.4
O2—C4—C3126.8 (2)C12—C13—C14106.3 (3)
N1—C4—C3108.8 (2)C12—C13—H13126.9
C10—C5—C6120.3 (2)C14—C13—H13126.9
C10—C5—N1119.4 (2)O3—C14—C13101.9 (2)
C6—C5—N1120.3 (2)O3—C14—C399.7 (2)
C7—C6—C5119.9 (2)C13—C14—C3107.0 (2)
C7—C6—H6120.1O3—C14—H14115.4
C5—C6—H6120.1C13—C14—H14115.4
C8—C7—C6119.3 (2)C3—C14—H14115.4
C4—N1—C1—O1179.0 (3)C5—C6—C7—C80.8 (4)
C5—N1—C1—O14.8 (4)C6—C7—C8—C90.8 (4)
C4—N1—C1—C21.9 (3)C6—C7—C8—Cl1179.9 (2)
C5—N1—C1—C2174.3 (2)C7—C8—C9—C100.4 (4)
O1—C1—C2—C3176.4 (3)Cl1—C8—C9—C10179.5 (2)
N1—C1—C2—C34.5 (3)C8—C9—C10—C50.2 (4)
O1—C1—C2—C1175.3 (4)C6—C5—C10—C90.2 (4)
N1—C1—C2—C11103.8 (2)N1—C5—C10—C9178.5 (2)
C1—C2—C3—C45.3 (3)C14—O3—C11—C1249.2 (2)
C11—C2—C3—C4111.7 (2)C14—O3—C11—C259.1 (2)
C1—C2—C3—C14120.4 (2)C1—C2—C11—O378.3 (2)
C11—C2—C3—C143.5 (2)C3—C2—C11—O333.5 (2)
C1—N1—C4—O2176.7 (3)C1—C2—C11—C12175.1 (2)
C5—N1—C4—O20.4 (4)C3—C2—C11—C1273.1 (2)
C1—N1—C4—C31.6 (3)O3—C11—C12—C1331.7 (3)
C5—N1—C4—C3177.9 (2)C2—C11—C12—C1374.2 (3)
C2—C3—C4—O2173.9 (3)C11—C12—C13—C140.3 (3)
C14—C3—C4—O265.0 (4)C11—O3—C14—C1349.1 (2)
C2—C3—C4—N14.3 (3)C11—O3—C14—C360.8 (2)
C14—C3—C4—N1113.3 (2)C12—C13—C14—O331.9 (3)
C4—N1—C5—C10128.6 (3)C12—C13—C14—C372.3 (3)
C1—N1—C5—C1047.3 (4)C4—C3—C14—O371.6 (2)
C4—N1—C5—C649.7 (4)C2—C3—C14—O339.1 (2)
C1—N1—C5—C6134.5 (3)C4—C3—C14—C13177.4 (2)
C10—C5—C6—C70.2 (4)C2—C3—C14—C1366.7 (3)
N1—C5—C6—C7178.0 (2)

Experimental details

Crystal data
Chemical formulaC14H10ClNO3
Mr275.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.4946 (11), 8.2890 (8), 14.0871 (13)
β (°) 91.538 (1)
V3)1225.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.33 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
5907, 2156, 1466
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.07
No. of reflections2156
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation, China (ZR2009BL027)

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, L. P. & Hu, Y. Z. (2007). J. Heterocycl. Chem. 44, 597–601.  CrossRef CAS Google Scholar
First citationGoh, Y. W., Pool, B. R. & White, J. M. (2008). J. Org. Chem. 73, 151–156.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHart, M. E., Chamberlin, A. R., Walkom, C., Sakoff, J. A. & McCluskey, A. (2004). Bioorg. Med. Chem. Lett. 14, 1969–1973.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds