metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-bi­phenyl-3,4′-di­carboxyl­ato-κ4O3:O3′:O4′,O4′′)(1H-imidazo[4,5-f][1,10]phenanthroline-κ2N7,N8)manganese(II)]

aDepartment of Chemistry, Dezhou University, Shandong 253023, People's Republic of China
*Correspondence e-mail: dzwangfm@163.com

(Received 20 October 2010; accepted 6 November 2010; online 27 November 2010)

In the title compound, [Mn(C14H8O4)(C13H8N4)]n, the MnII atom is six-coordinated in a distorted octa­hedral geometry by four O atoms from three different carboxyl­ate groups and two N atoms from one imidazo[4,5-f][1,10]phenanthroline mol­ecule. The organic ligands link inorganic MnII nodes, forming a zigzag chain along the c axis.

Related literature

For the use of diphenic acid as an O-donor ligand in the design and synthesis of coordination polymers, see: Wang et al. (2006[Wang, R. H., Yuan, D. Q., Jiang, P. L., Han, L., Gong, Y. Q. & Hong, M. C. (2006). Cryst. Growth Des. 6, 1351-1360.]); Yin et al. (2005[Yin, P. X., Zhang, J., Wen, Y. H., Cheng, J. K., Li, Z. J. & Yao, Y. G. (2005). Chin. J. Struct. Chem. 10, 1107-1110.]). The distortion of the diphenyl spacer about the central bond allows the carboxyl­ate ligand to link metal ions into helical chains or one dimensional chains, see: Guo et al. (2010[Guo, F., Zhu, B. Y. & Zhang, X. L. (2010). J. Inorg. Organomet. Polym. 20, 118-123.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H8O4)(C13H8N4)]

  • Mr = 515.38

  • Monoclinic, P 2/c

  • a = 8.0634 (13) Å

  • b = 11.705 (2) Å

  • c = 22.807 (4) Å

  • β = 94.307 (2)°

  • V = 2146.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.949

  • 12211 measured reflections

  • 3997 independent reflections

  • 2211 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.107

  • S = 1.00

  • 3997 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O4 2.106 (3)
Mn1—O3 2.124 (3)
Mn1—O2i 2.208 (3)
Mn1—N4 2.273 (3)
Mn1—N3 2.281 (3)
Mn1—O1i 2.313 (3)
O4—Mn1—O3 97.67 (11)
O4—Mn1—O2i 89.59 (11)
O3—Mn1—O2i 98.36 (11)
O4—Mn1—N4 120.65 (11)
O3—Mn1—N4 94.32 (11)
O2i—Mn1—N4 145.23 (11)
O4—Mn1—N3 84.57 (11)
O3—Mn1—N3 165.21 (11)
O2i—Mn1—N3 96.26 (11)
N4—Mn1—N3 72.22 (11)
O4—Mn1—O1i 144.17 (10)
O3—Mn1—O1i 100.92 (10)
O2i—Mn1—O1i 57.65 (10)
N4—Mn1—O1i 88.24 (10)
N3—Mn1—O1i 85.10 (11)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999)[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Diphenic acid as O-donor ligand has received much more attention in the designed synthesis of coordination polymers (Wang, et al., 2006; Yin, et al., 2005). I select 3,4'-biphenyldicarboxylicacid as the ligand based on the following consideratons. First, the two functional carboxylate groups can adopt different coordination modes. Second, two phenyl rings are not coplanar with each other owing to the steric hindrance of carboxylate groups in coordinaton process. The distortion of diphenyl spacer about the central bond allows the carboxylate ligand to link metal ions into helical chains or one dimensional chains (Guo, et al., 2010).

The title compound,(I), was synthesized by the hydrothermal reaction of 3,4'-biphenyldicarboxylic acid with imidazo[4,5-f][1,10]phenanthroline and manganese chloride terahydrate. The central MnII exhibits an octahedral geometry with N2O4 coordination sphere from three carboxylate ligands and one imidazo[4,5-f][1,10]phenanthroline ligand. The carboxylate groups act as m3-ligand with one carboxylate group bridging two MnII ions in a bis-monodetate fashion, and the other carboxylate group bridging MnII in a bidentate chelating mode. The dihedral angle two phenyl rings in carboxylate ligand is 9.33°. The carboxylate ligands link MnII nodes to form one-dimensional zigzag chain along c axis.

Related literature top

For the use of diphenic acid as an O-donor ligand in the design and synthesis of coordination polymers, see: Wang et al. (2006); Yin et al. (2005). The distortion of the diphenyl spacer about the central bond allows the carboxylate ligand to link metal ions into helical chains or one dimensional chains, see: Guo et al. (2010).

Experimental top

A mixture of MnCl2.4H2O (0.099 g, 0.5 mmol), 3,4'-biphenyldicarboxylic acid (0.121 g,0.5 mmol), NaOH (0.04 g, 1 mmol), imidazo[4,5-f][1,10]phenanthroline (0.110 g,0.5 mmol)and distillated water (15 ml) was heated to 433 K for 96 h in a 25 ml stainless steel reactor with a Teflon liner. Yellow block crystals were obtained with 52% yield on Mn basis.

Refinement top

Hydrogen atoms were included in calculated positions and refined with fixed thermal parameters riding on their parent atoms with C—H distances in the range of 0.93–0.98 Å.

Structure description top

Diphenic acid as O-donor ligand has received much more attention in the designed synthesis of coordination polymers (Wang, et al., 2006; Yin, et al., 2005). I select 3,4'-biphenyldicarboxylicacid as the ligand based on the following consideratons. First, the two functional carboxylate groups can adopt different coordination modes. Second, two phenyl rings are not coplanar with each other owing to the steric hindrance of carboxylate groups in coordinaton process. The distortion of diphenyl spacer about the central bond allows the carboxylate ligand to link metal ions into helical chains or one dimensional chains (Guo, et al., 2010).

The title compound,(I), was synthesized by the hydrothermal reaction of 3,4'-biphenyldicarboxylic acid with imidazo[4,5-f][1,10]phenanthroline and manganese chloride terahydrate. The central MnII exhibits an octahedral geometry with N2O4 coordination sphere from three carboxylate ligands and one imidazo[4,5-f][1,10]phenanthroline ligand. The carboxylate groups act as m3-ligand with one carboxylate group bridging two MnII ions in a bis-monodetate fashion, and the other carboxylate group bridging MnII in a bidentate chelating mode. The dihedral angle two phenyl rings in carboxylate ligand is 9.33°. The carboxylate ligands link MnII nodes to form one-dimensional zigzag chain along c axis.

For the use of diphenic acid as an O-donor ligand in the design and synthesis of coordination polymers, see: Wang et al. (2006); Yin et al. (2005). The distortion of the diphenyl spacer about the central bond allows the carboxylate ligand to link metal ions into helical chains or one dimensional chains, see: Guo et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The coordination environments of manganese(II) atom. All hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. View of the one-dimensional zigzag chain running along c axis in compound
Poly[(µ3-biphenyl-3,4'-dicarboxylato- κ4O3:O3':O4',O4'')(1H- imidazo[4,5-f][1,10]phenanthroline- κ2N7,N8)manganese(II)] top
Crystal data top
[Mn(C14H8O4)(C13H8N4)]F(000) = 1052
Mr = 515.38Dx = 1.595 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 8.0634 (13) ÅCell parameters from 1052 reflections
b = 11.705 (2) Åθ = 2.5–19.6°
c = 22.807 (4) ŵ = 0.66 mm1
β = 94.307 (2)°T = 296 K
V = 2146.5 (6) Å3Block, yellow
Z = 40.30 × 0.25 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3997 independent reflections
Radiation source: fine-focus sealed tube2211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.915, Tmax = 0.949k = 1413
12211 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.026P)2 + 0.6105P]
where P = (Fo2 + 2Fc2)/3
3997 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Mn(C14H8O4)(C13H8N4)]V = 2146.5 (6) Å3
Mr = 515.38Z = 4
Monoclinic, P2/cMo Kα radiation
a = 8.0634 (13) ŵ = 0.66 mm1
b = 11.705 (2) ÅT = 296 K
c = 22.807 (4) Å0.30 × 0.25 × 0.15 mm
β = 94.307 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3997 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2211 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.949Rint = 0.079
12211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
3997 reflectionsΔρmin = 0.26 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3326 (5)0.2910 (3)0.59868 (17)0.0397 (10)
C20.4198 (5)0.2655 (3)0.54479 (16)0.0366 (10)
C30.5437 (5)0.3374 (4)0.52782 (18)0.0544 (12)
H30.57550.40070.55070.065*
C40.6200 (6)0.3150 (4)0.4769 (2)0.0653 (14)
H40.70270.36350.46530.078*
C50.5739 (5)0.2205 (4)0.44316 (19)0.0583 (13)
H50.62660.20680.40890.070*
C60.4504 (5)0.1452 (3)0.45896 (16)0.0384 (10)
C70.3743 (5)0.1712 (3)0.51070 (15)0.0360 (9)
H70.29060.12350.52240.043*
C80.3964 (5)0.0463 (3)0.42123 (16)0.0359 (10)
C90.4790 (5)0.0157 (3)0.37261 (17)0.0454 (11)
H90.57600.05430.36510.054*
C100.4217 (5)0.0706 (3)0.33468 (17)0.0445 (11)
H100.47950.08870.30210.053*
C110.2787 (5)0.1298 (3)0.34526 (16)0.0348 (10)
C120.2034 (5)0.2153 (3)0.30153 (18)0.0395 (10)
C130.2002 (5)0.1057 (3)0.39553 (17)0.0455 (11)
H130.10780.14810.40440.055*
C140.2582 (5)0.0185 (3)0.43296 (17)0.0479 (12)
H140.20350.00320.46660.058*
C150.3314 (5)0.4924 (4)0.29153 (17)0.0449 (11)
H150.36560.42210.30720.054*
C160.3820 (5)0.5911 (4)0.32141 (17)0.0499 (12)
H160.44830.58650.35650.060*
C170.3340 (5)0.6951 (4)0.29906 (17)0.0478 (12)
H170.36540.76170.31910.057*
C180.2367 (5)0.7004 (3)0.24547 (16)0.0335 (9)
C190.1832 (5)0.8018 (3)0.21576 (19)0.0428 (11)
C200.1350 (6)0.9765 (4)0.1863 (3)0.0705 (15)
H200.13501.05600.18550.085*
C210.0931 (5)0.8014 (4)0.16250 (19)0.0437 (11)
C220.0414 (5)0.6983 (3)0.13349 (17)0.0388 (10)
C230.0542 (5)0.6908 (4)0.08015 (18)0.0535 (12)
H230.08760.75670.05980.064*
C240.0983 (5)0.5857 (4)0.05792 (18)0.0519 (12)
H240.16260.57930.02250.062*
C250.0458 (5)0.4885 (4)0.08908 (17)0.0464 (11)
H250.07800.41740.07390.056*
C260.0901 (5)0.5956 (3)0.16214 (16)0.0336 (10)
C270.1912 (4)0.5964 (3)0.21789 (16)0.0315 (9)
Mn10.15985 (8)0.33674 (5)0.18767 (2)0.03702 (19)
N10.2089 (4)0.9153 (3)0.23044 (17)0.0551 (10)
H10.26180.94140.26170.066*
N20.0616 (5)0.9125 (3)0.14389 (18)0.0655 (12)
N30.0475 (4)0.4922 (3)0.13919 (13)0.0372 (8)
N40.2358 (4)0.4944 (3)0.24136 (13)0.0358 (8)
O10.3863 (3)0.3680 (2)0.63325 (12)0.0545 (8)
O20.2030 (4)0.2362 (2)0.60829 (12)0.0541 (8)
O30.2624 (3)0.2201 (2)0.25189 (11)0.0486 (8)
O40.0869 (4)0.2767 (2)0.18362 (12)0.0510 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (3)0.038 (3)0.036 (2)0.001 (2)0.004 (2)0.005 (2)
C20.040 (3)0.036 (2)0.033 (2)0.002 (2)0.003 (2)0.0031 (19)
C30.054 (3)0.058 (3)0.052 (3)0.006 (3)0.009 (2)0.017 (2)
C40.062 (3)0.070 (4)0.067 (3)0.030 (3)0.023 (3)0.020 (3)
C50.061 (3)0.069 (3)0.046 (3)0.014 (3)0.015 (2)0.022 (3)
C60.034 (2)0.042 (3)0.039 (2)0.002 (2)0.0045 (19)0.000 (2)
C70.036 (2)0.037 (2)0.034 (2)0.003 (2)0.0036 (18)0.000 (2)
C80.038 (3)0.037 (2)0.032 (2)0.001 (2)0.006 (2)0.0001 (18)
C90.054 (3)0.045 (3)0.039 (2)0.008 (2)0.009 (2)0.007 (2)
C100.054 (3)0.045 (3)0.036 (2)0.003 (2)0.009 (2)0.003 (2)
C110.040 (3)0.032 (2)0.031 (2)0.001 (2)0.0053 (19)0.0021 (17)
C120.048 (3)0.030 (2)0.040 (3)0.006 (2)0.003 (2)0.002 (2)
C130.044 (3)0.042 (3)0.050 (3)0.009 (2)0.007 (2)0.006 (2)
C140.047 (3)0.054 (3)0.044 (3)0.007 (2)0.011 (2)0.018 (2)
C150.048 (3)0.047 (3)0.040 (3)0.001 (2)0.004 (2)0.001 (2)
C160.054 (3)0.058 (3)0.036 (3)0.001 (3)0.009 (2)0.000 (2)
C170.048 (3)0.046 (3)0.048 (3)0.009 (2)0.000 (2)0.013 (2)
C180.032 (2)0.029 (2)0.039 (2)0.0037 (19)0.0022 (19)0.0025 (19)
C190.044 (3)0.031 (3)0.054 (3)0.002 (2)0.009 (2)0.005 (2)
C200.076 (4)0.032 (3)0.103 (4)0.004 (3)0.005 (3)0.000 (3)
C210.048 (3)0.033 (3)0.050 (3)0.003 (2)0.006 (2)0.006 (2)
C220.038 (3)0.038 (3)0.040 (2)0.006 (2)0.005 (2)0.006 (2)
C230.057 (3)0.052 (3)0.050 (3)0.007 (2)0.007 (2)0.012 (2)
C240.055 (3)0.059 (3)0.039 (3)0.001 (3)0.017 (2)0.005 (2)
C250.057 (3)0.042 (3)0.038 (3)0.005 (2)0.012 (2)0.004 (2)
C260.032 (2)0.029 (2)0.039 (2)0.002 (2)0.0015 (19)0.0043 (19)
C270.032 (2)0.030 (2)0.033 (2)0.000 (2)0.0014 (18)0.0004 (19)
Mn10.0488 (4)0.0288 (3)0.0331 (3)0.0021 (3)0.0009 (3)0.0000 (3)
N10.063 (3)0.033 (2)0.068 (3)0.005 (2)0.002 (2)0.011 (2)
N20.077 (3)0.033 (2)0.084 (3)0.004 (2)0.008 (2)0.006 (2)
N30.041 (2)0.035 (2)0.035 (2)0.0062 (17)0.0028 (16)0.0010 (16)
N40.039 (2)0.035 (2)0.0322 (19)0.0018 (17)0.0042 (16)0.0014 (16)
O10.055 (2)0.061 (2)0.0474 (18)0.0062 (16)0.0023 (15)0.0234 (16)
O20.057 (2)0.053 (2)0.0532 (19)0.0139 (17)0.0165 (16)0.0146 (15)
O30.064 (2)0.0449 (18)0.0371 (16)0.0085 (15)0.0060 (15)0.0079 (14)
O40.051 (2)0.0479 (19)0.0544 (19)0.0143 (16)0.0055 (15)0.0037 (15)
Geometric parameters (Å, º) top
C1—O11.253 (4)C17—H170.9300
C1—O21.259 (4)C18—C271.406 (5)
C1—C21.491 (5)C18—C191.417 (5)
C2—C31.384 (5)C19—C211.368 (5)
C2—C71.385 (5)C19—N11.382 (5)
C3—C41.379 (5)C20—N21.328 (5)
C3—H30.9300C20—N11.338 (5)
C4—C51.382 (5)C20—H200.9300
C4—H40.9300C21—N21.386 (5)
C5—C61.398 (5)C21—C221.424 (5)
C5—H50.9300C22—C231.393 (5)
C6—C71.404 (5)C22—C261.410 (5)
C6—C81.487 (5)C23—C241.367 (5)
C7—H70.9300C23—H230.9300
C8—C91.383 (5)C24—C251.391 (5)
C8—C141.391 (5)C24—H240.9300
C9—C101.387 (5)C25—N31.321 (4)
C9—H90.9300C25—H250.9300
C10—C111.382 (5)C26—N31.352 (4)
C10—H100.9300C26—C271.458 (5)
C11—C131.380 (5)C27—N41.347 (4)
C11—C121.508 (5)Mn1—O42.106 (3)
C12—O4i1.250 (4)Mn1—O32.124 (3)
C12—O31.262 (4)Mn1—O2ii2.208 (3)
C13—C141.388 (5)Mn1—N42.273 (3)
C13—H130.9300Mn1—N32.281 (3)
C14—H140.9300Mn1—O1ii2.313 (3)
C15—N41.331 (4)Mn1—C1ii2.602 (4)
C15—C161.387 (5)N1—H10.8600
C15—H150.9300O1—Mn1iii2.313 (3)
C16—C171.364 (5)O2—Mn1iii2.208 (3)
C16—H160.9300O4—C12i1.250 (4)
C17—C181.403 (5)
O1—C1—O2120.6 (4)N2—C20—N1113.2 (4)
O1—C1—C2120.0 (4)N2—C20—H20123.4
O2—C1—C2119.4 (4)N1—C20—H20123.4
O1—C1—Mn1iii62.7 (2)C19—C21—N2110.0 (4)
O2—C1—Mn1iii57.9 (2)C19—C21—C22122.2 (4)
C2—C1—Mn1iii175.7 (3)N2—C21—C22127.8 (4)
C3—C2—C7119.6 (4)C23—C22—C26117.9 (4)
C3—C2—C1120.3 (4)C23—C22—C21125.6 (4)
C7—C2—C1120.1 (4)C26—C22—C21116.5 (4)
C4—C3—C2119.8 (4)C24—C23—C22119.5 (4)
C4—C3—H3120.1C24—C23—H23120.3
C2—C3—H3120.1C22—C23—H23120.3
C3—C4—C5120.2 (4)C23—C24—C25119.1 (4)
C3—C4—H4119.9C23—C24—H24120.5
C5—C4—H4119.9C25—C24—H24120.5
C4—C5—C6121.9 (4)N3—C25—C24123.2 (4)
C4—C5—H5119.1N3—C25—H25118.4
C6—C5—H5119.1C24—C25—H25118.4
C5—C6—C7116.4 (4)N3—C26—C22122.0 (3)
C5—C6—C8121.7 (4)N3—C26—C27116.9 (4)
C7—C6—C8121.8 (4)C22—C26—C27121.1 (4)
C2—C7—C6122.1 (4)N4—C27—C18122.5 (3)
C2—C7—H7119.0N4—C27—C26117.1 (3)
C6—C7—H7119.0C18—C27—C26120.4 (4)
C9—C8—C14117.0 (4)O4—Mn1—O397.67 (11)
C9—C8—C6121.8 (4)O4—Mn1—O2ii89.59 (11)
C14—C8—C6121.2 (4)O3—Mn1—O2ii98.36 (11)
C8—C9—C10122.1 (4)O4—Mn1—N4120.65 (11)
C8—C9—H9119.0O3—Mn1—N494.32 (11)
C10—C9—H9119.0O2ii—Mn1—N4145.23 (11)
C11—C10—C9120.0 (4)O4—Mn1—N384.57 (11)
C11—C10—H10120.0O3—Mn1—N3165.21 (11)
C9—C10—H10120.0O2ii—Mn1—N396.26 (11)
C13—C11—C10118.9 (4)N4—Mn1—N372.22 (11)
C13—C11—C12119.9 (4)O4—Mn1—O1ii144.17 (10)
C10—C11—C12121.1 (4)O3—Mn1—O1ii100.92 (10)
O4i—C12—O3124.0 (4)O2ii—Mn1—O1ii57.65 (10)
O4i—C12—C11118.4 (4)N4—Mn1—O1ii88.24 (10)
O3—C12—C11117.6 (4)N3—Mn1—O1ii85.10 (11)
C11—C13—C14120.5 (4)O4—Mn1—C1ii117.17 (12)
C11—C13—H13119.8O3—Mn1—C1ii101.66 (11)
C14—C13—H13119.8O2ii—Mn1—C1ii28.90 (10)
C13—C14—C8121.4 (4)N4—Mn1—C1ii116.67 (12)
C13—C14—H14119.3N3—Mn1—C1ii90.13 (11)
C8—C14—H14119.3O1ii—Mn1—C1ii28.77 (10)
N4—C15—C16122.5 (4)C20—N1—C19106.4 (4)
N4—C15—H15118.7C20—N1—H1126.8
C16—C15—H15118.7C19—N1—H1126.8
C17—C16—C15119.7 (4)C20—N2—C21104.2 (4)
C17—C16—H16120.2C25—N3—C26118.4 (3)
C15—C16—H16120.2C25—N3—Mn1124.9 (3)
C16—C17—C18119.3 (4)C26—N3—Mn1116.5 (2)
C16—C17—H17120.3C15—N4—C27118.5 (3)
C18—C17—H17120.3C15—N4—Mn1124.3 (3)
C17—C18—C27117.5 (4)C27—N4—Mn1116.9 (2)
C17—C18—C19125.7 (4)C1—O1—Mn1iii88.5 (3)
C27—C18—C19116.8 (4)C1—O2—Mn1iii93.2 (2)
C21—C19—N1106.2 (4)C12—O3—Mn1119.6 (3)
C21—C19—C18123.0 (4)C12i—O4—Mn1155.1 (3)
N1—C19—C18130.9 (4)
O1—C1—C2—C310.1 (6)C22—C26—C27—N4178.2 (3)
O2—C1—C2—C3168.5 (4)N3—C26—C27—C18178.2 (3)
Mn1iii—C1—C2—C3118 (4)C22—C26—C27—C182.6 (6)
O1—C1—C2—C7171.5 (4)N2—C20—N1—C190.5 (6)
O2—C1—C2—C710.0 (6)C21—C19—N1—C200.1 (5)
Mn1iii—C1—C2—C760 (4)C18—C19—N1—C20178.4 (4)
C7—C2—C3—C40.5 (6)N1—C20—N2—C210.6 (6)
C1—C2—C3—C4178.0 (4)C19—C21—N2—C200.5 (5)
C2—C3—C4—C50.5 (7)C22—C21—N2—C20179.6 (4)
C3—C4—C5—C60.1 (7)C24—C25—N3—C261.9 (6)
C4—C5—C6—C70.7 (6)C24—C25—N3—Mn1173.4 (3)
C4—C5—C6—C8177.5 (4)C22—C26—N3—C251.6 (6)
C3—C2—C7—C60.2 (6)C27—C26—N3—C25179.2 (3)
C1—C2—C7—C6178.6 (3)C22—C26—N3—Mn1174.1 (3)
C5—C6—C7—C20.7 (5)C27—C26—N3—Mn15.1 (4)
C8—C6—C7—C2177.5 (3)O4—Mn1—N3—C2554.9 (3)
C5—C6—C8—C98.1 (6)O3—Mn1—N3—C25154.4 (4)
C7—C6—C8—C9175.2 (4)O2ii—Mn1—N3—C2534.1 (3)
C5—C6—C8—C14170.9 (4)N4—Mn1—N3—C25179.5 (3)
C7—C6—C8—C145.8 (6)O1ii—Mn1—N3—C2590.8 (3)
C14—C8—C9—C104.2 (6)C1ii—Mn1—N3—C2562.4 (3)
C6—C8—C9—C10174.9 (4)O4—Mn1—N3—C26129.7 (3)
C8—C9—C10—C110.6 (6)O3—Mn1—N3—C2630.2 (6)
C9—C10—C11—C133.5 (6)O2ii—Mn1—N3—C26141.3 (3)
C9—C10—C11—C12173.4 (3)N4—Mn1—N3—C265.1 (3)
C13—C11—C12—O4i12.0 (5)O1ii—Mn1—N3—C2684.6 (3)
C10—C11—C12—O4i171.1 (4)C1ii—Mn1—N3—C26113.0 (3)
C13—C11—C12—O3167.9 (4)C16—C15—N4—C272.2 (6)
C10—C11—C12—O39.0 (5)C16—C15—N4—Mn1176.6 (3)
C10—C11—C13—C143.9 (6)C18—C27—N4—C152.4 (6)
C12—C11—C13—C14173.0 (4)C26—C27—N4—C15178.4 (3)
C11—C13—C14—C80.3 (6)C18—C27—N4—Mn1177.2 (3)
C9—C8—C14—C133.7 (6)C26—C27—N4—Mn13.6 (4)
C6—C8—C14—C13175.3 (4)O4—Mn1—N4—C15108.8 (3)
N4—C15—C16—C170.4 (7)O3—Mn1—N4—C157.2 (3)
C15—C16—C17—C181.3 (6)O2ii—Mn1—N4—C15104.2 (3)
C16—C17—C18—C271.1 (6)N3—Mn1—N4—C15179.0 (3)
C16—C17—C18—C19177.3 (4)O1ii—Mn1—N4—C1593.6 (3)
C17—C18—C19—C21177.7 (4)C1ii—Mn1—N4—C1598.1 (3)
C27—C18—C19—C210.7 (6)O4—Mn1—N4—C2776.8 (3)
C17—C18—C19—N10.6 (7)O3—Mn1—N4—C27178.3 (3)
C27—C18—C19—N1179.0 (4)O2ii—Mn1—N4—C2770.3 (3)
N1—C19—C21—N20.2 (5)N3—Mn1—N4—C274.6 (3)
C18—C19—C21—N2178.9 (4)O1ii—Mn1—N4—C2780.9 (3)
N1—C19—C21—C22179.4 (4)C1ii—Mn1—N4—C2776.3 (3)
C18—C19—C21—C222.0 (7)O2—C1—O1—Mn1iii2.3 (4)
C19—C21—C22—C23178.2 (4)C2—C1—O1—Mn1iii176.2 (3)
N2—C21—C22—C230.8 (7)O1—C1—O2—Mn1iii2.4 (4)
C19—C21—C22—C260.9 (6)C2—C1—O2—Mn1iii176.1 (3)
N2—C21—C22—C26179.9 (4)O4i—C12—O3—Mn10.8 (5)
C26—C22—C23—C240.6 (6)C11—C12—O3—Mn1179.1 (2)
C21—C22—C23—C24178.4 (4)O4—Mn1—O3—C1257.7 (3)
C22—C23—C24—C250.3 (7)O2ii—Mn1—O3—C12148.5 (3)
C23—C24—C25—N31.0 (7)N4—Mn1—O3—C1264.0 (3)
C23—C22—C26—N30.4 (6)N3—Mn1—O3—C1240.1 (6)
C21—C22—C26—N3179.5 (3)O1ii—Mn1—O3—C12153.0 (3)
C23—C22—C26—C27179.6 (4)C1ii—Mn1—O3—C12177.6 (3)
C21—C22—C26—C271.3 (6)O3—Mn1—O4—C12i4.0 (7)
C17—C18—C27—N40.8 (6)O2ii—Mn1—O4—C12i102.4 (6)
C19—C18—C27—N4179.3 (3)N4—Mn1—O4—C12i95.7 (7)
C17—C18—C27—C26179.9 (3)N3—Mn1—O4—C12i161.3 (7)
C19—C18—C27—C261.5 (5)O1ii—Mn1—O4—C12i124.8 (6)
N3—C26—C27—N41.0 (5)C1ii—Mn1—O4—C12i111.3 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C14H8O4)(C13H8N4)]
Mr515.38
Crystal system, space groupMonoclinic, P2/c
Temperature (K)296
a, b, c (Å)8.0634 (13), 11.705 (2), 22.807 (4)
β (°) 94.307 (2)
V3)2146.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.915, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
12211, 3997, 2211
Rint0.079
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.107, 1.00
No. of reflections3997
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Mn1—O42.106 (3)Mn1—O1i2.313 (3)
Mn1—O32.124 (3)Mn1—C1i2.602 (4)
Mn1—O2i2.208 (3)O1—Mn1ii2.313 (3)
Mn1—N42.273 (3)O2—Mn1ii2.208 (3)
Mn1—N32.281 (3)
O4—Mn1—O397.67 (11)O2i—Mn1—N396.26 (11)
O4—Mn1—O2i89.59 (11)N4—Mn1—N372.22 (11)
O3—Mn1—O2i98.36 (11)O4—Mn1—O1i144.17 (10)
O4—Mn1—N4120.65 (11)O3—Mn1—O1i100.92 (10)
O3—Mn1—N494.32 (11)O2i—Mn1—O1i57.65 (10)
O2i—Mn1—N4145.23 (11)N4—Mn1—O1i88.24 (10)
O4—Mn1—N384.57 (11)N3—Mn1—O1i85.10 (11)
O3—Mn1—N3165.21 (11)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuo, F., Zhu, B. Y. & Zhang, X. L. (2010). J. Inorg. Organomet. Polym. 20, 118–123.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R. H., Yuan, D. Q., Jiang, P. L., Han, L., Gong, Y. Q. & Hong, M. C. (2006). Cryst. Growth Des. 6, 1351–1360.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, P. X., Zhang, J., Wen, Y. H., Cheng, J. K., Li, Z. J. & Yao, Y. G. (2005). Chin. J. Struct. Chem. 10, 1107–1110.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds